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• The Standard Model
a Particular 4D Quantum Gauge Field Theory with
· Gauge group:
· Particle spectrum: 

• Superstring Phenomenology
· Find a String Vacuum with the structure of the (SUSY) SM
· Strings in 10D seen as particles in 4D

• Compactify Het. E8  Strings [Candelas, Horowitz, Strominger, Witten ’85]
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Introduction
Ingredients of the Heterotic Compactification

• Low-Energy Theory
4D Models, upon compactifying the internal geometry 

• Preserving Supersymmetry
· A CY threefold 
· A holomorphic, polystable vector bundle      over      
  s.t. the internal gauge field satisfies the HYM eqns
                           and 
  [Donaldson; Uhlenbeck, Yau]
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X
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• Gauge group reduction
· Bundle Structure Group,  

  E8      H =                           GUT        
             

· Further break by Wilson-line if
  H

• Heterotic anomaly cancellation
·                                Mori-Cone of

• Massless spectrum

·

! SO(10),SU(5)

G = SU(4),SU(5)

Introduction
Basic Constraints in Model Building
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• Associated GUT theory
· Gauge group, H=SU(5)  

· Matter multiplets:  
       
             

• Can lead to SMs upon adding Wilson-line

Introduction
Particle Spectrum
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Arena
Calabi-Yau threefolds

• E.g. the Quintic
· Zero locus of quintic polynomial in         

• Complete intersection CYs in “multi-proj.”
· Common zero locus                                    of homogeneous 
polynomials       in an ambient space 

· Classification of CICYs, ~8000 [Candelas et al. ’88]

· All of them are simply-connected; Classification of freely-acting 
discrete symmetries [Braun ’10]

P4
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Arena
Vector Bundles

• Spectral Cover Construction
· A natural way only if elliptically fibred

• Extension
· 

• Monad
·

• Line-bundle Sum 

· 

0 � V1 � V � V2 � 0

0 � V � B � C � 0
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• Definition 
· Slope of a vector bundle V, 

· V is stable if . . . all            (with                     ) satisfy

· V is polystable if . . . if                   for stable     ’s with

• Polystability test is difficult in general, but . . . 
· Line bundle,                      is stable

· Line-bundle sum,                                         is polystable iff 

Arena
Remark:  Bundle Polystability
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Arena
THE GEOMETRICAL ARENA

• A Special Corner of the Heterotic Landscape
· Singled out the sixteen: 
  Wilson-lines available outright  

· Focus on the favourable fourteen:          

       Complete control over the line bundles in toric terms

· Rank n Line-bundle Sums

                         , with                ,  n=4 or 5. 

H1,1(X) = Span{Ji|X}

�1(X) �= �
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Arena
THE PHYSICAL ARENA

• Enhanced Symmetry
· Structure group reduced,   
· Low-energy group enhanced,
· Matter charges refined,     

• U(1) Symmetries constrain 4D theory
· E.g. Possible superpotential terms highly constrained

G = S(U(1)5) � SU(5) � E8

H = SU(5) � S(U(1)5)
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Classifications
An Algorithmic Approach

• Search for Heterotic SMs
· SM gauge group times (anomalous) U(1)s;  Correct chiral 
asymmetries;  SM singlets;  Free of heterotic anomaly.
· No mirror families;  One or more pairs of Higgs doublets.

• Systematic Model Building
· CYs characterised by the toric lattice combinatorics

· Bundles                       by an                    matrix

· A priori no bounds on the entries 
· For                               ,                                   bundles
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Classifications
Physical Constraints Revisited

• Constraints on the Geometry
· Gauge group  . . . . . . . . . . . . .                     with
· Anomaly  . . . . . . . . . . . . . . . . .                             is effective
· Supersymmetry  . . . . . . . . . . 
· Three net-generations . . . . 
· No exotics   . . . . . . . . . . . . . .

• Diophantine System
· With up to cubic constraints 
· May scan over the geometries

• Is it even Finite? 

n = 4, 5c1(V) = 0

c2(TX) � c2(V)

Ind(V) = �3

�3 � Ind(La) � 0

µ(La) = 0, �a
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Classifications
Example - Base Geometry

• Toric Data for 

• Relevant Properties
· Hodge Numbers:
· Kahler Cone:
· 2nd Chern Class:
· Intersection Structure:

�9 =

�

���

�4 4 0 0 0 0 2 �2
�1 2 0 0 0 �1 1 �1
0 1 1 0 0 �2 1 �1
1 0 0 1 �1 �1 0 0

�

���

X9
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���

�4 4 0 0 0 0 2 �2
�1 2 0 0 0 �1 1 �1
0 1 1 0 0 �2 1 �1
1 0 0 1 �1 �1 0 0

�

���

c2(TX) = {12,12,12,4}
J1J2J3 + J1J3J4 + 2J2J3J4 � 2J1J

2
4 � 4J2J

2
4 + 2J3J

2
4 � 8J3

4

h1,1 = 4; h2,1 = 28; � = �48

J = tiJi ; ti=1,2,4 > 0 and t3 > 2t4

X9

Friday, December 6, 13



Classifications
Example - Bundle Classification

• Finiteness Criterion

· Practically finite, if #(Models) does not increase for three 
consecutive values for    

1 2 3 4 5 6 7 kmax

2

4

6

8

10

12
#(Models)

kmax
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Classifications
Number of Resulting SM Candidates

• # of Consistent GUTs with Correct Indices 

· Available at: 
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html

· * means that #(Models) converges but have not quite saturated despite the large entries
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Classifications
Example - SU(5) GUT based model

• Toric Data for 

• Gauge Bundle

with 

• Particle Spectrum

�9 =

�

���

�4 4 0 0 0 0 2 �2
�1 2 0 0 0 �1 1 �1
0 1 1 0 0 �2 1 �1
1 0 0 1 �1 �1 0 0

�

���

X9

V = OX(�4,0,1,1) � OX(1,3, �1, �1) � OX(1, �1,0,0)�3

Ind(V) = �3

101,101,101, 5̄2,3, 5̄2,4, 5̄2,5
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Summary
An Algorithmic Approach to Heterotic String Phenomenology 

• A systematic and algorithmic approach is adequate for 
heterotic CY model construction, producing a large number 
of SM candidates.

• Studied in particular line bundle models on the 16 torically-
generated CYs with a non-trivial 1st fundamental group. 

• Constructed SM candidates based on SU(5), SO(10) GUTs;  
SUSY, no anomaly, correct chiral asymmetries.

· For SU(5) GUT - tot. of 122 models

· For SO(10) GUT - tot. of 28870 models
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Outlook
Exploration of the Rich Heterotic Geometry

• Full spectrum of the models can be obtained by figuring out 
relevant line-bundle cohomologies on the 16 CYs.

• This work on the special corner - the sixteen - can be 
thought of as the first step towards the long-term programme:  
“classification of heterotic SMs over the Kreuzer-Skarke dataset.”  

• Classification of freely-acting symmetries on these CYs is 
another thing we are currently working on.  
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