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Some D–brane setups

First I want to convince you that there are many applications.

X 0 1 2 3 4 5 6 7 8 9

fluxbrane ε1 ε2 ε3 ◦ ◦
NS5 × × × × × ×
D4 × × × × ×
ξ 0 1 2 3 4

The D4 branes describe the Ω-deformation of d = 4,N = 2.
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Some D–brane setups

First I want to convince you that there are many applications.

X 0 1 2 3 4 5 6 7 8 9

fluxbrane ε1 ε2 ε3 ε4 ◦ ◦
D3 × × × ×
ξ 0 1 2 3

The D3 branes describe the Ω-deformation of d = 4,N = 4.
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Some D–brane setups

First I want to convince you that there are many applications.

X 0 1 2 3 4 5 6 7 8 9

fluxbrane ε1 ε2 ◦ ◦
D3 × × × ×
ξ 0 1 2 3

The D3 branes describe d = 4,N = 2∗ with mass m = ε .
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Some D–brane setups

First I want to convince you that there are many applications.

X 0 1 2 3 4 5 6 7 8 9

fluxbrane ε1 ε2 ε3 ◦
D2 × × ×
ξ 0 1 2

The D2 branes describe the real mass deformation of d = 3,N = 4
with mass mi = εi
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Some D–brane setups

First I want to convince you that there are many applications.

X 0 1 2 3 4 5 6 7 8 9

fluxbrane ◦ ε1 ε2
NS5 × × × × × ×
D3 × × × ×
ξ 0 1 2 3

The D3 branes describe the real mass deformation of d = 3,N = 2.
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Some D–brane setups

First I want to convince you that there are many applications.

X 0 1 2 3 4 5 6 7 8 9

fluxbrane ◦ ◦ ε1 ε2
NS5 × × × × × ×
D2 × × ×
ξ 0 1 2

The D2 branes describe the twisted mass deformation of
d = 2,N = 4, i.e. d = 2,N = 2∗ .
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The Gauge-Bethe Correspondence

▶ The gauge–Bethe correspondence relates the Coulomb branch
of certain supersymmetric gauge theories to the Bethe Ansatz
equations of integrable systems

▶ More precisely it identifies the twisted effective superpotential
with the Yang–Yang function

▶ The simplest example is the XXX spin chain, whose Bethe Ansatz
equations read:(

σi − ı/2
σi + ı/2

)L

=
N

∏
j ̸=i

σi −σj − ı
σi −σj + ı

, i = 1, . . . ,N

▶ These are the same equations that one obtains describing the
low energy effective action for a two dimensional N = (2, 2)
theory with gauge group U(N), L fundamentals, L
antifundamentals and an adjoint field with twisted masses
mQ = mQ̃ = −ı/2, and mΦ = ı.
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D2 branes in the fluxtrap

How do we realize this system in String Theory?
Consider the following system of branes

direction 0 1 2 3 4 5 6 7 8 9

fluxtrap −ε ε ◦ ◦
NS5 × × × × × ×
D2 × × ×
D4 × × × × ×

From the point of view of the gauge theory on the D2 branes
▶ x8 + ıx9 = σ (twisted chiral)
▶ x6 + ıx7 = Φ (chiral adjoint)
▶ the separation of the NS5 in x3 is the Fayet-Iliopoulos term
▶ the separation of the NS5 in x2 is 1/g2
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The D2 brane as a BPS object

Consider the static embedding

Fαβ = 0 , x0 = ζ0 , x1 = ζ1 , x2 = ζ2 , φ1 = ωζ0 , φ2 = −ωζ0 .

The bosonic part of the DBI action reads

S = −μ2

∫
d3ζ

√
1+

(
x24 + x25 + x26 + x27

) (
|ε|2 −ω2

)
.

The equations of motion can be satisfied in two ways:
▶ if x3...7 = 0. This is a static D2 brane sitting in the trap.
▶ if ω = ± |ε|. This is a rotating D2 brane. A nice feature is that

we are not in the linearized approximation but the frequency is
fixed only by the twisted mass |ε| and is independent of the
amplitude.
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Static Embedding

The supersymmetries preserved by the static embedding are those
such that

εL = ΓD2εR .

▶ without the NS5 there are 8 preserved supercharges (N = 2 in
3d) {

KL = (1+Γ11)Πflux
− Γ1208 exp[ 12 (φ1 +φ2)Γ67]η1 ,

KR = (1−Γ11) Γ̂8Γ̂9Πflux
− exp[ 12 (φ1 +φ2)Γ67]η1 .

▶ with the NS5 there are 4 preserved supercharges (N = (2, 2) in
2d){

KL = (1+Γ11)ΠNS5
− Πflux

− Γ1208 exp[ 12 (φ1 +φ2)Γ67]η2 ,
KR = (1−Γ11) Γ̂8Γ̂9ΠNS5

+ Πflux
− exp[ 12 (φ1 +φ2)Γ67]η2 .
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DBI action for the D2 brane

The last thing that remains to do is to show how the D2 branes in the
fluxtrap background acquire a twisted mass.
We simply need to write the Dirac–Born–Infeld action at quadratic
order:

S = −μ2

∫
d3ζ e−Φ

√
−det(gαβ + Bαβ)

[
1− 1

2
ψ̄
(
(g+ B)αβΓβDα +Δ(1)

)
ψ
]

,

where

Dα = ∂αXμ
(
∇μ +

1
8
HμmnΓmn

)
, Δ(1) =

1
2
Γm ∂mΦ− 1

24
HmnpΓmnp .

Then we expand all the terms at their respective leading order in the
fields:

gμν dXμ dXν = d⃗x20...9 +O(X4) ,

Hμνρ dXμ ∧ dXν ∧ dXρ = 2 |ε| (ρ1 dρ1 ∧ dφ1 −ρ2 dρ2 ∧ dφ2) ∧ dx8 +O(X5) ,

e−Φ =
1

g2
3

√
α′

(
1+

|ε|2

2

(
ρ2

1 +ρ
2
2

))
+O(X4) .
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DBI action for the D2 brane

▶ From the dilaton we get a term

|ε|2
(
ρ2

1 +ρ
2
2

)
▶ From the B-field we get the mass for the fermions:

ε
2
ψ̄ (Γ45 −Γ67)Γv̄ψ+ c.c.

Putting everything together we reproduce the expected form for the
twisted mass term in two dimensions

...

S =
∫

d2ζ
[
Φ̇ ˙̄Φ− |ε|2ΦΦ̄− ψ̄Γ0ψ̇− ıεψ̄ΠΦ−Γv̄ψ+ c.c.

]
,
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A gauge theory perspective

..

. ..gauge theory .. .. ..string theory

..4D ..Wilson line b.c. . . ..D3–brane in fluxbrane
= Ω background

..

..

..3D ..real mass . . ..D2–brane in fluxtrap

.

reduction

.

T–duality

.

effective

.
theory

.

effective

.

theory
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The idea

This is a good moment to stop
▶ We use a setup with D2 branes stretched between NS5 branes in

presence of D4 branes
▶ Instead of the usual flat space we embed the branes in the

fluxtrap
▶ The ε’s are orthogonal to the D2 branes
▶ We construct BPS states with the right supersymmetries
▶ The ε deformation turns into a twisted mass term in the

effective theory
▶ This is the mass term required for the two-dimensional

Gauge-Bethe correspondence [0901.4744]
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Quantum symmetries

N D2 branes stretching between two NS5 branes with L
perpendicular D4 branes

D2

NS51 NS52

T−→ D1

NS51 NS52

S−→ F1

D51 D52

This is the first realization of the enhanced SU(2) symmetry of two
coincident NS5 branes in terms of gauge theory.
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The gauge theory

Consider a stack of D4–branes extended in the directions of the
shifts.

X 0 1 2 3 4 5 6 7 8 9

fluxbrane ε1 ε2 ε3 ◦
NS5 × × × × × ×
D4 × × × × ×
ξ 0 1 2 3 4
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The Ω-deformed action

Now we just need to write the DBI action expanded at second order
in the fields:

...

Lε1,ε2 = − 1
4g2

4

(
∥F∥2 + 1

2
∥dϕ+ 2 iεıÛF∥

2 +
ε2

8
∥ıÛ d(ϕ+ ϕ̄)∥2

)
,

where Û is the pullback of the vector field U,

ε Û = εf∗U = εÛi ∂ξi= ε1
(
ξ0∂1 −ξ1∂0

)
+ε2

(
ξ2∂3 −ξ3∂2

)
.

Lagrangian of the Ω–deformation of N = 2 SYM. [Nekrasov-Okounkov]

The advantage is that now we can understand it as coming from
string theory and we have an algorithmic way to generalize it.
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The interpretation

Lε1,ε2 = − 1
4g2

4

(
1+ ∥F∥2+ 1

2
∥dϕ+2 iεıÛF∥

2+
ε2

8
∥ıÛ d(ϕ+ ϕ̄)∥2

)
,

▶ the terms in ε are odd under charge conjugation Aμ → −Aμ.
This is because they come from the B field. This is the leading
deformation of the background

▶ the terms in ε2 come from metric and dilaton. They control
classical gauge configurations and hence directly to the
instanton moduli space

▶ A single D–instanton is a D(−1) brane. Its action is

Linst = e−Φ=
√

1+ε2∥U∥2

a critical point for the action is a critical point for the dilaton
profile: U = 0. This is the string theoretical version of
localization.
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Generalizations

Let us now remove the NS5–branes. The Ω–deformed Lagrangian of
N = 4 super Yang–Mills:

L =
1

4g2

[
FijFij+

1
2

∣∣∣∂iϕ+εUkFki
∣∣∣2− 1

8

(
εUi ∂iϕ̄− c.c.+ 2 |ε|2 UkŪlFkl

)2
+

1
4

(
δij + |ε|2 UiŪj

) (
∂iz ∂jz̄+ ∂iw ∂jw̄+ c.c.

)
+

+
1
2 i

(
ε̄3εUi + c.c.

)
(w̄ ∂iw− c.c.) +

1
2
|ε3|2 ww̄

]
,

The fields w and z describe the oscillations of the D3–brane
respectively in x4 + i x5 and x6 + i x7.
The effect of the deformation on these two fields consists in a
modification of the kinetic term. Moreover, the field w acquires a
mass term and a one-derivative term, which is allowed by the broken
Poincaré invariance.

Domenico Orlando The fluxtrap (Part II)



Applications at a glance D2 branes D4 branes Gravity duals Non-commutativity BPS states Outlook

Generalizations

Now put the brane completely orthogonal to the fluxtrap (i.e. set
ε1 = ε2 = 0 and ε3 = ε4 = m).
The Lagrangian is the same as N = 4 but with mass terms for two of
the complex bosons:

...

L =
1

8g2

[
2FijFij + |∂iϕ|2 + |∂iz|2 + |∂iw|2 + |m|2 |w|2 + |m|2 |z|2

]
.

There is only one deformation parameter, so we have eight
supercharges.
This is an alternative realization of N = 2∗, obtained as dimensional
reduction of N = 2 in five dimensions on a Wilson line (analogous to
the real mass term in two dimensions coming from three dimensions).
The description is completely local.
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Generalizations

The Ω–deformed Lagrangian of N = 1 super Yang–Mills. Just by
looking at the D-brane diagram we find that this is only possible in the
ε2 = 0 limit and if the (dual) Melvin direction is parallel to the brane.

x 0 1 2 3 4 5 6 7 8 9

fluxbrane ε1 ◦ −ε1
D4 × × × × ×
NS5 × × × × × ×
NS5 × × × × × ×
ξ 0 1 2 3

The effective action has two supercharges and a one-derivative term

...

L =
1

4g2

[
FijFij + 2εUiFije

j
2

]
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A gravity dual for the four-dimensional deformed
theories

We have realized Ω–deformed N = 4 gauge theories in terms of
D3–branes in the fluxtrap background. The most general example is
N = 2∗ with ε1 ̸= ε2.

Up to now the D3–brane has been a probe object. We have
disregarded its backreaction on the bulk fields.

Adding the backreaction will provide us with the gravity dual to the
deformed gauge theories.
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Literature

This type of deformation has already been studied in the literature.
There are two famous examples:

1. The β–deformation [Maldacena–Lunin]

preserves the conformal symmetry of N = 4 via a combination
of shifts and T–dualities.

2. Confining Four-Dimensional Gauge Theory [Polchinski–Strassler]

deformation of N = 4 leading to N = 1∗.

Even though there are obvious similarities with 1., since we break
conformal invariance we are forced to follow 2.
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Polchinski–Strassler

We have seen that for ε1 = ε2 = 0, the brane in the fluxtrap realizes
N = 2∗. This is a special case of the deformation studied by
Polchinski and Strassler.

In their work they give masses to all the three scalars of N = 4 to
realize N = 1∗.

▶ The [PS] solution is found at first order in the deformation
parameter and is valid around the horizon.

▶ The fluxtrap is the opposite limit (far away from the D3–brane)
and the solution is known for any finite value of the deformation.

The two descriptions agree in some defining properties. In both
cases the lowest order effect is in the three-form and metric and
dilaton are corrected starting from second order.
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Interpolation

We look for a solution that
▶ is a deformation of AdS5 × S5 that breaks conformal invariance,
▶ interpolates between [PS] at the horizon and the fluxtrap at

infinity,
▶ at first order only changes the three-form fields of the standard

D3 solution
▶ has a non-trivial dilaton at second order

The good news is that we have a natural parameter (ε) that we can
use to decouple the equations of motion of supergravity.
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Equations of motion

The equations for the three-form decouple from the others and the
solution at first order can be fed into the dilaton equation and the
result in turn can be used for the curvature equation.

∇2Φ = ..e2Φ ∂MC ∂MC− 1
12e

−ΦH2 + 1
12e

ΦF̃23

∇M(e2Φ ∂MC) = ..− 1
6e

−ΦH · F̃3

d ∗ (eΦF̃3) = ..F5 ∧H

d ∗ (e−ΦH−CeΦF̃3) = ..−F5 ∧ F3

d ∗ F̃5 = − F3 ∧H

RicMN =
1
2

∂MΦ ∂NΦ+
e2Φ

2
∂MC ∂NC+

1
96

(F̃25)MN

+
1
4

(
e−Φ(H2)MN + eΦ(F̃23)MN

)
− 1

48
GMN

(
e−ΦH2 + eΦF̃23

)
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The solution for N = 2∗

In the N = 2∗ case, the lowest order deformation appears in the
two-form fields:

B = aV∧ dx8 +
Q
r4

(
V∧ dx8 + x8ω

)
,

C2 = −Q
r4

(
V∧ dx9 + x9ω

)
,

where 2ω = dV.
▶ far away from the brane (Q = 0), we recover the fluxtrap;
▶ at the horizon (a = 0) this is the Polchinski-Strassler solution.

The breaking of conformal invariance is shown by the presence of a
dilaton depending on r{

Φ = − aε2ρ2

2 − Qε2

2
x29−x28
r4

C0 = Qε2 x8x9
r4
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The solution for ε1 = −ε2

In the case of the Ω–deformation of N = 4 SYM it is first of all
necessary to analytically continue the undeformed solution (type II*).
The undeformed background is then dS5 ×H5 and the deformation
at first order is given by

B =

(
V∧ dx8 − Q

Q+ ar4
x8ω

)
,

C2 = − Q
Q+ ar4

x8ω .

The structure of the solution not quite the same as the previous one.

Again we can compute the dilaton and C0 fields:Φ =
(
− 1

2 +
Q

4ar4

)
V2 +

(
aQ

Q+ar4 −
Q2

ar8

)
ε2(x8)2

C0 =
iQ
4ar4V

2 + i
(

aQ
Q+ar4 −

Q2

ar8

)
ε2(x8)2
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What I did not tell you

▶ Where does non-commutativity come from?
▶ How do we understand and realize BPS states in this framework?
▶ How is our work related to parallel attempts at understanding

the Ω–deformation from String Theory?
▶ Start from the fluxbrane in M–theory and reduce on the Melvin

circle
▶ Insertion of graviphoton operators in the heterotic description

▶ What is the relationship with the topological string description?
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Open issues

▶ Is it possible to realize the gauge theory on S4?
▶ Can we realize explicitly Liouville theory?
▶ Can we construct a non-perturbative (in ε) gravity dual?
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Thank you

for your attention
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Taub–nut

In order to make our construction more transparent it is convenient to
start from a Taub–nut space and put a fluxtrap in TNQ × S1 × R5.

A Taub–nut space is a singular S1 fibration over
R3

..S1(θ). TN.

R3(r)

..

It interpolates between R4 for r → 0 and R3 × S1 for r → ∞.

... r.
θ

.

R4

.

R3 × S1
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Flux–trap

ds2 = V(r)dr2 +
1

V(r) +ε2 (dφ+Q cosω dψ)2 +
V(r)

V(r) +ε2 (dx
9)2 + dx24...8 ,

B =
ε

V(r) +ε2 (dφ+Q cosω dψ) ∧ dx9 ,

e−Φ =

√
1+

ε2

V(r)
.

This interpolates between the fluxtrap in flat space that we used to
reproduce Nekrasov’s action and R3 × T2 with a constant B field.

... r.
φ

.

fluxtrap on R4

.

R3 × T2 plus constant B field
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The alternative description

In the limit r → ∞ the Taub–nut becomes R3 × S1 and the fluxtrap is
the result of a T–duality on a torus with shear, i.e. a constant B field.
Putting a D4–brane wrapping the Taub–nut space we obtain the
alternative description of the Ω deformation proposed by Witten
and Nekrasov.

We can calculate the Killing spinors before and after the duality and
we find (from the analysis of the bulk) that the supersymmetry
generators in the four–dimensional theory are “rotated”

ηε = exp[
ϑ
2
γ39]ηε=0 .

where
tan
ϑ
2

= ελ
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Non-commutativity

The Ω deformation for ε1 = −ε2 is related to topological strings.
It has been observed that

“ the Riemann surfaceΣ behaves for many purposes as a
subspace of a quantum mechanical (s, v) phase space
where gs = h̄. [Aganagic, Dijkgraaf, Klemm, Marino, Vafa] ”

“
this gauge theory provides the quantization of the
classical integrable system underlying the moduli
space of vacua of the ordinary four dimensional N = 2
theory [Nekrasov, Shatashvili] ”

Our construction gives a precise geometrical interpretation for this
observation in terms of Riemann surface on a non-commutative
plane.
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Reduction

Lift the background to M-theory... and reduce it on φ

ds2 = V(r)1/2 dr2 + V(r)−1/2
[
dx24...10 −

ε2

V(r) +ε2

(
(dx9)2 + (dx10)2

)]
,

B =
ε

V(r) +ε2 dx9 ∧ dx10 ,

e−Φ = V(r)1/4
√
V(r) +ε2 ,

A1 = Q cosωdψ ,
A3 = B∧ A1 .

These are Q D6–branes extended in (x4, . . . , x10) in presence of an
Ω–deformation.

Domenico Orlando The fluxtrap (Part II)



The Seiberg–Witten map

An equivalent description is obtained by applying the
Seiberg–Witten map to the D6–brane theory in order to turn the
B–field into a non-commutativity parameter:(

ĝ+ B̂
)−1

= g̃−1 +Θ ,

where ĝ and B̂ are the pullbacks of metric and B–field on the brane
and g̃ is the new effective metric for a non-commutative space
satisfying

[xi, xj] = iΘij .

Applying this map to our case:

...

g̃ij dxi dxj = dx24...10 ,

[x9, x10] = iε .
All dependence on ε disappears from the D6–brane theory and is
turned into a constant non-commutativity parameter.
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A non-commutative Riemann surface

Let’s follow the fate of the branes whose dynamics reproduce the
Ω–deformed gauge theory.
Start from the configuration of D4–NS5s, with the D4 wrapping the
Taub–nut space.
In the M–theory lift this configuration turns into a single M5–brane
extended in the directions (x0, . . . , x3) and wrapped on a Riemann
surface Σ embedded in the (s, v) plane.
Reduction on φ turns the M5–brane into an D4–brane extended in r
and wrapped on Σ, which is now embedded in the worldvolume of
the D6–brane.
For finite ε this picture remains the same, but this time the Riemann
surface Σ is embedded in a non-commutative complex plane where

[s, v] = iε .
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The point

▶ We repeat our construction starting from a Taub–nut space in the
bulk

▶ The Taub–trap solution interpolates between Nekrasov’s original
description and Nekrasov–Witten’s “alternative” description

▶ We lift the IIA background to M–theory
▶ We reduce it on the isometry circle.
▶ The resulting D6 background has a natural non–commutativity ε
▶ The gauge theory describes the dynamics of a D4 wrapped on a

Riemann surface living on a non-commutative C2 plane. This is
the geometric interpretation of the “quantum spectral curve”.

Domenico Orlando The fluxtrap (Part II)



Outline

Domenico Orlando The fluxtrap (Part II)



Oscilloids and DOZZoids

We want to understand the BPS object that enter the study of the
quantum effective action in the Ω–deformation:

1. BPS instantons localized at the origin (oscilloids);

2. perturbative modes of the fundamental fields, with momentum
along the U(1)× U(1) symmetry (DOZZoids).

In AGT:

1. Give the modular form defining the holomorphic factor of the
Liouville field theory;

2. When resumming their virtual effects we obtain the holomorphic
DOZZ factors.

Gauge theory (in five dimensional Melvin spacetime):

1. particles, static in the new time direction;

2. BPS excitations of the vector multiplet.
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Oscilloids in the fluxtrap

The BPS instantons of four-dimensional gauge theory (oscilloids) are
D-(-1)-branes of type iib string theory bound to D3–branes in the
type iib fluxtrap solution

L = −μ0 e−Φ= − 1
gΩiiaℓΩ

√(
1+ε2

1ρ
2
1

) (
1+ε2

2ρ
2
2

)
,

The energy for nD0 branes is

...

ED0 =
nD0

gΩiiaℓΩ

√(
1+ε2

1ρ
2
1

) (
1+ε2

2ρ
2
2

)
,

which is minimized for ρ1 = ρ2 = 0. These particles are localized to
the origin by the spatial profile of the dilaton.
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DOZZoids in the fluxtrap

The DOZZoids are open string states stretching between two
D4–branes carrying angular momentum in the U(1)× U(1) rotational
isometry directions. To compute the energy:
1. write the worldsheet action for an open string
2. impose equations of motion and classical Virasoro constraints
3. make an ansatz in which the string rotates in the two angular

directions and is stretched between two D3 branes in the
dual-Melvin direction

The (mildly) surprising result is that the angular momentum and the
stretching combine linearly, as expected from the gauge theory
result:

...

E =

∣∣∣∣ε2J2 −
L2

2πα′

∣∣∣∣
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The reciprocal frame

Bulk Probe Gauge Theory

type iib in Melvin space D5
six-dimensional gauge theory with Wil-
son line boundary conditions in two
directions

..m.T–duality in x̃8 and x̃9

type iib in complex fluxtrap D3 Ω–deformed N = 4 SYM

..m.T–duality in x̃6 and lift

M–theory fluxtrap M5 (2, 0) six-dimensional theory

..m.reduction in σ1 and σ2

type iib in deformed D5/NS5 D3 reciprocal gauge theory
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The reciprocal frame

frame object ρ1 φ1 ρ2 φ2 ρ3 ψ x6 x7 x8 x9 x10

D4 × × × × × ■
F1 ⟲ × × ■fluxtrap
D0 × ■
M5 × × × × × ×
M2 ⟲ × × ×M–theory
P ↗ ↗

D3 × ■ × × ×
D3 ■ × × × ×
P ■ ↗ ↗
D5 ■ × × × × × ×

reciprocal

NS5 × ■ × × × × ×
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The reciprocal gauge theory

The effective theory for the D3-brane in the reciprocal frame has the
following properties:

▶ Four-dimensional supersymmetric gauge theory
▶ The gauge coupling is

...

1
g2
rec

−−−−−→
ρ1,ρ2→∞

2π
ε2

ε1
= 2πb.

▶ Under S-duality it transforms as ε1 ↔ ε2

We have found a gauge theory that has the same coupling as
Liouville in AGT and in which the equivalent of Liouville duality
b 7→ 1/b is realized by S-duality of type IIB string theory.
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Bound states in the reciprocal theory

Both the oscilloids and the DOZZoids are mapped to D3-branes in
the reciprocal theory and we can describe them in a unified way.
Bound state with both charges (here linear and angular momentum):

E =

√√√√[(ε1R10
2πα′ L2 −ε2J2

)2
+

(
J2
ρ2

)2
] [

1+ρ2
2

(
1+ε2

1ρ
2
1

) ( P
J2

)2
]

Minimum for a finite value of ρ2. All momenta combine linearly:

...

Emin =

∣∣∣∣ε1R10

2πα′ L2 −ε2J2 + P
∣∣∣∣
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The Point

▶ Identify the BPS states that appear in AGT and lead to the
Liouville correlators;

▶ Construct these states in terms of D0-branes and fundamental
strings in the fluxtrap;

▶ We dualize these objects to a new (reciprocal) frame, where we
find a novel gauge theory that has some of the key properties
observed by AGT;

▶ The BPS states turn out to be bound in this new theory.
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