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Examples:
2d gauge/Bethe correspondence (Nekrasov/Shatashvili):
relates 2d gauge theories with twisted masses to 
integrable spin chains.

4d gauge/Bethe correspondence (Nekrasov/Shatashvili):
relates Omega-deformed 4d gauge theories to quantum 
integrable systems.

AGT correspondence (Alday, Gaiotto, Tachikawa):
relates Omega-deformed super-Yang-Mills theory to 
Liouville theory.
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an integrable system. 

Relation between two very constrained and well-
behaved systems that can be studied separately with 
different methods.

Transfer insights from one side to the other, cross-
fertilization between subjects!

2.  The deformed gauge theories in question can be 
realized in string theory via the fluxtrap background!

The string theory construction provides a unifying 
framework and a different point of view on the gauge 
theory problems.
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Use the fluxtrap construction to unify and meaningfully 
relate and reinterpret a large variety of existing results.

⇒ different brane set-ups give rise to different gauge 
theories with seemingly unrelated deformations!
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into which the branes are placed (Hellerman, Orlando, S.R.)
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- 4d effective gauge theories with deformations

Fluxtrap background as toolbox to generate deformed 
gauge theories and analyze them via string theoretic 
methods.

- 2d effective gauge theories with deformations

Today: introduction to the fluxtrap background and 
panoramic overview over its many applications:

Our string theoretic approach enables us moreover to 
generate new deformed gauge theories in a simple and 
algorithmic way.
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The same string theory background can give rise to many 
different deformations depending on how we place branes in it!
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✏k = ✏Rk + i ✏Ik ev = ex8 + i ex9

The Fluxbrane Background



ds2 = d�x2
0...7 �

V R
i V R

j dxi dxj

1 + V R · V R
�

V R
i V R

j dxi dxj

1 + V R · V R

+
�
1 + V R · V R

� 
(dx8)2 � V R

i dxi

1 + V R · V R

�2

+
�
1 + V I · V I

� 
(dx9)2 � V I

i dxi

1 + V I · V I

�2
+ 2V R · V I dx8 dx9

Generator of rotations:

Fluxbrane metric (   -fibration over Ω-deformed    ):T 2 R8

Introduce new angular variables with disentangled 
periodicities: ⇤k = ⇥k � �Rk ex8 � �Ikex9 = ⇥k � Re(�kēv)
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M10 = M3(�1)⇥M3(�2)⇥ R4
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Figure 1: Cartoon of the geometry of the base of the manifold M3(e1): a cigar with
asymptotic radius 1/e1.

The space splits into a product

M10 = M3(e1)⇥ M3(e2)⇥ R3 ⇥ S1 , (2.14)

where R3 is generated by (r3, y, x7), the S1 is generated by (x6, x7), and M3 is a three-
dimensional manifold which is obtained as a R foliation (generated by x8 or x9) over
the cigar with asymptotic radius 1/ei described by (r1, f1) or (r2, f2) (see the cartoon
in Figure 1):

Rhx8i M3(e1)

cigar hr1, f1i (2.15)

This shows that the effect of the W–deformation is to regularize the rotations
generated by ∂

f1 and ∂

f2 in the sense that the operators become bounded:
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In a different frame this will translate into a bound on the asymptotic coupling of the
effective gauge theory for the motion of a D–brane.

As a final remark we observe that even though the background in Equation (2.13)
where the contributions of the two ei are decoupled was obtained as a limit, it is by
itself a solution of the ten-dimensional supergravity equations of motion for any value
of ri.

What we have obtained is the starting point of the chain of dualities leading
eventually to the reciprocal background, as detailed in Table 1.

M–theory. As a first step we dualize in x6 to type iia and then lift to M–theory.
A remarkable feature of the M–theory background is the fact that it is symmetric
under the exchange {r1, f1, x8, e1} $ {r2, f2, x9, e2}. This is the origin of the S–duality
covariance of the final type iib background. This has to be contrasted with the fact
that the directions x6 and the M–circle x10 appear in a non-symmetric fashion. This is

5
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The generator of rotations is bounded (by asymptotic radius).
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SL2 ⇥ SL3

redox redoxredox and T

Figure 3: Relations among the bulk descriptions

Having found the Killing spinors in the fluxbrane, we can translate them into Killing
spinors in the other backgrounds by simply following the transformations represented
in Figure 3.

• For the fluxtrap, the effect of T–duality is to multiply half of the spinors by the
gamma matrices in the directions of the T–dualities:

hiib =
N

’
k=1

exp[
fk
2

G
rkqk ]Pflux

k (h0 + i G8G9h1) , (2.32)

where h0 and h1 are constant and G8 and G9 are defined as

G8 = g8µ

e µ

a g

a , (2.33)

where g
µn

is the fluxbrane metric, e µ

a is the inverse vielbein and g

a are the gamma
matrices in flat space.

• The Killing spinors in M–theory can be obtained by lifting the ones in type iia:

hm = eF/6
hiia (2.34)

with an appropriate choice of the eleven-dimensional vielbein [19].

3 2d effective field theories with deformations

As first examples of deformed supersymmetric gauge theories obtained from brane
constructions placed into the fluxtrap background, we will consider two-dimensional
low energy effective gauge theories with twisted masses. One of the uses of this
construction is the realization of the two-dimensional gauge/Bethe correspondence [14,
15, 30] via string theory [16, 18, 31, 32]. Twisted masses are terms particular to two-
dimensional gauge theories and have their equivalent in the real masses of three-
dimensional gauge theories. In the superspace formalism, they appear in the Lagrangian
as Ltw =

R
d4

q (X†eq

�
q̄

+ emX+h.c.X), where X is a chiral matter field and eq

�
q̄

+ emX are
matrices in the same representation as X of the maximal torus of the global symmetry
group. The twisted mass term cannot be thought of as a superpotential term, but comes

10
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1 Introduction

[inline]Seiberg–Witten (sw)
The sw action from M-theory
Nekrasov’s ⌦–deformation, Alday–Gaiotto-Tachikawa (agt) and this stuff
Since the classical result of Seiberg and Witten, N = 2 gauge theories have occupied

a prominent place in theoretical physics. M–theory has been the tool of choice for the
study of four-dimensional supersymmetric gauge theories for many years. The complete
quantum sw effective action for N = 2 supersymmetric SU(N) Yang–Mills theory has
been obtained in [4], whereas the equations of motion for both the scalar and vector
fields of an M5–brane in the presence of three-brane solitons have been derived in [7].
The resulting equations of motion are precisely those obtained from the sw low energy
effective action for N = 2 Yang–Mills, including all quantum corrections.

Ever since Nekrasov’s seminal paper [10], the ⌦–background has received a lot of
interest, most recently in the context of the agt–correspondence [1] and work related to
it. In this note, the vector and scalar equations of motion and from them, the effective
action of the ⌦–deformed sw theory (including all quantum corrections) will be derived
starting from an M–theory set-up.

The so-called fluxtrap background [2, 11] provides a string-theoretical construction of
the ⌦–background which can be lifted to M–theory [3]. This background enables us to
derive the vector and scalar equations of motion of an M5–brane in the ⌦–background
leading to the ⌦–deformed sw low energy effective action for N = 2 Yang–Mills. We treat
the case of SU(2), briefly remarking on the generalization to SU(N) in the conclusions.
While the M5–embedding is known to quadratic order in ✏, the equations of motion will
be derived to linear order in ✏.

We will in the following study a type IIA fluxtrap background with a D4–brane
suspended between two parallel NS5–branes, see Table 1. The effective theory on the
world-volume of the D4–brane is the Euclidean !–deformed N = 2 sym. The lift to
M–theory at order ✏ was derived in [3] and is given by (M,N = 0, 1, 2, ..., 10)

gMN = �MN +O(✏2) , (1.1a)
G4 = �4 (ds+ ds̄) ^ (dv + dv̄) ^ ! , (1.1b)

0 1 2 3 4 5 6 7 8 9

fluxtrap ✏1 ✏2 ✏3 ⇥ ⇥ � ⇥
NS5 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
D4 ⇥ ⇥ ⇥ ⇥ ⇥

Table 1: D4–branes suspended between NS5s with two independent ✏. The crosses ⇥
indicate directions in which the branes are extended. The circle � is the direction of the
T–duality. The effective gauge theory describing the D4–brane is the !̂–deformed four-
dimensional gauge system of Nekrasov. Note that all directions have the same Euclidean
signature.
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1 Introduction

[inline]Seiberg–Witten (sw)
The sw action from M-theory
Nekrasov’s ⌦–deformation, Alday–Gaiotto-Tachikawa (agt) and this stuff
Since the classical result of Seiberg and Witten, N = 2 gauge theories have occupied

a prominent place in theoretical physics. M–theory has been the tool of choice for the
study of four-dimensional supersymmetric gauge theories for many years. The complete
quantum sw effective action for N = 2 supersymmetric SU(N) Yang–Mills theory has
been obtained in [4], whereas the equations of motion for both the scalar and vector
fields of an M5–brane in the presence of three-brane solitons have been derived in [7].
The resulting equations of motion are precisely those obtained from the sw low energy
effective action for N = 2 Yang–Mills, including all quantum corrections.

Ever since Nekrasov’s seminal paper [10], the ⌦–background has received a lot of
interest, most recently in the context of the agt–correspondence [1] and work related to
it. In this note, the vector and scalar equations of motion and from them, the effective
action of the ⌦–deformed sw theory (including all quantum corrections) will be derived
starting from an M–theory set-up.

The so-called fluxtrap background [2, 11] provides a string-theoretical construction of
the ⌦–background which can be lifted to M–theory [3]. This background enables us to
derive the vector and scalar equations of motion of an M5–brane in the ⌦–background
leading to the ⌦–deformed sw low energy effective action for N = 2 Yang–Mills. We treat
the case of SU(2), briefly remarking on the generalization to SU(N) in the conclusions.
While the M5–embedding is known to quadratic order in ✏, the equations of motion will
be derived to linear order in ✏.

We will in the following study a type IIA fluxtrap background with a D4–brane
suspended between two parallel NS5–branes, see Table 1. The effective theory on the
world-volume of the D4–brane is the Euclidean !–deformed N = 2 sym. The lift to
M–theory at order ✏ was derived in [3] and is given by (M,N = 0, 1, 2, ..., 10)

gMN = �MN +O(✏2) , (1.1a)
G4 = �4 (ds+ ds̄) ^ (dv + dv̄) ^ ! , (1.1b)

0 1 2 3 4 5 6 7 8 9

fluxtrap ✏1 ✏2 ✏3 ⇥ ⇥ � ⇥
NS5 ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
D4 ⇥ ⇥ ⇥ ⇥ ⇥

Table 1: D4–branes suspended between NS5s with two independent ✏. The crosses ⇥
indicate directions in which the branes are extended. The circle � is the direction of the
T–duality. The effective gauge theory describing the D4–brane is the !̂–deformed four-
dimensional gauge system of Nekrasov. Note that all directions have the same Euclidean
signature.
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4 Ĝ4 H3 = h3 +O(h3

3)

✏ = 0 h3 = 0

@̄s = 0

For       , we have         and the M5-brane wraps a 
Riemann surface          . 
At linear order, pullback only depends holomorphically 
on      :s(z)

From the susy condition, we find

h3 = 1
4 (s̄� z̄ @s) dz ^ !̂� + 1

4

�
s� z @̄s̄

�
dz̄ ^ !̂+

M5 still embedded holomorphically, implicit form for 
SU(2):

Riemann surface with modulus u:

selfdual

⇥̂� =
�1 � �2

2

�
dx0 ^ dx1 � dx2 ^ dx3

�
⇥̂+ =

�1 + �2
2

�
dx0 ^ dx1 + dx2 ^ dx3

�

Witten

Omega-deformed SW



Want to describe the low energy dynamics of the 
fluctuations around the equilibrium.

Omega-deformed SW



Want to describe the low energy dynamics of the 
fluctuations around the equilibrium.

Since we are interested in the 4d theory, we assume that:

Omega-deformed SW



Want to describe the low energy dynamics of the 
fluctuations around the equilibrium.

Since we are interested in the 4d theory, we assume that:
- the geometry of the M5 is still a fibration of a 
Riemann surface over    .R4

Omega-deformed SW



Want to describe the low energy dynamics of the 
fluctuations around the equilibrium.

Since we are interested in the 4d theory, we assume that:
- the geometry of the M5 is still a fibration of a 
Riemann surface over    .R4

- for each point in     we have the same Riemann 
surface as above, but with a different value of the 
modulus u.

R4

Omega-deformed SW



Want to describe the low energy dynamics of the 
fluctuations around the equilibrium.

Since we are interested in the 4d theory, we assume that:
- the geometry of the M5 is still a fibration of a 
Riemann surface over    .R4

- for each point in     we have the same Riemann 
surface as above, but with a different value of the 
modulus u.

R4

The modulus u of the Riemann surface is a function of the 
worldvolume coordinates and the embedding is still 
formally defined by the same equation:

Omega-deformed SW



Want to describe the low energy dynamics of the 
fluctuations around the equilibrium.

Since we are interested in the 4d theory, we assume that:
- the geometry of the M5 is still a fibration of a 
Riemann surface over    .R4

- for each point in     we have the same Riemann 
surface as above, but with a different value of the 
modulus u.

R4

The modulus u of the Riemann surface is a function of the 
worldvolume coordinates and the embedding is still 
formally defined by the same equation:

s = s(z|u(xµ))
@µs(z|u(xµ)) = @µu

@s

@u

Omega-deformed SW

z = x

8 + ix9
s = x

6 + ix10



Omega-deformed SW
6D Equations of Motion:



Dynamics can be obtained by evaluating the M5-brane 
equations of motion (bosonic fields).

Omega-deformed SW
6D Equations of Motion:



Dynamics can be obtained by evaluating the M5-brane 
equations of motion (bosonic fields).
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ĜI

mnph
mnp ,

dh3 = � 1
4 Ĝ4 ,
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ĜI

mnph
mnp ,

dh3 = � 1
4 Ĝ4 ,
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⌘

Omega-deformed SW
Vector equation:



”The threeform on the brane is the (generalized) 
pullback of the threeform in the bulk.”

d� = i d⇤6Ĉ3
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⇤6 d(�� i ⇤6Ĉ3) =
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(ĝmn � 16hmpqhn
pq)rmrnX

I = �2

3
ĜI
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Consistent result justifies earlier assumptions about foliation 
structure, form of fluctuations and integration measure.
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For        , this reproduces the Seiberg-Witten 
Lagrangian.
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Why does this result of a classical M-theory calculation 
capture the quantum effects of gauge theory?

Independent of compactification radius to IIA, which is 
related to gauge coupling in 4d.

Expect to have a Lagrangian description!
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j � 2
⇣

⌧
⌧�⌧̄

⌘

jl
F⇤ l

µ⌫ Û⇤ ⌫
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�
!̂⇤ µ⌫

� �
F⇤ j

µ⌫ + 1
2

�
aj � āj
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�
!̂⇤ µ⌫

� �
F j
µ⌫ + 1

2

�
aj � āj
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j � 2
⇣

⌧
⌧�⌧̄

⌘

jl
F⇤ l

µ⌫ Û⇤ ⌫
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Generalization to arbitrary gauge group and matter 
content, prediction for    terms:✏2

generalized covariant derivative for the scalar a, 
non-minimal coupling to the gauge field.

shift in the gauge field strength
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The fluxtrap construction allows us to study different 
gauge theories of interest via string theoretic methods.

The construction gives a geometrical interpretation for 
the Omega BG and its properties, such as localization etc.

Can generate deformed gauge theories in an algorithmic 
way.  Toolbox.

Omega deformation and (twisted) mass deformations 
have same origin in string theory.

Summary

Many interesting applications! Domenico’s talk after the 
break.



Thank you for your 
attention!


