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Emergence :

* Quantitative increase leads to Qualitative change.
* The whole is greater than the sum of its part.

* Key idea in condensed matter / statistical physics.



“*More Is Different” Anderson (Science, 1972)



Question is ...

How Many is Different ?



In statistical physics

® Key quantity is partition function,

Z = Tr(e=PH) 8= (k)

® Physical quantities are typically given by the fractions

0Z -7
7 A

& They are finite/analytic for a finite system.

No singularity arises! e.g. Gy << 00



® Thermodynamic limit:

N — V — o N/V = fixed

In this limit, singularity may appear and a first-order
or discrete phase fransition can be realized.

= It seems that ...

only infinity system can feature singularity ! ?



“More is the Same: infinitely more is Different”

Kadanoff 2009



However, our daily experiences seem to suggest

Finite systems feature first-order phase transitions

Boiling water




* In fact, at the Van der Waals memorial meeting in 1937,
the audience could not agree on the question, whether
partition function for a finite system could or could not
explain a sharp phase transition. So the chairman of the
session, Kramers, put it to a vote !

¢ Despite the above old controversies, these days
statistical physics has become a branch of
mathematics, and phase transitions are ‘defined’ only

for infinite systems.



How many is Different ?

e Infinity (conventional answer):

There is No critical finite size for 1st-order phase
transition. Needs to take the Thermodynamic Limit.

® The present talk aims to deliver an alternative
definite answer, Ilike N =7616




Canonical Ensemble

® Qur primary interest lies on a system with
definite number of particles, N, in a finite
volume, V, in contact with heat reservoir.

® We wish to study the precise dependence on N.



® The key quantity is canonical partition function,

Zn(T,V)

e All the physical quantities are functions of T, V

For example, pressure:

P(T,V) = kxTy In Zn (T, V)



e Spinodal curve is defined by

8y P(T,V) =0

e It is the boundary between stable and
unstable regions [Huang] :

8yP(T,V) <0 and &8yP(T,V)>0



e Moreover, if it exists, the spinodal curve amounts to
a discrete phase transition under constant pressure, as
we see shortly.

e This will reveal a novel mechanism how a finite system
can manifest genuine mathematical singularities
without taking the thermodynamic limit.



For P(T,V), chain rule gives
dP = (O0rP)dT + (oy P)dV .
Hence, on isobar:
dE2=0:

the volume changes as

S\% OrP(T,V)

dT|p  8vP(T,V)

This expression can be substituted into

0 0 dV| 0

8D s O a0V




e The temperature derivative at fixed pressure acting on
an arbitrary function of T & V :

5, %, OrP(T,\V) | 8
oT | p oT |y~ |OvP(T,V)]| OV |1

e On the spinodal curve it diverges !



e The previous ‘no-go’ argument against the singularity
from a finite system assumes the volume to be fixed.

e Instead, if we fix the pressure, a singularity may occur.



e Physically, if we fill a rigid box with water .
to full capacity and heat the box, the i’lﬂ‘\g

temperature will increase but hardly the
water evaporates.

o However, opening the lid will set the -y -
pressure as constant (1 atm), and the water ﬂ
will surely start to boil at 100 degree
Celsius. - -

g It is hard to boil water if we keep the volume (or density)
fixed, whereas it becomes easy under constant pressure!

No need to take the thermodynamic limit!




That is to say, for a finite system, C'y is finite never diverges,

but Cp may become singular,

Cy << VS. Cp =0



® Since we know the source of the singularity,

- bl - (5589
T |p — T |y~ |8y P(T,V)]| V|

we can easily obtain the exponents of the singularities,

considering
Oy P(T,. V.)=0 < OyT(P;V,)=0
such that
T(P.,V) — Ty = 5(V — V,)?0¢ T (P,, V) + higher orders
and
V/Ve—1 ~ |T/T. —1]°, B=3
dV

S| S e e
ar |, T/ |



Universal Exponents on Isobars :

® Isobar crossing the spinodal curve (superheating/cooling),
the singularity has the exponent, 1/2 ,

Cp AT/

® Isobar touching the spinodal curve (critical point),
the singularity has the exponent, 2/3 ,

Ci o T



NIST Data

Critical point for Liquid-gas phase transition
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[ Our Main Point Nr. 1

v/ The usual finiteness of a canonical ensemble is
for the case of keeping the volume fixed.

v Once we switch to the alternative constraint of
keeping the pressure constant, discrete phase fransition
featuring mathematical singularities may arise from a
system with finite number of physical degrees.




The real question is then

the existence of the spinodal curve :
8y P(T,V) =0

%k Note its expression :

OvP = B((0vE — (OvE))*) — (0} E)



® Take van der Waals equation, as an ad hoc example,

(P/P.) + 3(Ve/V)A[(V/Ve) — 3] = 3(T/T)



o i A
$ >0 <
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Figure 1: Van der Waals equation of state

The dashed lines are constant pressure lines of three different values, and the
thick solid line is the spinodal curve satisfying ® = —dy P(T,V) = 0. When
P < P. the constant pressure line crosses the spinodal curve twice, at the su-
percooling point (V,,T.,) and at the superheating point (V,,,T..). Between the
two temperatures the volume is triple valued. If P = P. the constant pressure
line comes in contact with the spinodal curve only once at the critical point
(Ve, T.). Otherwise, i.e. P > F,, the constant pressure line does not undergo
thermodynamic instability and hence no first-order phase transition arises. On

the spinodal curve the critical point has the highest temperature.



Back to the primary question:

the existence of the spinodal curve,

ovPIT. V) =0 %



[/ Our Main Point Nr. 2

The spinodal curve may originate
from the identical nature of particles.




Flipping identical bosonic coins




Ideal Bose Gas

® When a single particle system is completely solvable,
each quantum state is uniquely specified by a set of good

—

quantum numbers, 77, .

® With the corresponding energy eigenvalue F~
we define for each positive integer a ,

St —aflE
If a=1, it amounts to single particle partition function.

® The volume dependence is inside the energy eigenvalues.



Ideal Bose Gas

® From Grand Canonical Partition Function:

= H (1 —ne_ﬁEﬁ)_l == Z Znn"
n N

one can read off the Canonical Partition Function.

* Buf, No compact expression exists.



Three Equivalent Expressions for Canonical Partition Function

1. Matsubara-Feynman

4N = Zma Hé\f:1 (Aﬁ)mﬂ/(mﬂ! amﬂ)

where the sum is over all the partitions of IV, given by non-negative
integers m, with a =1,2,---, N satisfying N = Z‘S’;l amg .

€ However, according to the Hardy-Ramanujan's estimation, the number of

possible partitions grows exponentially, e"V?V/3/(4y/3N) , and this makes
numerical computation practically hard.



Three Equivalent Expressions for Canonical Partition Function

2. Recurrence relation by Landsberg
N
LN = (Zkzl )\kZN—k) /N

N? order computation



Three Equivalent Expressions for Canonical Partition Function

3. New formula:

ZN — det(QN) (Zl)N/N'

where {2y is an almost triangularized N x N matrix of which the entries are

defined by

Aa—b+1/A1 for b<a
Qnla,b] = —a/ A1 for b=a+1

0 otherwise.



Three Equivalent Expressions for Canonical Partition Function

3. New formula:

ZN — det(QN) (Zl)N/N'

Useful to see the conventional approximation,
Zn — A% 7N

valid if all the particles occupied distinct states,
as in high temperature limit, det(Qy)— 1.



Ideal Bose Gas confined in a Cubic Box

e Y A 5
<< e Volume: Yo i
el e Momentum: p = whn/L
e —

Dirichlet boundary condition sets

n = (n1,n9,n3) to be positive integer valued.




Ideal Bose Gas confined in a Cubic Box

Define dimensionless volume,
V = (me/7h)° V,

temperature,
T := kxT/mc?,

pressure,

Pa= (ﬁ3h3/m4c5’) P=T0yInZnN(T,V),

and for the spinodal curve,

¢ :=—(V?/NT)P(T,V)=—(1/N)V?851n Zn(T,V).



Ideal Bose Gas confined in a Cubic Box

e Nonrelativistic gas:

e BEw, — E—ﬁ,-ﬁ/QTv?f 3

?

Thus,

Zn(TV?/3) :  one-variable function.

Jacobi 63 function:



Ideal Bose Gas confined in a Cubic Box

e Nonrelativistic gas:

e BEw, — E—ﬁ-ﬁ/ﬂv?f 3

?

Thus,

Zn(TV?/3) :  one-variable function.
i Useful to define two dimensionless temperatures:

Ty i=T(VINPC = B T(VIN)2Cm) (n252))

Tp 1= k;TP~2/5 (Qm/(?rgﬁz))gﬁ . function of 7y . I




e Low temperature limit, Ty = Tp = 0,

CV:CPZU, qf):DG, (N[]>:N
and the volume reads at absolute zero,
V = [Nn?r2/(mP))%/3 .

This non-zero finiteness is due to the Heisenberg uncertainty principle.

e High temperature limit, Ty = Tp = 00,

Cv/ks =3/2, Cplks=5/2, ¢=1, (No)=0, PV =NksT.



Constant volume curves
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Constant pressure curves

— 5000
Ip —3000

ee

-

l.ﬂﬁl"

Lp
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For N=7616,
all the physical
quantities are
triple-valued
between
the supercooling
and
the superheating
points.



Spinodal curve emerges when N > 7616 !

For N = 7616, b Tupercoot = 1.0543694113 x (Z22)3/5p2/5

ke T uperhes: = 1.0543694116 x (T1-)3/5p2/5.

FUI‘ N = 104? kHrIrsul-‘-'chua] ~ 1.05270 x (%}SKEPEIE.}

ke T uparheas = 1.05277 x (S12)3/5p2/5

For N = 105: k]ﬂﬂupcrcua] ~ 1.0410 X (’-‘T‘Eh )EIDPE‘EG

kBEupm‘heat o 1*ﬂ424 X (%)EKEPEKE 1

For N = 106, ks Toupercont & 1.034 x (T22)3/5p2/5,

ks Taupernons = 1036 X (52-)3/5p2/5

cf. known BEC temperature in the thermodynamic limit:

wh2 212
ks Teonts. approx. = (Z222)3/3[P/¢(3)]%/5 ~ 1.0278 x (52-)3/5 P25



Generalization to the Relativistic Gas

The Boltzmann factor assumes the form:

e PER — exp(— T-/1+Ary-2/4d ) .

Thus,

ZnN(T,V) : Two-variable function



Generalization to the Relativistic Gas

e Low temperature (non-relativistic) limit, T — 0,

BT | L L e e M

e High temperature limit, 7 = oo,

CV/kE::}! OP/}{:E:AI:! !;1(?:]_, (N[])ZO, PV:NkBT.

cf. Non-relativistic high temperature limit,

Cyv/ks=3/2, Cplks=5/2, ¢=1, (Ny)=0,



a N=1 b. N =7615

r T
P P ¢g=1 107 PP
][]'_. d=1
P
=P
Sx107"
5x107° d=12 d=07
d=73 <P
L f= 3107
d = oo dr = 10 el 4 =003
. : VIN e VIN
0 ] 5=10" 30=107 0 15=10" 3 0=10"
c. N=T7616 d. N =7616
I'r -
10~ 2 ‘i
¢ =1 -
3.6651475=107 PP
=P S50
51077 | 3.6651455x10
¢ =07 =)
P <P, ‘ ¢=0
36651435107
=0
d = oo =003 VI
0 | S=10" 10=10" VIN 051040 G5 1042 :

Figure 2: Constant pressure lines and spinodal curve

Dashed, thin solid or thick solid lines denote respectively the constant pressure,
constant ¢ or spinodal curve. Near to the origin of the (7,V/N) plane ¢
diverges and in the opposite infinite limit ¢ converges to unity. When N =1
(Fig.a with P;, < Pus < Py ), ¢ is monotonically decreasing from oc to 1 on
arbitrary isobars. As N increases ¢ develops a valley whose height is less than
unity. Moreover if N = 7616 the valley assumes negative values and a spinodal
curve emerges. Fig.d magnifies the tip of the spinodal curve for N = 7616 to
manifest a critical point (7., V./N) = (3.6651475 x 10, 9.510401 x 10°). In
Fig.b, P. denotes merely the numerical value, P. = 2.0151967 x 10—!, which

amounts to the critical pressure in the system with one more particle, N = 7616.



b. N =7615
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Figure 3: 3D image of Cp on (7,V/N) plane for N =1 and N = 7615
The plane decomposes into three parts: phase I with Cp ~ 0, phase II with
Cp ~ 2.5kg and phase III with Cp ~ 4kz. When N =1 the transitions are
monotonic and smooth. As IV grows, at the borders between I and 11 as well
as between I and III, a range of peaks emerges which will eventually diverge
for N > 7616. Fig.b has been cut at the height of Cp = 5k, and the actual
peak rises up to Cp ~ 5.33684 x 10%k;.



b. N=7615
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Figure 4: Cp for various N and P
For N =1, Cp is monotonically increasing from zero to 4k, on any isobar.

Under sufficiently low pressure, it assumes the intermediate value of 2.5k, as in

Eq.(44). As N increases, C'p develops a peak on each isobar. Especially when

N > 7616 and P < P., it diverges both to the plus and minus infinities at the

supercooling point 7 = 7, as well as at the superheating point 7 = 7,.. At

the critical point 7 = 7, = 3.6651475 x 1072, it diverges only positively. For

P > P,., the specific heat features a single finite peak which corresponds to the

Widom line [10,11]. G. G. Simeoni ef al. + P. E. McMillan and H. E. Stanley Nature Phys. 2010
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Figure 5: Critical and noncritical exponents

Qur numerical data confirm the singular behavior of the specific heat C'p an-
ticipated in Sec.2.2: just above the supercooling point Cp ~ (T — T7,) 1+
(Fig. a); just below the superheating point Cp ~ (7., —T) '/* (Fig. b); and
around the critical point Cp ~ |T — T.| /% (Fig.c). The numerical data are
for N = 7616, P = 5.00017005640 x 1012 or P. = 2.0151967 x 10~ ! such
that the error bars are due to the numerical errors maintaining the pressure.

The straight lines correspond to the theoretical slopes, —1/2 or —2/3.



a. N=10° b. N = 10°
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Figure 6: Phase diagram for N = 10° on (P,7) and (7,V/N) planes
Thick solid line, dashed line and dotted line correspond to the spinodal curve
(including its inside), the Widom line (a range of finite peaks in Cp which
also coincides with the valley of ¢) and the 7 ~ 1 line respectively. The
lines divide the phase diagram into three parts: phase I of Cp >~ 0, phase
II of Cp ~ 2.5k; and phase III of Cp ~ 4k;. On the top of the solid line,
there exists a critical point. As N increases, the critical point moves toward

more ultra-relativistic, higher temperature region along the Widom line keeping
T.(V,/N)/3 and TP * constant.



Three Phases of Ideal Relativistic Bose Gas

e Phase I: condensate with C, ~ 0,

LTV/N) | TSW/W)Y? and T 5 (N/V)2 ).

e Phase II: non-relativistic gas with C, ~ 2.5k3,

{{T,V/N) | T7<1 and TE(N/V)EJ’E}.

e Phase III: ultra-relativistic gas with C, ~ 4kg,
{ (T,V/N) | T2 (N/V)'/? and T 21 }
Equivalently,
e Condensate phase I, { (P.T) | T<P?° and T < ?lf’i}.
e Non-relativistic gas phase 11, { (B, T) T =P and  T-<:1 }

e Ultra-relativistic gas phase 111, { (PiE) T > PYiiiand T2 1 }



Grand Canonical Ensemble

Recall the Grand Canonical Partition Function of the ideal Bose gas,

InZ(€,0) = =) zcns 111(1 — e_Eﬁz_”) .

B ;;ZZ (TVQ/B)_l : oc:=—Inz.



N(e,0) = —0,InZ(g,0),
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FIG. 1: The supercooling and the superheating spinodal
curves on the (N~1/4, T, /T2E)-plane (lower and upper
curves respectively). The dotted curves are from the nu-
merical computations based on the exact formulae. The
solid lines correspond to our analytic approximation for
large N. A pair of spinodal curves start to develop at
N = N. ~ 14392 4 {NC_IH ~ 0.0912991) which is com-
parable to the critical number, 7616 from the canonical

ensemble.
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FIG. 1: The supercooling and the superheating spinodal
curves on the (N~1/4, T, /T2E)-plane (lower and upper
curves respectively). The dotted curves are from the nu-
merical computations based on the exact formulae. The
solid lines correspond to our analytic approximation for
large N. A pair of spinodal curves start to develop at
N = N. ~ 14392 4 {NC_IH ~ 0.0912991) which is com-
parable to the critical number, 7616 from the canonical

ensemble.

* Supercooling spinodal curve
T*XTEH ~ 1 + [(TPHE:E::IF’ /{E"J;BE.'G] 2 ﬁ*—% 1
~ (TBI—E'?}TdEL' )f-.t (N 4 %ET;HEE i\r% In N) :

Tr/TP*° ~1+ 2T N-5InN.
** Superheating spinodal curve

‘I;T=JKT}'_IEEEJ ~ ] + ﬁfj ( et ) (TBF-:) V_" :

Vs ~ 8 (181 (7mc)~

F

3
J"f 4

T ~4(5)% N4,

In the above, 7% and 7" denote two constants,

T2 = (845 [((%j]_"* ~ 1.02781,

j;ﬂﬂ'-‘ — % [{;{ )] 3 ~ 0.671253,

which correspond to the well-known Bose-Einstein

condensation temperatures.
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FIG. 2: Isobar curves on the (7»/75"%,Vr/N)-plane.
They zigzag featuring ‘S-shape’ if 14393 < N < oc.

e The ratio of the two volumes,

Vavet = ()" ()] N

15

enables us to estimate the discrete volume

~ (0.118511 x Nt ,

expansion rate at the liquid-gas type phase transition.
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FIG. 2: Isobar curves on the (7»/75"%,Vr/N)-plane.
They zigzag featuring ‘S-shape’ if 14393 < N < oc.

e For the Avogadro’s number, Ny ~ 6.02214 x 10?, the volume expansion rate reads V> /V:* ~ 104399.
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e Thus, the ideal Bose gas made up of the Avogadro’s number of particles expands its volume discretely

about 10° times during the liquid-gas transition-like phase transition.

e This is a genuine finite effect of the Avogadro’s number, which cannot be seen directly in the thermo-

dynamic limit.



2K Concluding Remarks

IZ Keeping the pressure constant, discrete phase transition
arises for finite ideal Bose gas system with

N = 7616 (Canonical) or N =14393 (Grand canonical).

IZ This is an emergent phenomenon of the finitely many
bosonic identical particles, which we ab initio derived
from the first principles in statistical physics.



2K Concluding Remarks

[/ The singularity is due to the spinodal curve that sharply
defines the phase diagram.

[/] Presence of both the supercooling and the superheating
characterizes the first-order phase transition.

IZ Between the supercooling and superheating temperatures
every physical quantity zigzags or becomes triple valued,
implying the existence of three different states during
the liquid-gas transition-like discontinuous phase transition.



2K Concluding Remarks

¢ Relativistic ideal qas:

lg The spinodal curve defines the phase diagram having a
critical point.

[/ The consequent phase transition is
first-order below the critical pressure or
second-order at the pressure.

[/ The exponents of the singularities are 1/2 and 2/3
respectively.

[ The equation of state of the ideal relativistic Bose gas
resembles the Van der Waals equation of state.



2K Concluding Remarks

IZ' Recall the similarity between the permutation symmetry of
the identical particle indices and the gauge symmetry in QFT:

Both correspond to nonphysical symmetry.

v Although the former is discrete
while the latter is continuous,
the latter may include the former as a subgroup.



2K Concluding Remarks

[/] The description of identical particles appears closely related
to a low energy strong coupling limit of Yang-Mills matrix
models.

IZ The potential therein is given by matrix commutator squared,
multiplied by a coupling constant.

[] Hence, in a strong coupling limit in order to maintain the
energy finite, all the matrices should commute each other
and become simultaneously diagonalizable, so that their
eigenvalues are effectively only the remaining physical
degrees.

M The unbroken gauge symmetry then corresponds fo the
permutation of the eigenvalues and can be identified as the
permutation symmetry of the identical particle indices.



2K Concluding Remarks

N N N H

The critical number 7616 can be taken as a characteristic
number of “cube’, the geometric shape of the box.

Boxes of different shapes will have different critical
numbers.

For a sphere, we get N = 10458 as for the critical
number of particles.

Thus, our scheme provides a novel algorithm to assign a
characteristic number to a closed 2D manifold.



2K Concluding Remarks

lz Generically, for a stable matter 9y, P is negative.

M What we show by taking ideal Bose gas as an exactly
solvable model is an explicit demonstration that,

if there are sufficiently, yet finitely, many identical
bosonic particles, it can be positive.



2K Concluding Remarks

o

o

It will be therefore interesting and crucial to see,
to what extent interactions can alter this.

If not much (weak interaction), one first-order phase
transition, accompanying discontinuous volume change like
the liquid-gas fransition, should occur essentially due tfo
the identical nature of particles - indistinguishability.



2K Concluding Remarks

] It will be also experimentally challenging to find a
corresponding critical number for each molecule to
manifest a discontinuous phase transition or its liquid-gas
transition under constant pressure.

-» How many H20 molecules are needed to form
water that features boiling phase transition?

[F] A criterion for the first-order phase transition is to
observe the supercooling and the superheating phenomena.



If we take the thermodynamic limit...

® one may convert the discrete sum into an integral,

® 1n(Z) becomes linear in volume,

® consequently, no spinodal curve is seen.



Taking thermodynamic limit implies ...

[F] From the combination,

ﬁd

v

we note

V — o0 <— h — 0



Taking thermodynamic limit implies ..

[A] Naive thermodynamic limit reduces to the classical limit.
A Quantum effect may be lost !!!

] Essentially, taking derivatives and taking the
thermodynamic limit do not commute.

E:‘!.‘> Impticaﬁian to QFT



2K Concluding Remarks

[/ Back to the question: ““How Many is Different?”

Our answer is finite as 7616 or 14393, etc.

“Tﬁcmﬁ you



The End



NIST Data

Critical point for Liquid-gas phase transition
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2K Concluding Remarks

[ It will be experimentally challenging to find a
corresponding critical number for each molecule to
manifest a discontinuous phase transition or its liquid-gas
transition under constant pressure.

/] A criterion for the first-order phase transition is to
observe the supercooling and the superheating phenomena.

(.Tﬁ(lﬂé yO’LL



	Seminar-7616-14393.001 오전 9.56.52
	Seminar-7616-14393-FULLs



