An Algorithmic Approach to Heterotic String Phenomenology

With Yang-Hui He, Maximilian Kreuzer, Andre Lukas, Chuang Sun

Seung-Joo Lee
Korea Institute for Advanced Study

IPMU, 6 Dec 2013

An Algorithmic Approach to Heterotic String Phenomenology

With Yang-Hui He, Maximilian Kreuzer, Andre Lukas, Chuang Sun

$$
\text { Based mainly on } 1309.0223
$$

Seung-Joo Lee
Korea Institute for Advanced Study

IPMU, 6 Dec 2013

Outline

1．INTRロDபCTIロN： Heterotic Calabi－Yau Models

2．ARENA：
Specific Calabi－Yau manifolds and bundles
3．CLASSIFICATIロNS：
An＇exhaustive＇scan over favourable geometries
4．SபMMARY AND ロபTLロロK

Introduction

String Phenomenology

- The Standard Model
a Particular 4D Quantum Gauge Field Theory with
- Gauge group: $\quad \mathrm{G}_{\text {std }}=\mathbf{S U}(3) \times \mathbf{S U}(2) \times \mathbf{U}(1)$
- Particle spectrum:

$$
3 \times\left[(3,2)_{\frac{1}{6}}+(\overline{3}, 1)_{\frac{1}{3}}+(\overline{3}, 1)_{-\frac{2}{3}}+(1,2)_{-\frac{1}{2}}+(1,1)_{1}+(1,1)_{0}\right]
$$

Introduction

String Phenomenology

- The Standard Model
a Particular 4D Quantum Gauge Field Theory with
- Gauge group: $\mathrm{G}_{\text {std }}=\mathbf{S U}(3) \times \mathbf{S U}(2) \times \mathbf{U}(1)$
- Particle spectrum:

$$
3 \times\left[(\mathbf{3}, 2)_{\frac{1}{6}}+(\overline{3}, 1)_{\frac{1}{3}}+(\overline{3}, 1)_{-\frac{2}{3}}+(\mathbf{1}, 2)_{-\frac{1}{2}}+(\mathbf{1}, \mathbf{1})_{1}+(\mathbf{1}, \mathbf{1})_{0}\right]
$$

- Superstring Phenomenology
- Find a String Vacuum with the structure of the (SUSY) SM
- Strings in IOD seen as particles in 4D

Introduction

String Phenomenology

- The Standard Model
a Particular 4D Quantum Gauge Field Theory with
- Gauge group: $\mathrm{G}_{\text {std }}=\mathbf{S U}(3) \times \mathbf{S U}(2) \times \mathbf{U}(1)$
- Particle spectrum:

$$
3 \times\left[(3,2)_{\frac{1}{6}}+(\overline{3}, 1)_{\frac{1}{3}}+(\overline{3}, 1)_{-\frac{2}{3}}+(\mathbf{1}, 2)_{-\frac{1}{2}}+(\mathbf{1}, 1)_{1}+(1,1)_{0}\right]
$$

- Superstring Phenomenology
- Find a String Vacuum with the structure of the (SUSY) SM
- Strings in IOD seen as particles in 4D
- Compactify Het. E_{8} Strings [Candelas, Horowitz, Strominger,Witten '85]

Introduction

Ingredients of the Heterotic Compactification

- Low-Energy Theory

4D Models, upon compactifying the internal geometry

- Preserving Supersymmetry
- A CY threefold X
- A holomorphic, polystable vector bundle V over X

Introduction

Ingredients of the Heterotic Compactification

- Low-Energy Theory

4D Models, upon compactifying the internal geometry

- Preserving Supersymmetry
- A CY threefold X
- A holomorphic, polystable vector bundle V over X s.t. the internal gauge field satisfies the HYM eqns $\mathrm{F}_{\mathrm{ab}}=\mathbf{0}=\mathrm{F}_{\overline{\mathrm{a}} \overline{\mathrm{b}}}$ and $\mathrm{g}^{\mathrm{ab}} \mathbf{F}_{\mathrm{a} \overline{\mathrm{b}}}=\mathbf{0}$
[Donaldson; Uhlenbeck, Yau]

Introduction

Basic Constraints in Model Building

- Gauge group reduction
- Bundle Structure Group, $\mathcal{G}=\mathrm{SU}(4), \mathrm{SU}(5)$
$\mathrm{E}_{8} \rightarrow \mathrm{H}=\mathrm{SO}(10), \mathrm{SU}(5) \mathrm{GUT}$

Introduction

Basic Constraints in Model Building

- Gauge group reduction
- Bundle Structure Group, $\mathcal{G}=\mathrm{SU}(4), \mathrm{SU}(5)$
$\mathrm{E}_{8} \rightarrow \mathrm{H}=\mathrm{SO}(10), \mathrm{SU}(5) \mathrm{GUT}$
- Further break by Wilson-line if $\pi_{1}(X) \neq \phi$
$\mathrm{H} \rightarrow \mathrm{G}_{\text {std }}=\mathbf{S U}(\mathbf{3}) \times \mathbf{S U}(2) \times \mathbf{U}(\mathbf{1})$

Introduction

Basic Constraints in Model Building

- Gauge group reduction
- Bundle Structure Group, $\mathcal{G}=\mathrm{SU}(4), \mathrm{SU}(5)$
$\mathrm{E}_{8} \rightarrow \mathrm{H}=\mathrm{SO}(\mathbf{1 0}), \mathrm{SU}(5) \mathrm{GUT}$
- Further break by Wilson-line if $\pi_{1}(X) \neq \phi$
$\mathrm{H} \rightarrow \mathrm{G}_{\text {std }}=\mathbf{S U}(\mathbf{3}) \times \mathbf{S U}(\mathbf{2}) \times \mathbf{U}(\mathbf{1})$
- Heterotic anomaly cancellation
- $\mathbf{c}_{\mathbf{2}}(\mathbf{T X})-\mathbf{c}_{\mathbf{2}}(\mathbf{V}) \in$ Mori-Cone of \mathbf{X}

Introduction

Basic Constraints in Model Building

- Gauge group reduction
- Bundle Structure Group, $\mathcal{G}=\mathrm{SU}(4), \mathrm{SU}(5)$
$\mathrm{E}_{8} \rightarrow \mathrm{H}=\mathrm{SO}(10), \mathrm{SU}(5) \mathrm{GUT}$
- Further break by Wilson-line if $\pi_{1}(X) \neq \phi$ $\mathrm{H} \rightarrow \mathrm{G}_{\text {std }}=\mathbf{S U}(\mathbf{3}) \times \mathbf{S U}(\mathbf{2}) \times \mathbf{U}(\mathbf{1})$
- Heterotic anomaly cancellation
- $\mathbf{c}_{\mathbf{2}}(\mathbf{T X})-\mathbf{c}_{\mathbf{2}}(\mathbf{V}) \in$ Mori-Cone of \mathbf{X}
- Massless spectrum
- $\mathbf{N}_{\text {gen }}=-\operatorname{Ind}(\mathbf{V})=-\frac{1}{2} \int_{\mathbf{X}} \mathbf{c}_{\mathbf{3}}(\mathbf{V}) \rightarrow \operatorname{Ind}(\mathbf{V})=-3$

Introduction

Particle Spectrum

- Associated GUT theory
- Gauge group, H=SU(5)
- Matter multiplets: $\mathbf{1 0}, \overline{\mathbf{1 0}}, \mathbf{5}, \overline{\mathbf{5}}, \mathbf{1}$

Introduction

Particle Spectrum

- Associated GUT theory
- Gauge group, H=SU(5)
- Matter multiplets: $\mathbf{1 0}, \overline{\mathbf{1 0}}, \mathbf{5}, \overline{\mathbf{5}}, \mathbf{1}$

\mathcal{G}	\mathcal{H}	Branching of $\mathbf{2 4 8}$ under $\mathcal{G} \times \mathcal{H} \subset E_{8}$
$S U(5)$	$S U(5)$	$(\mathbf{1}, \mathbf{2 4}) \oplus(\mathbf{5}, \mathbf{1 0}) \oplus(\overline{\mathbf{5}}, \overline{\mathbf{1 0}}) \oplus(\mathbf{1 0}, \overline{\mathbf{5}}) \oplus(\overline{\mathbf{1 0}}, \mathbf{5}) \oplus(\mathbf{2 4}, \mathbf{1})$

Introduction

Particle Spectrum

- Associated GUT theory
- Gauge group, H=SU(5)
- Matter multiplets: $\mathbf{1 0}, \overline{\mathbf{1 0}}, \mathbf{5}, \overline{\mathbf{5}}, \mathbf{1}$

\mathcal{G}	\mathcal{H}	Particle Spectrum
		$n_{10}=h^{1}(X, V)$
		$n_{\overline{10}}=h^{1}\left(X, V^{\star}\right)=h^{2}(V)$
$S U(5)$	$S U(5)$	$n_{5}=h^{1}\left(X, \wedge^{2} V^{\star}\right)$
		$n_{\overline{5}}=h^{1}\left(X, \wedge^{2} V\right)$
		$n_{1}=h^{1}\left(X, V \otimes V^{\star}\right)$

Introduction

Particle Spectrum

- Associated GUT theory
- Gauge group, H=SU(5)
- Matter multiplets: $\mathbf{1 0}, \overline{\mathbf{1 0}}, \mathbf{5}, \overline{\mathbf{5}}, \mathbf{1}$

\mathcal{G}	\mathcal{H}	Particle Spectrum
		$n_{10}=h^{1}(X, V)$
		$n_{\overline{10}}=h^{1}\left(X, V^{\star}\right)=h^{2}(V)$
$S U(5)$	$S U(5)$	$n_{5}=h^{1}\left(X, \wedge^{2} V^{\star}\right)$
		$n_{\overline{5}}=h^{1}\left(X, \wedge^{2} V\right)$
		$n_{1}=h^{1}\left(X, V \otimes V^{\star}\right)$

- Can lead to SMs upon adding Wilson-line

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Complete intersection CYs in "multi-proj."
- Common zero locus $\mathbf{X}=\left\{p_{i}=0\right\} \subset \mathcal{A}$ of homogeneous polynomials p_{i} in an ambient space $\mathcal{A}=\otimes_{r=1}^{m} \mathbb{P}^{n_{r}}$

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Complete intersection CYs in "multi-proj."
- Common zero locus $\mathbf{X}=\left\{p_{i}=0\right\} \subset \mathcal{A}$ of homogeneous polynomials p_{i} in an ambient space $\mathcal{A}=\otimes_{r=1}^{m} \mathbb{P}^{n_{r}}$
- Classification of CICYs, ~ 8000 [Candelas et al. '88]

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Complete intersection CYs in "multi-proj."
- Common zero locus $\mathbf{X}=\left\{p_{i}=0\right\} \subset \mathcal{A}$ of homogeneous polynomials p_{i} in an ambient space $\mathcal{A}=\otimes_{r=1}^{m} \mathbb{P}^{n_{r}}$
- Classification of CICYs, ~ 8000 [Candelas et al. '88]
- All of them are simply-connected

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Complete intersection CYs in "multi-proj."
- Common zero locus $\mathbf{X}=\left\{p_{i}=0\right\} \subset \mathcal{A}$ of homogeneous polynomials p_{i} in an ambient space $\mathcal{A}=\otimes_{r=1}^{m} \mathbb{P}^{n_{r}}$
- Classification of CICYs, ~ 8000 [Candelas et al. '88]
- All of them are simply-connected; Classification of freely-acting discrete symmetries [Braun'10]

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Hypersurface CYs in "toric"
- Zero locus $\mathbf{X}=\{p=0\} \subset \mathcal{A}$ of homogeneous polynomial in a toric ambient space $\mathcal{A}=\mathcal{A}_{\Delta}$

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Hypersurface CYs in "toric"
- Zero locus $\mathbf{X}=\{p=0\} \subset \mathcal{A}$ of homogeneous polynomial in a toric ambient space $\mathcal{A}=\mathcal{A}_{\Delta}$
- Classification of hypersurface CYs, $\sim 500 \mathrm{M}$ [Kreuzer, Skarke, ${ }^{90}$]

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Hypersurface CYs in "toric"
- Zero locus $\mathbf{X}=\{p=0\} \subset \mathcal{A}$ of homogeneous polynomial in a toric ambient space $\mathcal{A}=\mathcal{A}_{\Delta}$
- Classification of hypersurface CYs, $\sim 500 \mathrm{M}$ [Kreuzer, Skarke, ${ }^{90}$]
- Interesting Subclasses?

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Hypersurface CYs in "toric"
- Zero locus $\mathbf{X}=\{p=0\} \subset \mathcal{A}$ of homogeneous polynomial in a toric ambient space $\mathcal{A}=\mathcal{A}_{\Delta}$
- Classification of hypersurface CYs, $\sim 500 \mathrm{M}$ [Kreuzer, Skarke, '90]
- Interesting Subclasses
- Smooth ambient cases, ~100 [He, Lee, Lukas,' $\left.{ }^{\prime} 10\right]$

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Hypersurface CYs in "toric"
- Zero locus $\mathbf{X}=\{p=0\} \subset \mathcal{A}$ of homogeneous polynomial in a toric ambient space $\mathcal{A}=\mathcal{A}_{\Delta}$
- Classification of hypersurface CYs, $\sim 500 \mathrm{M}$ [Kreuzer, Skarke, '90]
- Interesting Subclasses
- Smooth ambient cases, ~100 [He, Lee, Lukas,' 10]
- Small Picard number cases (I,2,3), ~300 [He, Kreuzer, Lee, Lukas, ' I I]

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Hypersurface CYs in "toric"
- Zero locus $\mathbf{X}=\{p=0\} \subset \mathcal{A}$ of homogeneous polynomial in a toric ambient space $\mathcal{A}=\mathcal{A}_{\Delta}$
- Classification of hypersurface CYs, $\sim 500 \mathrm{M}$ [Kreuzer, Skarke, ${ }^{90]}$
- Interesting Subclasses
- Smooth ambient cases, ~ 100 [He, Lee, Lukas, ' 10]
- Small Picard number cases (I,2,3), ~300 [He, Kreuzer, Lee, Lukas, '। I]
- Non-simply-connected, I6

Arena

Calabi-Yau threefolds

- E.g. the Quintic
- Zero locus of quintic polynomial in \mathbb{P}^{4}
- Hypersurface CYs in "toric"
- Zero locus $\mathbf{X}=\{p=0\} \subset \mathcal{A}$ of homogeneous polynomial in a toric ambient space $\mathcal{A}=\mathcal{A}_{\Delta}$
- Classification of hypersurface CYs, $\sim 500 \mathrm{M}$ [Kreuzer, Skarke, '90]
- Interesting Subclasses
- Smooth ambient cases, ~ 100 [He, Lee, Lukas, ' 10]
- Small Picard number cases (I,2,3), ~300 [He, Kreuzer, Lee, Lukas, '। I]
- Non-simply-connected, I6

Arena

Vector Bundles

- Spectral Cover Construction
- A natural way only if elliptically fibred
- Extension
- $0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$
- Monad
- $0 \rightarrow V \rightarrow B \rightarrow C \rightarrow 0$

Arena

Vector Bundles

- Spectral Cover Construction
- A natural way only if elliptically fibred
- Extension
$\cdot 0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$
- Monad
- $0 \rightarrow V \rightarrow B \rightarrow C \rightarrow 0$
- Line-bundle Sum
- $V=\bigoplus_{a=1}^{n} L_{a}$

Arena

Vector Bundles

- Spectral Cover Construction
- A natural way only if elliptically fibred
- Extension
$\cdot 0 \rightarrow V_{1} \rightarrow V \rightarrow V_{2} \rightarrow 0$
- Monad
- $0 \rightarrow V \rightarrow B \rightarrow C \rightarrow 0$
- Line-bundle Sum
- $V=\bigoplus_{a=1}^{n} L_{a}$

Arena

Remark: Bundle Polystability

- Definition
- Slope of a vector bundle V,
- V is stable if . . .
- V is polystable if ...

Arena

Remark: Bundle Polystability

- Definition
- Slope of a vector bundle $\mathrm{V}, \frac{1}{r k V} \int_{X} c_{1}(V) \wedge \omega \wedge \omega=: \mu(\mathbf{V})$
- V is stable if . . .
- V is polystable if . . .

Arena

Remark: Bundle Polystability

- Definition
- Slope of a vector bundle $\mathrm{V}, \frac{1}{r k V} \int_{X} c_{1}(V) \wedge \omega \wedge \omega=: \mu(\mathbf{V})$
- \mathbf{V} is stable if all $\mathcal{F} \subset \mathbf{V}$ (with $\mathbf{0}<r k \mathcal{F}<r k \mathbf{V}$) satisfy $\mu(\mathcal{F})<\mu(V)$
- V is polystable if ...

Arena

Remark: Bundle Polystability

- Definition
- Slope of a vector bundle $\mathrm{V}, \frac{1}{r k V} \int_{X} c_{1}(V) \wedge \omega \wedge \omega=: \mu(\mathbf{V})$
- \mathbf{V} is stable if all $\mathcal{F} \subset \mathbf{V}$ (with $\mathbf{0}<r k \mathcal{F}<r k \mathbf{V}$) satisfy $\mu(\mathcal{F})<\mu(V)$
- \mathbf{V} is polystable if $\mathbf{V}=\bigoplus_{\mathbf{i}=1}^{\mathrm{m}} \mathbf{V}_{\mathbf{i}}$ for stable $\mathbf{V}_{\mathbf{i}}$'s with $\mu(\mathbf{V})=\mu\left(\mathbf{V}_{\mathbf{i}}\right)$

Arena

Remark: Bundle Polystability

- Definition
- Slope of a vector bundle $\mathrm{V}, \frac{1}{r k V} \int_{X} c_{1}(V) \wedge \omega \wedge \omega=: \mu(\mathbf{V})$
- \mathbf{V} is stable if all $\mathcal{F} \subset \mathbf{V}$ (with $\mathbf{0}<r k \mathcal{F}<r k \mathbf{V}$) satisfy $\mu(\mathcal{F})<\mu(V)$
- \mathbf{V} is polystable if $\mathbf{V}=\bigoplus_{\mathbf{i}=\mathbf{1}}^{\mathrm{m}} \mathbf{V}_{\mathbf{i}}$ for stable $\mathbf{V}_{\mathbf{i}}$'s with $\mu(\mathbf{V})=\mu\left(\mathbf{V}_{\mathbf{i}}\right)$
- Polystability test is difficult in general, but ...

Arena

Remark: Bundle Polystability

- Definition
- Slope of a vector bundle $\mathrm{V}, \frac{1}{r k V} \int_{X} c_{1}(V) \wedge \omega \wedge \omega=: \mu(\mathbf{V})$
- \mathbf{V} is stable if all $\mathcal{F} \subset \mathbf{V}$ (with $\mathbf{0}<r k \mathcal{F}<r k \mathbf{V}$) satisfy $\mu(\mathcal{F})<\mu(V)$
- \mathbf{V} is polystable if $\mathbf{V}=\bigoplus_{\mathbf{i}=\mathbf{1}}^{\mathrm{m}} \mathbf{V}_{\mathbf{i}}$ for stable $\mathbf{V}_{\mathbf{i}}$'s with $\mu(\mathbf{V})=\mu\left(\mathbf{V}_{\mathbf{i}}\right)$
- Polystability test is difficult in general, but . . .
- Line bundle, $L=\mathcal{O}_{X}(\mathbf{k})$ is stable

Arena

Remark: Bundle Polystability

- Definition
- Slope of a vector bundle $\mathrm{V}, \frac{1}{r k V} \int_{X} c_{1}(V) \wedge \omega \wedge \omega=: \mu(\mathbf{V})$
- \mathbf{V} is stable if all $\mathcal{F} \subset \mathbf{V}$ (with $\mathbf{0}<r k \mathcal{F}<r k \mathbf{V}$) satisfy $\mu(\mathcal{F})<\mu(V)$
- \mathbf{V} is polystable if $\mathbf{V}=\bigoplus_{\mathbf{i}=1}^{\mathrm{m}} \mathbf{V}_{\mathbf{i}}$ for stable $\mathbf{V}_{\mathbf{i}}$'s with $\mu(\mathbf{V})=\mu\left(\mathbf{V}_{\mathbf{i}}\right)$
- Polystability test is difficult in general, but ...
- Line bundle, $L=\mathcal{O}_{X}(\mathbf{k})$ is stable
- Line-bundle sum, $V=\bigoplus_{a=1}^{n} L_{a}=\bigoplus_{a=1}^{n} \mathcal{O}_{X}\left(\mathbf{k}_{a}\right)$ is polystable iff $\mu\left(O_{X}\left(\mathbf{k}_{a}\right)\right)=0, \forall a$

Arena

THE GEOMETRICALARENA

- A Special Corner of the Heterotic Landscape
- Singled out the sixteen: $\pi_{1}(X) \neq \phi$

Wilson-lines available outright

- Focus on the favourable fourteen: $H^{1,1}(X)=\operatorname{Span}\left\{\left.J_{i}\right|_{X}\right\}$

Complete control over the line bundles in toric terms

Arena

THE GEOMETRICAL ARENA

- A Special Corner of the Heterotic Landscape
- Singled out the sixteen: $\pi_{1}(X) \neq \phi$

Wilson-lines available outright

- Focus on the favourable fourteen: $H^{1,1}(X)=\operatorname{Span}\left\{\left.J_{i}\right|_{X}\right\}$

Complete control over the line bundles in toric terms

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$h^{1,1}\left(X_{i}\right)$	1	2	4	2	3	3	3	3	4	4	4	4	4	3	$5_{\text {nf }}$	$5_{\text {nf }}$
$-\chi\left(X_{i}\right)$	40	54	64	72	80	112	144	144	48	64	64	80	80	112	48	48
$\pi_{1}\left(X_{i}\right)$	\mathbb{Z}_{5}	\mathbb{Z}_{3}	\mathbb{Z}_{2}	\mathbb{Z}_{3}	\mathbb{Z}_{2}											

Arena

THE GEOMETRICALARENA

- A Special Corner of the Heterotic Landscape
- Singled out the sixteen: $\pi_{1}(X) \neq \phi$

Wilson-lines available outright

- Focus on the favourable fourteen: $H^{1,1}(X)=\operatorname{Span}\left\{\left.J_{i}\right|_{X}\right\}$

Complete control over the line bundles in toric terms

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$h^{1,1}\left(X_{i}\right)$	1	2	4	2	3	3	3	3	4	4	4	4	4	3	5_{nf}	5_{nf}
$-\chi\left(X_{i}\right)$	40	54	64	72	80	112	144	144	48	64	64	80	80	112	48	48
$\pi_{1}\left(X_{i}\right)$	\mathbb{Z}_{5}	\mathbb{Z}_{3}	\mathbb{Z}_{2}	\mathbb{Z}_{3}	\mathbb{Z}_{2}											

- Rank n Line-bundle Sums

$$
V=\bigoplus_{a=1}^{n} \mathcal{O}_{X}\left(\mathbf{k}_{a}\right), \text { with } \mathbf{k}_{a} \in \mathbb{Z}^{h^{1,1}}, \mathrm{n}=4 \text { or } 5 .
$$

Arena

THE PHYSICALARENA

- Enhanced Symmetry
- Structure group reduced, $\mathcal{G}=S\left(U(1)^{5}\right) \subset S U(5) \subset E_{8}$
- Low-energy group enhanced, $\mathcal{H}=S U(5) \times S\left(U(1)^{5}\right)$

Arena

THE PHYSICALARENA

- Enhanced Symmetry
- Structure group reduced, $\mathcal{G}=S\left(U(1)^{5}\right) \subset S U(5) \subset E_{8}$
- Low-energy group enhanced, $\mathcal{H}=S U(5) \times S\left(U(1)^{5}\right)$
- Matter charges refined, $\mathbf{1 0}_{\mathrm{a}}, \overline{\mathbf{1 0}}_{\mathrm{a}}, \mathbf{5}_{\mathrm{a}, \mathrm{b}}, \overline{\mathbf{5}}_{\mathrm{a}, \mathrm{b}}, \mathbf{1}_{\mathrm{a}, \mathrm{b}}$

$S U(5) \times S\left(U(1)^{5}\right)$ repr.	associated cohomology	contained in
$\mathbf{1 0}_{a}$	$H^{1}\left(X, L_{a}\right)$	$H^{1}(X, V)$
$\overline{\mathbf{1 0}}_{a}$	$H^{1}\left(X, L_{a}^{*}\right)$	$H^{1}\left(X, V^{*}\right)$
$\overline{\mathbf{5}}_{a, b}$	$H^{1}\left(X, L_{a} \otimes L_{b}\right)$	$H^{1}\left(X, \wedge^{2} V\right)$
$\mathbf{5}_{a, b}$	$H^{1}\left(X, L_{a}^{*} \otimes L_{b}^{*}\right)$	$H^{1}\left(X, \wedge^{2} V^{*}\right)$
$\mathbf{1}_{a, b}$	$H^{1}\left(X, L_{a} \otimes L_{b}^{*}\right)$	$H^{1}\left(X, V \otimes V^{*}\right)$

Arena

THE PHYSICALARENA

- Enhanced Symmetry
- Structure group reduced, $\mathcal{G}=S\left(U(1)^{5}\right) \subset S U(5) \subset E_{8}$
- Low-energy group enhanced, $\mathcal{H}=S U(5) \times S\left(U(1)^{5}\right)$
- Matter charges refined, $\mathbf{1 0}_{\mathrm{a}}, \overline{\mathbf{1 0}}_{\mathrm{a}}, \mathbf{5}_{\mathrm{a}, \mathrm{b}}, \overline{\mathbf{5}}_{\mathrm{a}, \mathrm{b}}, \mathbf{1}_{\mathrm{a}, \mathrm{b}}$

$S U(5) \times S\left(U(1)^{5}\right)$ repr.	associated cohomology	contained in
$\mathbf{1 0}_{a}$	$H^{1}\left(X, L_{a}\right)$	$H^{1}(X, V)$
$\overline{\mathbf{1 0}}_{a}$	$H^{1}\left(X, L_{a}^{*}\right)$	$H^{1}\left(X, V^{*}\right)$
$\overline{\mathbf{5}}_{a, b}$	$H^{1}\left(X, L_{a} \otimes L_{b}\right)$	$H^{1}\left(X, \wedge^{2} V\right)$
$\mathbf{5}_{a, b}$	$H^{1}\left(X, L_{a}^{*} \otimes L_{b}^{*}\right)$	$H^{1}\left(X, \wedge^{2} V^{*}\right)$
$\mathbf{1}_{a, b}$	$H^{1}\left(X, L_{a} \otimes L_{b}^{*}\right)$	$H^{1}\left(X, V \otimes V^{*}\right)$

- U(I) Symmetries constrain 4D theory
- E.g. Possible superpotential terms highly constrained

Classifications

An Algorithmic Approach

- Search for Heterotic SMs
- SM gauge group times (anomalous) U(I)s; Correct chiral asymmetries; SM singlets; Free of heterotic anomaly.
- No mirror families; One or more pairs of Higgs doublets.

Classifications

An Algorithmic Approach

- Search for Heterotic SMs
- SM gauge group times (anomalous) U(I)s; Correct chiral asymmetries; SM singlets; Free of heterotic anomaly.
- No mirror families; One or more pairs of Higgs doublets.
- Systematic Model Building
- CYs characterised by the toric lattice combinatorics
- Bundles $V=\bigoplus_{a=1}^{5} \mathcal{O}_{X}\left(\mathbf{k}_{a}\right)$ by an $h^{1,1}(X) \times 5$ matrix $\left[\mathbf{k}_{a}\right]=\left[k_{a}^{i}\right]$

Classifications

An Algorithmic Approach

- Search for Heterotic SMs
- SM gauge group times (anomalous) U(I)s; Correct chiral asymmetries; SM singlets; Free of heterotic anomaly.
- No mirror families; One or more pairs of Higgs doublets.
- Systematic Model Building
- CYs characterised by the toric lattice combinatorics
- Bundles $V=\bigoplus_{a=1}^{5} \mathcal{O}_{X}\left(\mathbf{k}_{a}\right)$ by an $h^{1,1}(X) \times 5$ matrix $\left[\mathbf{k}_{a}\right]=\left[k_{a}^{i}\right]$
- A priori no bounds on the entries k_{a}^{i}
- For $k_{a}^{i} \in\left[-k_{\max }, k_{\max }\right], \sim\left(2 k_{\max }+1\right)^{4 h^{1,1}(X)}$ bundles

Classifications

Physical Constraints Revisited

- Constraints on the Geometry
- Gauge group $\mathbf{c}_{\mathbf{1}}(\mathbf{V})=\mathbf{0}$ with $\mathbf{n}=4,5$
- Anomaly $\mathbf{c}_{2}(\mathbf{T X})-\mathbf{c}_{2}(\mathrm{~V})$ is effective
- Supersymmetry $\mu\left(L_{a}\right)=0, \forall a$
- Three net-generations $\operatorname{Ind}(V)=-3$
- No exotics $.-3 \leq \operatorname{Ind}\left(\mathrm{L}_{\mathrm{a}}\right) \leq 0$

Classifications

Physical Constraints Revisited

- Constraints on the Geometry
- Gauge group $\mathbf{c}_{\mathbf{1}}(\mathbf{V})=\mathbf{0}$ with $\mathbf{n}=4,5$
- Anomaly $\mathbf{c}_{\mathbf{2}}(\mathbf{T X})-\mathbf{c}_{2}(\mathrm{~V})$ is effective
- Supersymmetry $\mu\left(L_{a}\right)=0, \forall a$
- Three net-generations $\operatorname{Ind}(V)=-3$

- Diophantine System
- With up to cubic constraints
- May scan over the geometries

Classifications

Physical Constraints Revisited

- Constraints on the Geometry
- Gauge group $\mathbf{c}_{\mathbf{1}}(\mathbf{V})=\mathbf{0}$ with $\mathbf{n}=4,5$
- Anomaly $\mathbf{c}_{\mathbf{2}}(\mathbf{T X})-\mathbf{c}_{2}(\mathrm{~V})$ is effective
- Supersymmetry $\mu\left(L_{a}\right)=0, \forall a$
- Three net-generations $\operatorname{Ind}(V)=-3$
- No exotics $. \quad-3 \leq \operatorname{Ind}\left(\mathrm{L}_{\mathrm{a}}\right) \leq 0$
- Diophantine System
- With up to cubic constraints
- May scan over the geometries
- Is it even Finite?

Classifications

Example - Base Geometry

- Toric Data for X_{9}

$$
\Delta_{9}=\left(\begin{array}{cccccccc}
-4 & 4 & 0 & 0 & 0 & 0 & 2 & -2 \\
-1 & 2 & 0 & 0 & 0 & -1 & 1 & -1 \\
0 & 1 & 1 & 0 & 0 & -2 & 1 & -1 \\
1 & 0 & 0 & 1 & -1 & -1 & 0 & 0
\end{array}\right)
$$

Classifications

Example - Base Geometry

- Toric Data for X_{9}

$$
\Delta_{9}=\left(\begin{array}{cccccccc}
-4 & 4 & 0 & 0 & 0 & 0 & 2 & -2 \\
-1 & 2 & 0 & 0 & 0 & -1 & 1 & -1 \\
0 & 1 & 1 & 0 & 0 & -2 & 1 & -1 \\
1 & 0 & 0 & 1 & -1 & -1 & 0 & 0
\end{array}\right)
$$

- Relevant Properties
- Hodge Numbers:

$$
\mathbf{h}^{1,1}=4 ; h^{2,1}=28 ; \chi=-48
$$

Classifications

Example - Base Geometry

- Toric Data for X_{9}

$$
\Delta_{9}=\left(\begin{array}{cccccccc}
-4 & 4 & 0 & 0 & 0 & 0 & 2 & -2 \\
-1 & 2 & 0 & 0 & 0 & -1 & 1 & -1 \\
0 & 1 & 1 & 0 & 0 & -2 & 1 & -1 \\
1 & 0 & 0 & 1 & -1 & -1 & 0 & 0
\end{array}\right)
$$

- Relevant Properties
- Hodge Numbers:

$$
\mathbf{h}^{1,1}=4 ; \mathbf{h}^{2,1}=28 ; \chi=-48
$$

- Kahler Cone:
$\mathrm{J}=\mathrm{t}^{\mathrm{i}} \mathrm{J}_{\mathrm{i}} ; \mathrm{t}^{\mathrm{i}=1,2,4}>0$ and $\mathrm{t}^{3}>2 \mathrm{t}^{4}$
- 2nd Chern Class:
$\mathbf{C}_{2}(\mathrm{TX})=\{12,12,12,4\}$
- Intersection Structure: $\mathrm{J}_{1} \mathrm{~J}_{2} \mathrm{~J}_{3}+\mathrm{J}_{1} \mathrm{~J}_{3} \mathrm{~J}_{4}+2 \mathrm{~J}_{2} \mathrm{~J}_{3} \mathrm{~J}_{4}-2 \mathrm{~J}_{1} \mathrm{~J}_{4}^{2}-4 \mathrm{~J}_{2} \mathrm{~J}_{4}^{2}+2 \mathrm{~J}_{3} \mathrm{~J}_{4}^{2}-8 \mathrm{~J}_{4}^{3}$

Classifications

Example - Bundle Classification

- Finiteness Criterion

- Practically finite, if \#(Models) does not increase for three consecutive values for $k_{\max }$

Classifications

Number of Resulting SM Candidates

- \# of Consistent GUTs with Correct Indices

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	X_{9}	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	total
$\# S U(5)$	0	0	10	0	0	2	0	0	12	25	54	1	17	1	122
$\max .\left\|k_{a}^{r}\right\|$	-	-	4	-	-	4	-	-	4	5	5	4	5	4	

Classifications

Number of Resulting SM Candidates

- \# of Consistent GUTs with Correct Indices

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	X_{9}	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	total
$\# S U(5)$	0	0	10	0	0	2	0	0	12	25	54	1	17	1	122
$\max .\left\|k_{a}^{r}\right\|$	-	-	4	-	-	4	-	-	4	5	5	4	5	4	
$\# S O(10)$	0	0	7017^{*}	0	5	13	0	9	2207	4416^{*}	8783^{*}	1109^{*}	5283^{*}	28	28870
$\max .\left\|k_{a}^{r}\right\|$	-	-	17	-	6	7	-	4	15	20	19	21	21	7	

- * means that \#(Models) almost converges but have not quite saturated despite the large entries

Classifications

Number of Resulting SM Candidates

- \# of Consistent GUTs with Correct Indices

	X_{1}	X_{2}	X_{3}	X_{4}	X_{5}	X_{6}	X_{7}	X_{8}	X_{9}	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	total
$\# S U(5)$	0	0	10	0	0	2	0	0	12	25	54	1	17	1	122
max. $\left\|k_{a}^{r}\right\|$	-	-	4	-	-	4	-	-	4	5	5	4	5	4	
$\# S O(10)$	0	0	7017^{*}	0	5	13	0	9	2207	4416^{*}	8783^{*}	1109^{*}	5283^{*}	28	28870
max. $\left\|k_{a}^{r}\right\|$	-	-	17	-	6	7	-	4	15	20	19	21	21	7	

- Available at:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html
- * means that \#(Models) almost converges but have not quite saturated despite the large entries

Classifications

Example - SU(5) GUT based model

- Toric Data for X_{9}

$$
\Delta_{9}=\left(\begin{array}{cccccccc}
-4 & 4 & 0 & 0 & 0 & 0 & 2 & -2 \\
-1 & 2 & 0 & 0 & 0 & -1 & 1 & -1 \\
0 & 1 & 1 & 0 & 0 & -2 & 1 & -1 \\
1 & 0 & 0 & 1 & -1 & -1 & 0 & 0
\end{array}\right)
$$

- Gauge Bundle
$\mathbf{V}=\mathcal{O}_{\mathbf{X}}(-\mathbf{4}, \mathbf{0}, 1,1) \oplus \mathcal{O}_{\mathbf{X}}(\mathbf{1}, \mathbf{3},-\mathbf{1},-\mathbf{1}) \oplus \mathcal{O}_{\mathbf{X}}(\mathbf{1},-1, \mathbf{0}, \mathbf{0})^{\oplus \mathbf{3}}$
with $\operatorname{Ind}(V)=-3$
- Particle Spectrum
$\mathbf{1 0}_{1}, \mathbf{1 0}_{1}, \mathbf{1 0}_{1}, \overline{\boldsymbol{5}}_{\mathbf{2 , 3}}, \overline{\boldsymbol{5}}_{\mathbf{2 , 4}}, \overline{\boldsymbol{5}}_{\mathbf{2 , 5}}$

Summary

An Algorithmic Approach to Heterotic String Phenomenology

- A systematic and algorithmic approach is adequate for heterotic CY model construction, producing a large number of SM candidates.
- Studied in particular line bundle models on the 16 toricallygenerated CYs with a non-trivial Ist fundamental group.
- Constructed SM candidates based on SU(5), SO(I0) GUTs; SUSY, no anomaly, correct chiral asymmetries.
- For SU(5) GUT - tot. of 122 models
- For SO(IO) GUT - tot. of 28870 models

Outlook

Exploration of the Rich Heterotic Geometry

- Full spectrum of the models can be obtained by figuring out relevant line-bundle cohomologies on the 16 CYs .
- This work on the special corner - the sixteen - can be thought of as the first step towards the long-term programme: "classification of heterotic SMs over the Kreuzer-Skarke dataset."
- Classification of freely-acting symmetries on these CYs is another thing we are currently working on.

Outlook

Exploration of the Rich Heterotic Geometry

- Full spectrum of the models can be obtained by figuring out relevant line-bundle cohomologies on the 16 CYs .
- This work on the special corner - the sixteen - can be thought of as the first step towards the long-term programme: "classification of heterotic SMs over the Kreuzer-Skarke dataset."
- Classification of freely-acting symmetries on these CYs is another thing we are currently working on.
THANK YOU

