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Introduction
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a Particular 4D Quantum Gauge Field Theory with
* Gauge group:  Ggiq = SU(3) x SU(2) x U(1)
* Particle spectrum:

3 X [(S,Z)é +(3,1)1 +(3,1)_2 +(1,2)_1 +(1,1); + (1, 1)0]
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® Superstring Phenomenology

* Find a String Vacuum with the structure of the (SUSY) SM
* Strings in 10D seen as particles in 4D

o COmPaCtlfy Het. Es Str'ings [Candelas, Horowitz, Strominger, Witten ’85]
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® Low-Energy Theory

4D Models, upon compactifying the internal geometry

® Preserving Supersymmetry

* A CY threefold X

* A holomorphic, polystable vector bundle \/ over X
s.t. the internal gauge field satisfies the HYM eqgns
Fab =0=F,; and gaBFaB =0
[Donaldson; Uhlenbeck, Yau]
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® Gauge group reduction
* Bundle Structure Group, ¢ — SU(4), SU(5)
Es — H= SO(10), SU(5) GUT
* Further break by Wilson-line if (X ) # ¢
H— Ggtq = SU(3) x SU(2) x U(1)

® Heterotic anomaly cancellation
e C2(TX) — c2(V) € Mori-Cone of X

® Massless spectrum

° Ngen — —Ind(V) — _% /XCS(V) — IHd(V) = —3
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® Associated GUT theory
* Gauge group, H=SU(5)

* Matter multiplets: 10, 10, 5, 5, 1

G | # |  Particle Spectrum

® Can lead to SMs upon adding Wilson-line




Arena
Calabi-Yau threefolds

® E.g.the Quintic

» Zero locus of quintic polynomial in [P




Arena
Calabi-Yau threefolds

® E.g the Quintic

» Zero locus of quintic polynomial in [P

® Complete intersection CYs in “multi-proj.”

* Common zero locus X = {p, = 0} C A of homogeneous

polynomials p; in an ambient space 4 — @™ 1[@”7“
T =




Arena
Calabi-Yau threefolds

® E.g the Quintic

» Zero locus of quintic polynomial in [P

® Complete intersection CYs in “multi-proj.”

* Common zero locus X = {p, = 0} C A of homogeneous

polynomials p; in an ambient space 4 — QM Prr
* Classification of CICY's, ~8000 [Candelas et al.’88]




Arena
Calabi-Yau threefolds

® E.g the Quintic

» Zero locus of quintic polynomial in [P

® Complete intersection CYs in “multi-proj.”

* Common zero locus X = {p, = 0} C A of homogeneous
polynomials p; in an ambient space 4 — QM Prr
* Classification of CICY's, ~8000 [Candelas et al.’88]

* All of them are simply-connected




Arena
Calabi-Yau threefolds

® E.g the Quintic

» Zero locus of quintic polynomial in [P

® Complete intersection CYs in “multi-proj.”
* Common zero locus X = {p, = 0} C A of homogeneous
polynomials p; in an ambient space 4 — QM Prr
* Classification of CICY's, ~8000 [Candelas et al.’88]
* All of them are simply-connected; Classification of freely-acting

discrete symmetries [Braun’10]
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Remark: Bundle Polystability

® Definition

* Slope of a vector bundleV,

* Vis stable if all / C V (with 0 < rkF < 7kV) satisfy

1

E— VIAwA
rkV Xcl() e

=: (V)

u(F) < p(V

N—"

* Vis polystable if V = 69 V; for stable Vi’s with u(V) = u(V;)

i=1

® Polystability test is difficult in general, but ...
» Line bundle, L = Ox (k) is stable

* Line-bundle sum, 1V = €

1(Ox (k) =0, Va

1

n

a=1

9La = 69 Ox (k) is polystable iff
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THE GEOMETRICAL ARENA

® A Special Corner of the Heterotic Landscape

* Singled out the sixteen: 711 (X) # ¢
Wilson-lines available outright

» Focus on the favourable fourteen: 11 (X) — Span{Ji\X}
Complete control over the line bundles in toric terms

* Rank n Line-bundle Sums

V = 69 Ox(k,),With k, € Z"", n=4 or 5.
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THE PHYSICAL ARENA

® Enhanced Symmetry
» Structure group reduced, § = S(U(1)5) C SU(5) C Ex
* Low-energy group enhanced, = SU(5) x S(U(1)°)
* Matter charges refined, 10, , 10,5, 5a b, Dab, lab

5U(5) x S repr

® U(l) Symmetries constrain 4D theory

* E.g. Possible superpotential terms highly constrained
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Classifications
An Algorithmic Approach

® Search for Heterotic SMs

* SM gauge group times (anomalous) U(1l)s; Correct chiral

asymmetries; SM singlets;

Free of heterotic anomaly.

* No mirror families; One or more pairs of Higgs doublets.

® Systematic Model Building

* CYs characterised by the toric lattice combinatorics

5)
» Bundles V = P Ox(k,) by an A1 (X) x 5 matrix [k,] = [k’]
a=1

* A priori no bounds on t
* For k. € [—kmax, Kmax

he entries k.,

, ~ (2kmax + 1)4h1’1(X) bundles
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- Gauge group ............. c1(V)=0 withn=4,5

* Anomaly ................. c2(TX) — c2(V) is effective
* Supersymmetry .......... u(Ly) =0, Va

* Three net-generations .... Ind(V) = —3

* No exotics .............. ~3 <Ind(L,) <0

® Diophantine System

* With up to cubic constraints
* May scan over the geometries

® |s it even Finite!?
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Classifications

Example - Base Geometry

® Toric Data for X,

-4 4 0 0 0 0 2 =2
Ao — -1 2 0 0 0 -1 1 -1
. 0 110 0 -2 1 -1
1 001 -1 -1 0 0
® Relevant Properties
* Hodge Numbers: ht' =4; h*' =28; y = —48
« Kahler Cone: J=1tJ;: t71%% > 0 and t3 > 2t?
» 2nd Chern Class: co(TX) ={12,12,12,4}

* Intersection Structure: J1J2Js +J1J3J4 + 2353374 — 23132 — 43,32 + 27,32 — 833
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Classifications

Example - Bundle Classification

® Finiteness Criterion

* Practically finite, if #(Models) does not increase for three
consecutive values for k., .«
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Classifications
Number of Resulting SM Candidates

® # of Consistent GUTs with Correct Indices
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Classifications
Number of Resulting SM Candidates

® # of Consistent GUTs with Correct Indices

X Xe| X5 | Xu|Xs [ Xe|Xo|Xs| Xo | X | Xu | Xio | Xis | Xia || total

* Available at:
http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html

* * means that #(Models) almost converges but have not quite saturated despite the large entries
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Classifications
Example - SU(5) GUT based model

® Joric Data for Xy

4 4 0 0 0 0 2 =2

Al -1 2 00 0 -1 1 -1
) 0 1 1.0 0 -2 1 -1
1 00 1 -1 -1 0 0

® Gauge Bundle
V — OX(_47 07 ]-7 1) @ OX(17 37 _17 _1) EB OX(17 —17 07 O)@?)
with Ind(V) = -3

® Particle Spectrum
1017 1017 ]-017 52,37 52,4:7 52,5




Summary

An Algorithmic Approach to Heterotic String Phenomenology

® A systematic and algorithmic approach is adequate for

heterotic CY model construction, producing a large number
of SM candidates.

® Studied in particular line bundle models on the 16 torically-
generated CY's with a non-trivial |st fundamental group.

® Constructed SM candidates based on SU(5), SO(10) GUTs;
SUSY, no anomaly, correct chiral asymmetries.

* For SU(5) GUT - tot. of 122 models

* For SO(10) GUT - tot. of 28870 models




Outlook

Exploration of the Rich Heterotic Geometry

® Full spectrum of the models can be obtained by figuring out

relevant line-bundle cohomologies on the 16 CYs.

® This work on the special corner - the sixteen - can be
thought of as the first step towards the long-term programme:
“classification of heterotic SMs over the Kreuzer-Skarke dataset.”

® (lassification of freely-acting symmetries on these CYs is
another thing we are currently working on.
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