An Algorithmic Approach to Heterotic String Phenomenology

With Yang-Hui He, Maximilian Kreuzer, Andre Lukas, Chuang Sun

Seung-Joo Lee Korea Institute for Advanced Study

IPMU, 6 Dec 2013

Friday, December 6, 13

An Algorithmic Approach to Heterotic String Phenomenology

With Yang-Hui He, Maximilian Kreuzer, Andre Lukas, Chuang Sun

Based mainly on 1309.0223

Seung-Joo Lee Korea Institute for Advanced Study

IPMU, 6 Dec 2013

Friday, December 6, 13

Outline

1. INTRODUCTION: Heterotic Calabi-Yau Models

2. ARENA:

Specific Calabi-Yau manifolds and bundles

- **3. CLASSIFICATIONS:** An 'exhaustive' scan over favourable geometries
- 4. SUMMARY AND DUTLOOK

String Phenomenology

• The Standard Model

a Particular 4D Quantum Gauge Field Theory with

- Gauge group: $\mathbf{G_{std}} = \mathbf{SU}(\mathbf{3}) \times \mathbf{SU}(\mathbf{2}) \times \mathbf{U}(\mathbf{1})$
- Particle spectrum:

 $\mathbf{3} \times \left[(\mathbf{3}, \mathbf{2})_{\frac{1}{6}} + (\overline{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}} + (\overline{\mathbf{3}}, \mathbf{1})_{-\frac{2}{3}} + (\mathbf{1}, \mathbf{2})_{-\frac{1}{2}} + (\mathbf{1}, \mathbf{1})_{\mathbf{1}} + (\mathbf{1}, \mathbf{1})_{\mathbf{0}} \right]$

String Phenomenology

The Standard Model

a Particular 4D Quantum Gauge Field Theory with

- Gauge group: $\mathbf{G_{std}} = \mathbf{SU}(\mathbf{3}) \times \mathbf{SU}(\mathbf{2}) \times \mathbf{U}(\mathbf{1})$
- Particle spectrum: $\mathbf{3} \times \left[(\mathbf{3}, \mathbf{2})_{\frac{1}{6}} + (\overline{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}} + (\overline{\mathbf{3}}, \mathbf{1})_{-\frac{2}{3}} + (\mathbf{1}, \mathbf{2})_{-\frac{1}{2}} + (\mathbf{1}, \mathbf{1})_{\mathbf{1}} + (\mathbf{1}, \mathbf{1})_{\mathbf{0}} \right]$
- Superstring Phenomenology
 - Find a String Vacuum with the structure of the (SUSY) SM
 - Strings in 10D seen as particles in 4D

String Phenomenology

• The Standard Model

a Particular 4D Quantum Gauge Field Theory with

- Gauge group: $\mathbf{G_{std}} = \mathbf{SU}(3) \times \mathbf{SU}(2) \times \mathbf{U}(1)$
- Particle spectrum: $\mathbf{3} \times \left[(\mathbf{3}, \mathbf{2})_{\frac{1}{6}} + (\overline{\mathbf{3}}, \mathbf{1})_{\frac{1}{3}} + (\overline{\mathbf{3}}, \mathbf{1})_{-\frac{2}{3}} + (\mathbf{1}, \mathbf{2})_{-\frac{1}{2}} + (\mathbf{1}, \mathbf{1})_{\mathbf{1}} + (\mathbf{1}, \mathbf{1})_{\mathbf{0}} \right]$
- Superstring Phenomenology
 - Find a String Vacuum with the structure of the (SUSY) SM
 - Strings in 10D seen as particles in 4D
- Compactify Het. E₈ Strings [Candelas, Horowitz, Strominger, Witten '85]

Ingredients of the Heterotic Compactification

- Low-Energy Theory
 4D Models, upon compactifying the internal geometry
- Preserving Supersymmetry
 - ${\scriptstyle \bullet \mathsf{A} \mathsf{C} \mathsf{Y} \mathsf{ threefold} } \mathbf{X}$
 - A holomorphic, polystable vector bundle ${f V}$ over ${f X}$

Ingredients of the Heterotic Compactification

- Low-Energy Theory
 4D Models, upon compactifying the internal geometry
- Preserving Supersymmetry
 - ${\scriptstyle \bullet \mathsf{A} \mathsf{C} \mathsf{Y} \mathsf{ threefold} } \mathbf{X}$
 - A holomorphic, polystable vector bundle ${\bf V}$ over ${\bf X}$ s.t. the internal gauge field satisfies the HYM eqns ${\bf F}_{ab}=0={\bf F}_{\bar{a}\bar{b}} \ \ \text{and} \ \ {\bf g}^{a\bar{b}}{\bf F}_{a\bar{b}}=0$

[Donaldson; Uhlenbeck, Yau]

Basic Constraints in Model Building

- Gauge group reduction
 - Bundle Structure Group, $\mathcal{G} = \mathbf{SU}(4), \mathbf{SU}(5)$

 $E_8 \rightarrow H = SO(10), SU(5) GUT$

Basic Constraints in Model Building

- Gauge group reduction
 - Bundle Structure Group, $\mathcal{G} = \mathbf{SU}(4), \mathbf{SU}(5)$ E₈ \rightarrow H = SO(10), SU(5) GUT
 - Further break by Wilson-line if $\pi_1(X) \neq \phi$ $H \rightarrow G_{std} = SU(3) \times SU(2) \times U(1)$

Basic Constraints in Model Building

- Gauge group reduction
 - Bundle Structure Group, $\mathcal{G} = SU(4), SU(5)$ E₈ \rightarrow H = SO(10), SU(5) GUT
 - Further break by Wilson-line if $\pi_1(X) \neq \phi$ $H \rightarrow G_{std} = SU(3) \times SU(2) \times U(1)$
- Heterotic anomaly cancellation • $c_2(TX) - c_2(V) \in Mori-Cone \text{ of } X$

Basic Constraints in Model Building

- Gauge group reduction
 - Bundle Structure Group, $\mathcal{G} = SU(4), SU(5)$ E₈ \rightarrow H = SO(10), SU(5) GUT
 - Further break by Wilson-line if $\pi_1(X) \neq \phi$ $H \rightarrow G_{std} = SU(3) \times SU(2) \times U(1)$
- Heterotic anomaly cancellation ${\bf \cdot c_2(TX) c_2(V) \in {\sf Mori-Cone \ of \ } X }$
- Massless spectrum

•
$$N_{gen} = -Ind(V) = -\frac{1}{2} \int_X c_3(V) \rightarrow Ind(V) = -3$$

Particle Spectrum

- Associated GUT theory
 - Gauge group, H=SU(5)
 - Matter multiplets: ${\bf 10}\;,\; \overline{{\bf 10}}\;,\; {\bf 5}\;,\; \overline{{\bf 5}}\;,\; {\bf 1}$

Particle Spectrum

- Associated GUT theory
 - Gauge group, H=SU(5)
 - Matter multiplets: ${\bf 10}\;,\; \overline{{\bf 10}}\;,\; {\bf 5}\;,\; \overline{{\bf 5}}\;,\; {\bf 1}$

G	\mathcal{H}	Branching of 248 under $\mathcal{G} \times \mathcal{H} \subset E_8$
SU(5)	SU(5)	$(1,24)\oplus (5,10)\oplus (\overline{5},\overline{10})\oplus (10,\overline{5})\oplus (\overline{10},5)\oplus (24,1)$

Particle Spectrum

- Associated GUT theory
 - Gauge group, H=SU(5)
 - Matter multiplets: ${\bf 10}\;,\; \overline{{\bf 10}}\;,\; {\bf 5}\;,\; \overline{{\bf 5}}\;,\; {\bf 1}$

G	\mathcal{H}	Particle Spectrum								
SU(5)	SU(5)	$\begin{array}{rcl} n_{10} &=& h^1(X,V) \\ n_{\overline{10}} &=& h^1(X,V^{\star}) = h^2(V) \\ n_5 &=& h^1(X,\wedge^2 V^{\star}) \\ n_{\overline{5}} &=& h^1(X,\wedge^2 V) \\ n_1 &=& h^1(X,V\otimes V^{\star}) \end{array}$								

Particle Spectrum

- Associated GUT theory
 - Gauge group, H=SU(5)
 - Matter multiplets: ${\bf 10}\;,\; \overline{{\bf 10}}\;,\; {\bf 5}\;,\; \overline{{\bf 5}}\;,\; {\bf 1}$

G	\mathcal{H}	Particle Spectrum							
SU(5)	SU(5)	$egin{array}{rcl} n_{10}&=&h^1(X,V)\ n_{\overline{10}}&=&h^1(X,V^{\star})=h^2(V)\ n_5&=&h^1(X,\wedge^2V^{\star})\ n_{\overline{5}}&=&h^1(X,\wedge^2V)\ n_1&=&h^1(X,V\otimes V^{\star}) \end{array}$							

Can lead to SMs upon adding Wilson-line

Calabi-Yau threefolds

• E.g. the Quintic

Calabi-Yau threefolds

• E.g. the Quintic

• Zero locus of quintic polynomial in \mathbb{P}^4

Complete intersection CYs in "multi-proj."

• Common zero locus $\mathbf{X} = \{p_i = 0\} \subset \mathcal{A}$ of homogeneous polynomials p_i in an ambient space $\mathcal{A} = \bigotimes_{r=1}^m \mathbb{P}^{n_r}$

Calabi-Yau threefolds

• E.g. the Quintic

- Complete intersection CYs in "multi-proj."
 - Common zero locus $\mathbf{X} = \{p_i = 0\} \subset \mathcal{A}$ of homogeneous polynomials p_i in an ambient space $\mathcal{A} = \bigotimes_{r=1}^m \mathbb{P}^{n_r}$
 - Classification of CICYs, ~8000 [Candelas et al. '88]

Calabi-Yau threefolds

• E.g. the Quintic

- Complete intersection CYs in "multi-proj."
 - Common zero locus $\mathbf{X} = \{p_i = 0\} \subset \mathcal{A}$ of homogeneous polynomials p_i in an ambient space $\mathcal{A} = \bigotimes_{r=1}^m \mathbb{P}^{n_r}$
 - Classification of CICYs, ~8000 [Candelas et al. '88]
 - All of them are simply-connected

Calabi-Yau threefolds

• E.g. the Quintic

- Complete intersection CYs in "multi-proj."
 - Common zero locus $\mathbf{X} = \{p_i = 0\} \subset \mathcal{A}$ of homogeneous polynomials p_i in an ambient space $\mathcal{A} = \bigotimes_{r=1}^m \mathbb{P}^{n_r}$
 - Classification of CICYs, ~8000 [Candelas et al. '88]
 - All of them are simply-connected; Classification of freely-acting discrete symmetries [Braun '10]

Calabi-Yau threefolds

• E.g. the Quintic

• Zero locus of quintic polynomial in \mathbb{P}^4

• Hypersurface CYs in "toric"

• Zero locus ${f X}=\{p=0\}\subset {\cal A}$ of homogeneous polynomial in a toric ambient space ${\cal A}={\cal A}_\Delta$

Calabi-Yau threefolds

• E.g. the Quintic

• Zero locus of quintic polynomial in \mathbb{P}^4

• Hypersurface CYs in "toric"

• Zero locus ${f X}=\{p=0\}\subset {\cal A}$ of homogeneous polynomial in a toric ambient space ${\cal A}={\cal A}_\Delta$

Classification of hypersurface CYs, ~500M [Kreuzer, Skarke, '90]

Calabi-Yau threefolds

• E.g. the Quintic

• Zero locus of quintic polynomial in \mathbb{P}^4

• Hypersurface CYs in "toric"

• Zero locus $\mathbf{X}=\{p=0\}\subset\mathcal{A}$ of homogeneous polynomial in a toric ambient space $\mathcal{A}=\mathcal{A}_\Delta$

- Classification of hypersurface CYs, ~500M [Kreuzer, Skarke, '90]
- Interesting Subclasses?

Calabi-Yau threefolds

• E.g. the Quintic

• Zero locus of quintic polynomial in \mathbb{P}^4

• Hypersurface CYs in "toric"

• Zero locus $\mathbf{X}=\{p=0\}\subset\mathcal{A}$ of homogeneous polynomial in a toric ambient space $\mathcal{A}=\mathcal{A}_\Delta$

- Classification of hypersurface CYs, ~500M [Kreuzer, Skarke, '90]
- Interesting Subclasses
 - Smooth ambient cases, ~100 [He, Lee, Lukas, '10]

Calabi-Yau threefolds

• E.g. the Quintic

• Zero locus of quintic polynomial in \mathbb{P}^4

• Hypersurface CYs in "toric"

• Zero locus $\mathbf{X}=\{p=0\}\subset\mathcal{A}$ of homogeneous polynomial in a toric ambient space $\mathcal{A}=\mathcal{A}_\Delta$

- Classification of hypersurface CYs, ~500M [Kreuzer, Skarke, '90]
- Interesting Subclasses
 - Smooth ambient cases, ~100 [He, Lee, Lukas, '10]
 - Small Picard number cases (1,2,3), ~300 [He, Kreuzer, Lee, Lukas, '11]

Calabi-Yau threefolds

• E.g. the Quintic

• Zero locus of quintic polynomial in \mathbb{P}^4

• Hypersurface CYs in "toric"

• Zero locus ${f X}=\{p=0\}\subset {\cal A}$ of homogeneous polynomial in a toric ambient space ${\cal A}={\cal A}_\Delta$

- Classification of hypersurface CYs, ~500M [Kreuzer, Skarke, '90]
- Interesting Subclasses
 - Smooth ambient cases, ~100 [He, Lee, Lukas, '10]
 - Small Picard number cases (1,2,3), ~300 [He, Kreuzer, Lee, Lukas, '11]
 - Non-simply-connected, 16

Calabi-Yau threefolds

• E.g. the Quintic

• Zero locus of quintic polynomial in \mathbb{P}^4

• Hypersurface CYs in "toric"

• Zero locus ${f X}=\{p=0\}\subset {\cal A}$ of homogeneous polynomial in a toric ambient space ${\cal A}={\cal A}_\Delta$

- Classification of hypersurface CYs, ~500M [Kreuzer, Skarke, '90]
- Interesting Subclasses
 - Smooth ambient cases, ~100 [He, Lee, Lukas, '10]
 - Small Picard number cases (1,2,3), ~300 [He, Kreuzer, Lee, Lukas, '11]
 - Non-simply-connected, 16

Vector Bundles

- Spectral Cover Construction
 A natural way only if elliptically fibred
- Extension
 - $0 \to V_1 \to V \to V_2 \to 0$
- Monad
 - $0 \to V \to B \to C \to 0$

Vector Bundles

- Spectral Cover Construction
 A natural way only if elliptically fibred
- Extension
 - $0 \to V_1 \to V \to V_2 \to 0$
- Monad
 - $0 \to V \to B \to C \to 0$
- Line-bundle Sum • $V = \bigoplus_{a=1}^{n} L_a$

Vector Bundles

- Spectral Cover Construction
 A natural way only if elliptically fibred
- Extension
 - $0 \to V_1 \to V \to V_2 \to 0$
- Monad
 - $0 \to V \to B \to C \to 0$

• Line-bundle Sum • $V = \bigoplus_{a=1}^{n} L_a$

Remark: Bundle Polystability

Definition

- Slope of a vector bundle V,
- V is stable if
- V is polystable if ...

Remark: Bundle Polystability

- Definition
 - Slope of a vector bundle V,

$$\int \left| \frac{1}{rkV} \int_X c_1(V) \wedge \omega \wedge \omega \right| =: \mu(\mathbf{V})$$

- V is stable if ...
- V is polystable if ...

Remark: Bundle Polystability

- Definition
 - Slope of a vector bundle V, $\left| \frac{1}{rkV} \int_X c_1(V) \wedge \omega \wedge \omega \right| =: \mu(\mathbf{V})$
 - V is stable if all $\mathcal{F} \subset \mathbf{V}$ (with $\mathbf{0} < rk\mathcal{F} < rk\mathbf{V}$) satisfy $|\mu(\mathcal{F}) < \mu(V)|$
 - V is polystable if ...

Remark: Bundle Polystability

Definition

• Slope of a vector bundle V, $\left| \frac{1}{rkV} \int_X c_1(V) \wedge \omega \wedge \omega \right| =: \mu(\mathbf{V})$

• V is stable if all $\mathcal{F} \subset \mathbf{V}$ (with $0 < rk\mathcal{F} < rk\mathbf{V}$) satisfy $\mu(\mathcal{F}) < \mu(V)$

- V is polystable if $\mathbf{V}=\bigoplus_{i=1}\mathbf{V_i}$ for stable $\mathbf{V_i}$'s with $\mu(\mathbf{V})=\mu(\mathbf{V_i})$

Remark: Bundle Polystability

Definition

• Slope of a vector bundle V, $\left| \frac{1}{rkV} \int_X c_1(V) \wedge \omega \wedge \omega \right| =: \mu(\mathbf{V})$

- V is stable if all $\mathcal{F} \subset \mathbf{V}$ (with $\mathbf{0} < rk\mathcal{F} < rk\mathbf{V}$) satisfy $\mu(\mathcal{F}) < \mu(V)$
- V is polystable if $\mathbf{V}=\bigoplus_{i=1}\mathbf{V}_i$ for stable V_i 's with $\mu(\mathbf{V})=\mu(\mathbf{V}_i)$
- Polystability test is difficult in general, but ...

Remark: Bundle Polystability

Definition

• Slope of a vector bundle V, $\left| \frac{1}{rkV} \int_X c_1(V) \wedge \omega \wedge \omega \right| =: \mu(\mathbf{V})$

- V is stable if all $\mathcal{F} \subset \mathbf{V}$ (with $\mathbf{0} < rk\mathcal{F} < rk\mathbf{V}$) satisfy $\mu(\mathcal{F}) < \mu(V)$
- V is polystable if $\mathbf{V}=\bigoplus_{i=1}\mathbf{V}_i$ for stable V_i 's with $\mu(\mathbf{V})=\mu(\mathbf{V}_i)$
- Polystability test is difficult in general, but . . . • Line bundle, $L = \mathcal{O}_X(\mathbf{k})$ is stable

Remark: Bundle Polystability

Definition

• Slope of a vector bundle V, $\left| \frac{1}{rkV} \int_X c_1(V) \wedge \omega \wedge \omega \right| =: \mu(\mathbf{V})$

- V is stable if all $\mathcal{F} \subset \mathbf{V}$ (with $0 < rk\mathcal{F} < rk\mathbf{V}$) satisfy $\mu(\mathcal{F}) < \mu(V)$
- V is polystable if $\mathbf{V}=\bigoplus_{i=1}\mathbf{V}_i$ for stable V_i 's with $\mu(\mathbf{V})=\mu(\mathbf{V}_i)$
- Polystability test is difficult in general, but . . .
 - Line bundle, $L=\mathcal{O}_X(\mathbf{k})$ is stable
 - Line-bundle sum, $V = \bigoplus_{a=1}^{\infty} L_a = \bigoplus_{a=1}^{\infty} \mathcal{O}_X(\mathbf{k}_a)$ is polystable iff $\mu(O_X(\mathbf{k}_a)) = 0, \ \forall a$

THE GEOMETRICAL ARENA

- A Special Corner of the Heterotic Landscape
 - Singled out the sixteen: $\pi_1(X) \neq \phi$ Wilson-lines available outright
 - Focus on the favourable fourteen: $H^{1,1}(X) = \text{Span}\{J_i|_X\}$ Complete control over the line bundles in toric terms

THE GEOMETRICAL ARENA

- A Special Corner of the Heterotic Landscape
 - Singled out the sixteen: $\pi_1(X) \neq \phi$ Wilson-lines available outright
 - Focus on the favourable fourteen: $H^{1,1}(X) = \text{Span}\{J_i|_X\}$ Complete control over the line bundles in toric terms

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$h^{1,1}(X_i)$	1	2	4	2	3	3	3	3	4	4	4	4	4	3	$5_{ m nf}$	$5_{\rm nf}$
$-\chi(X_i)$	40	54	64	72	80	112	144	144	48	64	64	80	80	112	48	48
$\pi_1(X_i)$	\mathbb{Z}_5	\mathbb{Z}_3	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_2											

THE GEOMETRICAL ARENA

- A Special Corner of the Heterotic Landscape
 - Singled out the sixteen: $\pi_1(X) \neq \phi$ Wilson-lines available outright
 - Focus on the favourable fourteen: $H^{1,1}(X) = \text{Span}\{J_i|_X\}$ Complete control over the line bundles in toric terms

i	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$h^{1,1}(X_i)$	1	2	4	2	3	3	3	3	4	4	4	4	4	3	$5_{ m nf}$	$5_{ m nf}$
$-\chi(X_i)$	40	54	64	72	80	112	144	144	48	64	64	80	80	112	48	48
$\pi_1(X_i)$	\mathbb{Z}_5	\mathbb{Z}_3	\mathbb{Z}_2	\mathbb{Z}_3	\mathbb{Z}_2											

• Rank n Line-bundle Sums

$$V= igoplus_{a=1}^n \mathcal{O}_X(\mathbf{k}_a)$$
 , with $\mathbf{k}_a \in \mathbb{Z}^{h^{1,1}}$, n=4 or 5.

THE PHYSICAL ARENA

- Enhanced Symmetry
 - Structure group reduced, $\mathcal{G} = S(U(1)^5) \subset SU(5) \subset E_8$
 - Low-energy group enhanced, $\mathcal{H} = SU(5) \times S(U(1)^5)$

THE PHYSICAL ARENA

- Enhanced Symmetry
 - Structure group reduced, $\mathcal{G} = S(U(1)^5) \subset SU(5) \subset E_8$
 - Low-energy group enhanced, $\mathcal{H} = SU(5) \times S(U(1)^5)$
 - Matter charges refined, 10_a , $\overline{10}_a$, $5_{a,b}$, $\overline{5}_{a,b}$, $1_{a,b}$

$SU(5) \times S(U(1)^5)$ repr.	associated cohomology	contained in
10 <i>a</i>	$H^1(X, L_a)$	$H^1(X,V)$
$\overline{10}_a$	$H^1(X, L_a^*)$	$H^1(X, V^*)$
$\overline{5}_{a,b}$	$H^1(X, L_a \otimes L_b)$	$H^1(X, \wedge^2 V)$
$5_{a,b}$	$H^1(X, L^*_a \otimes L^*_b)$	$H^1(X, \wedge^2 V^*)$
$1_{a,b}$	$H^1(X, L_a \otimes L_b^*)$	$H^1(X,V\otimes V^*)$

THE PHYSICAL ARENA

- Enhanced Symmetry
 - Structure group reduced, $\mathcal{G} = S(U(1)^5) \subset SU(5) \subset E_8$
 - Low-energy group enhanced, $\mathcal{H} = SU(5) \times S(U(1)^5)$
 - Matter charges refined, 10_a , $\overline{10}_a$, $5_{a,b}$, $\overline{5}_{a,b}$, $1_{a,b}$

$SU(5) \times S(U(1)^5)$ repr.	associated cohomology	contained in
10_a	$H^1(X, L_a)$	$H^1(X,V)$
$\overline{10}_a$	$H^1(X, L_a^*)$	$H^1(X, V^*)$
$\overline{5}_{a,b}$	$H^1(X, L_a \otimes L_b)$	$H^1(X, \wedge^2 V)$
$5_{a,b}$	$H^1(X, L^*_a \otimes L^*_b)$	$H^1(X, \wedge^2 V^*)$
$1_{a,b}$	$H^1(X, L_a \otimes L_b^*)$	$H^1(X, V \otimes V^*)$

- U(I) Symmetries constrain 4D theory
 - E.g. Possible superpotential terms highly constrained

An Algorithmic Approach

• Search for Heterotic SMs

• SM gauge group times (anomalous) U(1)s; Correct chiral asymmetries; SM singlets; Free of heterotic anomaly.

• No mirror families; One or more pairs of Higgs doublets.

An Algorithmic Approach

• Search for Heterotic SMs

• SM gauge group times (anomalous) U(1)s; Correct chiral asymmetries; SM singlets; Free of heterotic anomaly.

- No mirror families; One or more pairs of Higgs doublets.
- Systematic Model Building
 - CYs characterised by the toric lattice combinatorics
 - Bundles $V = \bigoplus_{a=1}^{\bullet} \mathcal{O}_X(\mathbf{k}_a)$ by an $h^{1,1}(X) \times 5$ matrix $[\mathbf{k}_a] = [k_a^i]$

An Algorithmic Approach

• Search for Heterotic SMs

• SM gauge group times (anomalous) U(1)s; Correct chiral asymmetries; SM singlets; Free of heterotic anomaly.

- No mirror families; One or more pairs of Higgs doublets.
- Systematic Model Building
 - CYs characterised by the toric lattice combinatorics
 - Bundles $V = \bigoplus_{a=1}^{\circ} \mathcal{O}_X(\mathbf{k}_a)$ by an $h^{1,1}(X) \times 5$ matrix $[\mathbf{k}_a] = [k_a^i]$
 - A priori no bounds on the entries k^{\imath}_{a}
 - For $k_a^i \in [-k_{\max}, k_{\max}]$, $\sim (2k_{\max} + 1)^{4h^{1,1}(X)}$ bundles

Physical Constraints Revisited

Constraints on the Geometry

- Gauge group $\mathbf{c_1}(\mathbf{V}) = \mathbf{0}$ with $\mathbf{n} = 4, 5$
- Anomaly $\ldots \ldots \ldots c_{\mathbf{2}}(\mathbf{T}\mathbf{X}) c_{\mathbf{2}}(\mathbf{V})$ is effective
- Supersymmetry $\dots \mu(L_a) = 0, \ \forall a$
- Three net-generations \dots $\mathbf{Ind}(\mathbf{V}) = -3$

Physical Constraints Revisited

Constraints on the Geometry

- Gauge group $\ldots \ldots \ldots$ $\mathbf{c_1}(\mathbf{V})=\mathbf{0}$ with n=4,5
- Anomaly $\ldots \ldots \ldots \ldots$ $\mathbf{c_2}(\mathbf{TX}) \mathbf{c_2}(\mathbf{V})$ is effective
- Supersymmetry $\dots \mu(L_a) = 0, \ \forall a$
- Three net-generations \dots $\mathbf{Ind}(\mathbf{V}) = -3$
- Diophantine System
 - With up to cubic constraints
 - May scan over the geometries

Physical Constraints Revisited

Constraints on the Geometry

- Gauge group $\mathbf{c_1}(\mathbf{V}) = \mathbf{0}$ with $\mathbf{n} = 4, 5$
- Anomaly $\ldots \ldots \ldots \ldots c_{\mathbf{2}}(\mathbf{T}\mathbf{X}) c_{\mathbf{2}}(\mathbf{V})$ is effective
- Supersymmetry $\dots \mu(L_a) = 0, \ \forall a$
- Three net-generations \dots $\mathbf{Ind}(\mathbf{V}) = -3$
- Diophantine System
 - With up to cubic constraints
 - May scan over the geometries
- Is it even Finite?

Example - Base Geometry

• Toric Data for X_9

$$\Delta_9 = \begin{pmatrix} -4 & 4 & 0 & 0 & 0 & 0 & 2 & -2 \\ -1 & 2 & 0 & 0 & 0 & -1 & 1 & -1 \\ 0 & 1 & 1 & 0 & 0 & -2 & 1 & -1 \\ 1 & 0 & 0 & 1 & -1 & -1 & 0 & 0 \end{pmatrix}$$

Example - Base Geometry

• Toric Data for X_9

$$\Delta_9 = \begin{pmatrix} -4 & 4 & 0 & 0 & 0 & 0 & 2 & -2 \\ -1 & 2 & 0 & 0 & 0 & -1 & 1 & -1 \\ 0 & 1 & 1 & 0 & 0 & -2 & 1 & -1 \\ 1 & 0 & 0 & 1 & -1 & -1 & 0 & 0 \end{pmatrix}$$

- Relevant Properties
 - Hodge Numbers: $h^{1,1} = 4; h^{2,1} = 28; \chi = -48$

Example - Base Geometry

• Toric Data for X_9

$$\Delta_9 = \begin{pmatrix} -4 & 4 & 0 & 0 & 0 & 0 & 2 & -2 \\ -1 & 2 & 0 & 0 & 0 & -1 & 1 & -1 \\ 0 & 1 & 1 & 0 & 0 & -2 & 1 & -1 \\ 1 & 0 & 0 & 1 & -1 & -1 & 0 & 0 \end{pmatrix}$$

Relevant Properties

- Hodge Numbers: $h^{1,1} = 4; h^{2,1} = 28; \chi = -48$
- Kahler Cone:
- 2nd Chern Class:
- $egin{aligned} \mathbf{h^{1,1}} &= 4; \ \mathbf{h^{2,1}} &= 28; \ \chi &= -48 \ \mathbf{J} &= \mathbf{t^i J_i}; \ \mathbf{t^{i=1,2,4}} > \mathbf{0} \ \mathrm{and} \ \mathbf{t^3} > 2\mathbf{t^4} \ \mathbf{c_2(\mathbf{TX})} &= \{\mathbf{12},\mathbf{12},\mathbf{12},\mathbf{4}\} \end{aligned}$
- Intersection Structure: $J_1J_2J_3 + J_1J_3J_4 + 2J_2J_3J_4 2J_1J_4^2 4J_2J_4^2 + 2J_3J_4^2 8J_4^3$

Example - Bundle Classification

• Finiteness Criterion

- Practically finite, if #(Models) does not increase for three consecutive values for $\,k_{\rm max}$

Number of Resulting SM Candidates

• # of Consistent GUTs with Correct Indices

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	total
# SU(5)	0	0	10	0	0	2	0	0	12	25	54	1	17	1	122
max. $ k_a^r $	-	-	4	-	-	4	-	-	4	5	5	4	5	4	

Number of Resulting SM Candidates

• # of Consistent GUTs with Correct Indices

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}	X_{11}	X_{12}	X_{13}	X_{14}	total
# SU(5)	0	0	10	0	0	2	0	0	12	25	54	1	17	1	122
max. $ k_a^r $	-	-	4	-	-	4	-	-	4	5	5	4	5	4	
# SO(10)	0	0	7017 *	0	5	13	0	9	2207	4416 *	8783 *	1109 *	5283 *	28	28870
max. $ k_a^r $	-	-	17	-	6	7	-	4	15	20	19	21	21	7	

• * means that #(Models) almost converges but have not quite saturated despite the large entries

Number of Resulting SM Candidates

• # of Consistent GUTs with Correct Indices

	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X_9	X_{10}	<i>X</i> ₁₁	X_{12}	X_{13}	X_{14}	total
# SU(5)	0	0	10	0	0	2	0	0	12	25	54	1	17	1	122
max. $ k_a^r $	-	-	4	-	-	4	-	-	4	5	5	4	5	4	
# SO(10)	0	0	7017 *	0	5	13	0	9	2207	4416 *	8783 *	1109 *	5283 *	28	28870
max. $ k_a^r $	-	-	17	-	6	7	-	4	15	20	19	21	21	7	

• Available at:

http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html

• * means that #(Models) almost converges but have not quite saturated despite the large entries

Example - SU(5) GUT based model

• Toric Data for X_9

$$\Delta_9 = \begin{pmatrix} -4 & 4 & 0 & 0 & 0 & 0 & 2 & -2 \\ -1 & 2 & 0 & 0 & 0 & -1 & 1 & -1 \\ 0 & 1 & 1 & 0 & 0 & -2 & 1 & -1 \\ 1 & 0 & 0 & 1 & -1 & -1 & 0 & 0 \end{pmatrix}$$

• Gauge Bundle

 $f V = \mathcal{O}_X(-4,0,1,1) \oplus \mathcal{O}_X(1,3,-1,-1) \oplus \mathcal{O}_X(1,-1,0,0)^{\oplus 3}$ with Ind(V) = -3

• Particle Spectrum $10_1, 10_1, 10_1, \overline{5}_{2,3}, \overline{5}_{2,4}, \overline{5}_{2,5}$

Summary

An Algorithmic Approach to Heterotic String Phenomenology

- A systematic and algorithmic approach is adequate for heterotic CY model construction, producing a large number of SM candidates.
- Studied in particular line bundle models on the 16 toricallygenerated CYs with a non-trivial 1st fundamental group.
- Constructed SM candidates based on SU(5), SO(10) GUTs;
 SUSY, no anomaly, correct chiral asymmetries.
 - For SU(5) GUT tot. of 122 models
 - For SO(10) GUT tot. of 28870 models

Outlook

Exploration of the Rich Heterotic Geometry

- Full spectrum of the models can be obtained by figuring out relevant line-bundle cohomologies on the 16 CYs.
- This work on the special corner the sixteen can be thought of as the first step towards the long-term programme: *"classification of heterotic SMs over the Kreuzer-Skarke dataset."*
- Classification of freely-acting symmetries on these CYs is another thing we are currently working on.

Outlook

Exploration of the Rich Heterotic Geometry

- Full spectrum of the models can be obtained by figuring out relevant line-bundle cohomologies on the 16 CYs.
- This work on the special corner the sixteen can be thought of as the first step towards the long-term programme: *"classification of heterotic SMs over the Kreuzer-Skarke dataset."*
- Classification of freely-acting symmetries on these CYs is another thing we are currently working on.

THANK YOU