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Introduction: Why HD gravity? 

   

 

•  Consider higher derivative gravity with action (Stelle 77’) 

•  Most general action with quadratic curvature invariants in 4D. 

•  It is a renormalizable theory of gravity. 

•  It suffers from Ostrogradski’s instability. 

S = MP
2

2
d 4x g(∫ R− 2Λ +αR2 +βRµνR

µν ).
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Toy model: HD scalar field theory 

   

 

•  Consider the action  

  

 

•  Propagator: 
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What is Ostrogradski’s instability? 
 

•  In 1850, Ostrogradski proved the following theorem: 

Any non-degenerate theory whose dynamical variable is 

 higher than 2nd order in time derivative there exist a linear instability.  
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I. Non-degeneracy 

•  E.g.   

L = − qq2 −
m2q2
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Degenerate! Stable! 
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What is Ostrogradski’s instability? 
 

•  In 1850, Ostrogradski proved the following theorem: 

Any non-degenerate theory whose dynamical variable is 

 higher than 2nd order in time derivative there exist a linear instability.  

II. In the literature there are several HD theories claimed to be stable,   

     they DO NOT violate the Ostrogradski’s theorem, they are: 

     1. Constrained: ghost in f(R) gravity is removed by gauge symmetry. 

     2. Healthy non-higher-derivative theories: Galileon, Lovelock gravity.                     
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Toy model: HD scalar field theory 

   

 

•  The instability can be found in the Hamiltonian by two different 
procedures 

 1. Auxiliary field method 
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Toy model: HD scalar field theory 

   

 

•  The instability can be found in the Hamiltonian by two different 
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Toy model: HD scalar field theory 

   

 

•  The instability can be found in the Hamiltonian by two different 
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Toy model: HD scalar field theory 

   

 

•  The instability can be found in the Hamiltonian by two different 
procedures 

 2. Ostrogradski’s method 

 

 

The Hamiltonian can be diagonalized by 
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Linear higher derivative gravity  

   

 

•  Linearize the action around constant curvature background  

•  8 degrees of freedom. 

•  2            massless graviton            GR  

•  5            massive graviton                           

•  1            massive scalar           vanishes if   
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Linear higher derivative gravity  

   

 

•  Linearize the action around constant curvature background  

•          ,                                 healthy (tachyonic) f(R) gravity. 

•                            bigravity theory with ghostlike massive graviton. 

•                  and total minus sign           Fierz-Pauli + ghostlike GR. 
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•  Linearize the action around constant curvature background  

 

•  Ghosts can be turned off at linear level by choosing boundary 
conditions, but in general they will be turned on at nonlinear level. 

•  E.g. Fierz-Pauli + ghostlike GR, at nonlinear level the Boulware–
Deser ghost will be turned on, one need dRGT theory to avoid it. 

•  By entropic argument, the empty state will decay into some 
collection of positive and negative energy particles.  
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•  Linearize the action around constant curvature background  
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Linear higher derivative gravity  

   

 

•  Linearize the action around constant curvature background  

•  In 3D,                    with total minus sign           New Massive Gravity 

•  The only physical degree of freedom is healthy massive graviton, the 
ghostlike massless graviton is a gauge degree of freedom.   

S = MP
2

2
d 4x g(∫ R− 2Λ +αR2 +βRµνR

µν ),

3β +8α = 0   



Parameterization of metric fluctuation 

   

 

•  The metric fluctuation around Minkowski background can be 
parameterized as  

where     and      can be decomposed into helicity-0,1,2 modes,   
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Helicity-2 sector 

   

 

•  The action of helicity-2 sector is 

 

•  Using Ostrogradski’s method, the canonical coordinates are 
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•  The Hamiltonian is 
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Helicity-2 sector 

   

 

•  The Hamiltonian is 

 

which is unstable because if the first term, or 

 

 

which contain one healthy mode and one massive ghost. 

•  The mass of the ghost is                   , the choice          makes the 
ghost infinitely massive, and hence become non-dynamical.  
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Helicity-2 sector (constrained) 

   

 

•  To stabilize the helicity-2 sector, we introduce the auxiliary field  
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•  To stabilize the helicity-2 sector, we introduce the auxiliary field  
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•  To stabilize the helicity-2 sector, we introduce the auxiliary field  

where the Lorentz invariance is explicitly broken. 

•  Consider introducing constraints without breaking Lorentz 
invariance 

1.  No full theory           Don’t know how to couple      with other fields. 

2.  Auxiliary field only couples to                     has no improved 
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•  Ostrogradski’s coordinates in the constrained theory are 
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•  Ostrogradski’s coordinates in the constrained theory are 

while the Hamiltonian reads 
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Helicity-2 sector (constrained) 
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•  The secondary constraints can be generated by Dirac’s consistency 
relation 

while the reduced Hamiltonian is 

 

 

which is bounded below if          . 

 

ϕ2 : pij − 4β∇
2Eij ≈ 0, ϕ3 :π ij − 2qij ≈ 0, ϕ4 :F(λij,...) ≈ 0,

HR =
MP

2

2
d3x 1

4
π ij 1− 2β∇

2( )π ij +Eij −∇
2 +3β∇2∇2( )Eij∫ ,

β > 0



Helicity-2 sector (constrained) 

   

 

•  The secondary constraints can be generated by Dirac’s consistency 
relation 

while the reduced Hamiltonian is 

 

 

which is bounded below if          . 
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Helicity-1 sector 

   

 

•  The action of helicity-1 modes is 

where                                  and the Hamiltonian is 

 

 

The helicity-1 sector is either tachyonic if           or a massive ghost  
with mass                    if  

 

                      

S = MP
2

2
d 4x β

2
vi v

i + vi∇
2vi + 1

β
viv

i"

#
$

%

&
'∫ ,

β > 0
β < 0.

vi = −∇2 Bi
T − ET

i( ),

H =
MP

2

2
d3x pvi pv

i

2β
−
β
2
vi∇

2vi − 1
2
viv

i∫ .

m2 = (−β)−1



Helicity-1 sector (constrained) 

   

 

•  To stabilize helicity-1 sector, we need to constrain all the degrees of 
freedom by introducing auxiliary field 
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Helicity-1 sector (constrained) 

   

 

•  To stabilize helicity-1 sector, we need to constrain all the degrees of 
freedom by introducing auxiliary field 

•  The theory admits four constraints which eliminate all the degrees of 
freedom, and make the reduced  
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Helicity-0 sector 

   

 

•  The action of helicity-0 modes is 

where                                               are gauge invariant variables. 
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•  The action of helicity-0 modes is 

where                                               are gauge invariant variables. 
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Helicity-0 sector 

   

 

•  The action of helicity-0 modes is 

where                                               are gauge invariant variables. 

•       is an auxiliary field generating 2 constraints (4 if         ).  

•                               no longer higher derivative theory. 

 

                      

S = MP
2

2
d 4x −6 Ψ2 − 2Ψ∇2Ψ + 4Ψ∇2Φ( )%

&∫

+4 β +3α( ) 3 Ψ2 + 4 Ψ∇2Ψ + 2 Ψ∇2Φ( )
+2 3β +8α( ) ∇2Ψ( )

2
+ 2 β + 2α( ) ∇2Φ( )

2
− 4 β + 4α( )∇2Ψ∇2Φ%&'

Φ≡ φ + B− E, Ψ ≡ψ + 1
3∇

2E

Φ β = 0

β +3α = 0   



Helicity-0 sector 

   

 

•  The constraints of helicity-0 modes are 
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Helicity-0 sector 

   

 

•  The constraints of helicity-0 modes are 

 

with the diagonalized reduced Hamiltonian 
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Helicity-0 sector (constrained) 

   

 

•  Similarly, stabilize helicity-0 sector by modifying the action by  
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Helicity-0 sector (constrained) 

   

 

•  Similarly, stabilize helicity-0 sector by modifying the action by  

 

 

•  The constrained theory admits six constraints which can be used to 
remove three degrees of freedom 
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Helicity-0 sector (constrained) 
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Helicity-0 sector (constrained) 

   

 

•  The reduced Hamiltonian is 

 

 

•  It I bounded from below if  

1.    

2.                                     or  
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β +3α > 0.α ≤ 0,

−3α < β < −αα > 0, β > 8α.



de Sitter background: helicity-2 example 

   

 

•  The action around dS space is 

 

where  
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de Sitter background: helicity-2 example 

   

 

•  The action around dS space is 

 

where  

•  Could have two stable modes if 
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de Sitter background: helicity-2 example 

   

 

•  The action around dS space is 

 

where  

•  Could have two stable modes if 

•  However,          violates the assumption that higher derivative terms 
are corrections of GR. In dS background,            , we thus expect     
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2Eij"# $%{ }∫ ,

c ≡1+8H 2 β +3α( ).

H 2 β +3α( ) <<1.

R ~ H 2

c < 0.

c < 0



Summary 

•  Higher derivative gravity with quadratic curvature invariant                          
is a renormalizable theory but suffers from Ostrogradski’s instability. 

•  Ostrogradski’s instability in higher derivative theory can be saved by 
additional constraints only if the dimensionality of phase space is reduced. 

•  Applying the same method to linearized HD gravity around Minkowski 
background, the instabilities in different helicities can be consistently 
removed by suitable auxiliary fields while preserving the improved 
renormalizable properties if the Lorentz invariance is explicitly broken. 

•  Similar result applies to the same theory around de Sitter background, with 
the reasonable assumption that the higher derivative terms are correction 
to usual General Relativity. 

αR2 +βRµνRµν



Thank you! 


