Naturally inflating on steep potentials through electromagnetic dissipation

Lorenzo Sorbo

IPMU, 05/02/14

M.Anber, LS, PRD 2010, PRD 2012

✓ very early Universe filled by scalar field ϕ , potential $V(\phi)>0$

 \checkmark to induce acceleration, $V(\phi)$ must be flat

 $|V'(\phi)| \ll V(\phi)/M_P$

✓ to have long enough inflation, $V(\phi)$ must stay
flat for long enough $|V''(\phi)| << V(\phi)/M_{P^2}$

Simple way of realizing $|V'(\phi)| < \langle V(\phi)/M_{P,} |V''(\phi)| < \langle V(\phi)/M_{P^2}$: monomial potential, with ϕ large enough

Most famous example: quadratic potential (chaotic inflation) Linde 1983

$$V(\phi) = m^2 \phi^2 / 2$$

Amplitude of perturbations produced during inflation

Radiative corrections can disrupt the inflationary potential in two ways

I - affect the functional form of $V(\phi)$

2- affect value of the parameters that appear in $V(\phi)$

Chaotic inflation example

I- adds terms $\propto \phi^n$, n=4, 6, ...

2- push *m* to larger values (e.g. M_P - cf EW hierarchy pbm)

How to make sure that radiative effects are under control?

The situation is actually not so horrible... Smolin 80

If we have a theory where ϕ interacts only with gravity

then quantum corrections are not a problem!

Indeed: for potential $V(\varphi)$, quantum gravity effects are

 $O(1) V(\varphi)^2/M_P^4$ and $O(1) V''(\varphi) V(\varphi)/M_P^2$

negligible during inflation

however, in general there will be couplings to other fields

How to make sure that radiative effects are under control?

A very well-known system that contains "controllably small" quantities is the **Standard Model**: "small" quantities are protected against radiative effects by <u>symmetries</u>

If a model has a symmetry, quantum effects cannot violate it (unless the symmetry is anomalous...)

If the symmetry is broken, quantum effects cannot make the breaking much larger (ie the breaking parameter is controllably small) A field ϕ has a shift symmetry if the theory that describes it is invariant under the transformation

$$\varphi \rightarrow \varphi + c$$

(*c*=arbitrary constant)

If this symmetry is exact, the only possible potential for ϕ is $V(\phi)$ =constant

(i.e. a cosmological constant)

an exact shift symmetry is an overkill... ...but we can break the symmetry a bit and generate a potential

An (important) example

If ϕ is a phase, then shift symmetry \Leftrightarrow global U(1)

• Theory with a spontaneously broken global U(1)

$$\mathcal{L} = \partial_{\mu} H^* \, \partial^{\mu} H - \lambda \, \left(|H|^2 - v^2
ight)^2$$

• Decompose $H = (v + \delta H) e^{i\phi/v}$ where δH is massive and φ is a massless Goldstone boson <u>(pseudoscalar)</u>

The global U(1) is broken e.g. by some strong dynamics

$$\delta \mathcal{L} = \Lambda^3 \ (H + H^*) + \dots$$

 $\delta V \sim \Lambda^3 v \cos{(\phi/v)}$

Pseudo-Nambu-Goldstone boson

...using a pNGB as an inflaton... Natural inflation

Freese et al 1990

$V(\phi) = \mu^4 [\cos(\phi/f) + 1]$

Because of its radiative stability,

A pNGB gives an extremely well motivated model of inflation from the point of view of effective field theory

from Planck, Inflation

Stringy models of natural inflation?

YES, in principle (string theory contains a plethora of pNGBs)

However

Banks, Dine, Fox and Gorbatov 03

String Theory appears to require $f < M_P$

Ways out?

A different way of approaching the problem...

The inflaton can be slowed down (even on a steep potential!) if it dissipates its kinetic energy

e.g. particle production associated to motion of ϕ rate depends on ϕ

...back to the origins...

In the early '70s (pre-inflation), try to explain isotropy from initial anisotropy by particle production

Today, chaotic inflation paradigm allows to ignore primordial anisotropy problem-but still need flat potential

Particle production can help mitigate the requirement of flat potential

Trapped inflation (I)

Green et al 2009

Idea: field χ with mass $m_{\chi}(\phi(t))$ At some time $t_{0, m_{\chi}}(t_0)=0$, with $\dot{m_{\chi}}(t_0)\neq 0$. \Rightarrow Heisenberg inequality $\hbar \leq \Delta E \Delta t \sim m_{\chi}(m_{\chi}/\dot{m_{\chi}})$ violated

Concept of number of quanta of χ not well defined

Trapped inflation (II)

Particles created at expenses of inflaton kinetic energy

(the only useful energy available)

Inflaton rolling is slowed down for ~ 1 efold

To get 60 efolds, need many production events

Green et al 2009

 $rac{1}{2}g^2\sum_i(\phi-\phi_i)^2\chi_i^2\;.$

depending on parameters, I to 10¹² events per efold are needed this structure can be present in some stringy constructions

A mechanism analogous to trapping is built in in natural inflation Anber and LS 09

Idea: pNGB driving natural inflation is "naturally" coupled to gauge fields

$${\cal L}_{\phi\,F_{\mu
u}} = lpha\,rac{\phi}{4\,f}\epsilon_{\mu
u
ho\lambda}\,F^{\mu
u}\,F^{
ho\lambda}$$

α=dimensionless constant

we will consider N copies of U(1) gauge fields

Equation for the U(1) field in the presence of $\phi(t)$:

$$A_{\pm}^{\prime\prime} + \left(k^2 \pm \alpha \frac{\Phi'}{f} k\right) A_{\pm} = 0$$

 A_{\pm} = >ve and <ve helicity comoving modes of the vector potential

One of the two modes has a *negative, time dependent* "mass term" **Exponential** amplification

of one helicity mode

Equation for A_{\pm} can be solved by assuming ϕ , H=constant

Modes with $k/a < \alpha \phi/f$ feel tachyonic mass until k=aH

amplification by

more precisely...

$$A_{+}(\tau, \vec{k}) \simeq \frac{1}{\sqrt{2|\vec{k}|}} \left(\frac{|\vec{k}|}{2\xi a H}\right)^{1/4} e^{-2\sqrt{2\xi|\vec{k}|/aH} + \pi\xi}$$

Exponential amplification term!

$$\xi \equiv rac{lpha \, \dot{\phi}}{2 \, f \, H}$$

Slowing down the inflaton

backreaction equation

$$\ddot{\phi}+3\,H\,\dot{\phi}+V'(\phi)=-\mathcal{N}\,rac{lpha}{f}\,\langleec{E}\cdotec{B}
angle$$
 with

$$\langle \vec{E} \cdot \vec{B} \rangle \propto exp\{\pi \alpha \phi/fH\}$$

As ϕ starts increasing under the effect of the steep potential, the backreaction term gets important, slowing it down.

Slow roll equation \Rightarrow

$$\left(V'(\phi) = -\mathcal{N} \frac{\alpha}{f} \left\langle \vec{E} \cdot \vec{B} \right\rangle\right)$$

the slow roll solution... $\rightarrow O(1)$ $\dot{\phi} \simeq \frac{f H}{\alpha \pi} \log \left\{ \frac{10^4}{N \alpha} \xi^4 \frac{M_P^4}{V(\phi)} \frac{f V'(\phi)}{V(\phi)} \right\}$

 $V \sim \Lambda^4$, $N \sim 10^5$, $\alpha \sim 1000$

$$\xi \sim \frac{2}{\pi} \log \frac{M_P}{\Lambda} \sim 3 \div 20$$

the slow roll solution...

$$\dot{\phi} \simeq \frac{f H}{\alpha \pi} \log \left\{ \frac{10^4}{\mathcal{N} \alpha} \xi^4 \frac{M_P^4}{V(\phi)} \frac{f V'(\phi)}{V(\phi)} \right\}$$

 $\Lambda = 10^{-3} M_P, f = 0.1 M_P, \alpha = 300, \mathcal{N} = 10^5$

...and a (first) constraint on the model:

 $\Delta \phi = \pi f$ from top to bottom of potential total # efoldings ~ $H \Delta \phi / \phi \sim \alpha \log \left\{ \frac{1}{N \alpha} \frac{M_P^4}{V(\phi)} \frac{f V'(\phi)}{V(\phi)} \right\}^{-1}$ $\alpha \sim O(10^3)$

Consistency

We have assumed that the contribution to the electromagnetic modes to the Hubble parameter is negligible.

negligible, for $\alpha >> \xi$, unless at the bottom of $V(\phi)$

...but... is it really inflation?

Need the slow roll parameters ε and $\eta <<1$:

$$\begin{split} \epsilon &= \frac{\dot{\Phi}^2}{2 H^2 M_P^2} \simeq \frac{2 f^2}{\alpha^2 M_P^2} \\ \eta &= 2 \epsilon - \frac{f}{\pi \alpha} \left(\frac{V''(\Phi)}{V'(\Phi)} - 2 \frac{V'(\Phi)}{V(\Phi)} \right) \end{split}$$

Bottom line - background evolution

For $\alpha \sim O(1000)$, possible to get ~ 60 efolds of inflationary expansion

Numerical example

How to get such a large $\alpha \sim 10^3$?

Choi and Kim 85

One example

Two axions in $E_8 \times E_8$

 $\mathcal{L}_{axions} = \frac{1}{2} (\partial_{u} a_{1})^{2} + \frac{1}{2} (\partial_{u} a_{2})^{2}$ $-\frac{1}{2}\left(\frac{a_1}{M_1}+\frac{a_2}{M_2}\right)F_{\mu\nu}^{i}\tilde{F}_{\mu\nu}^{i}$ $-\frac{1}{2}(\frac{a_1}{M_1}-\frac{a_2}{M_2})F_{\mu\nu}'i\tilde{F}_{\mu\nu}'i$ $=\frac{1}{2}(\partial_{\mu}a)^{2}+\frac{1}{2}(\partial_{\mu}a')^{2}-\frac{a}{2M}\tilde{FF}$ $-\frac{a'}{2M}(FF + \frac{M_{2}^{2}+M_{1}^{2}}{M^{2}+2}FF')$

$$a = (M_1a_1 + M_2a_2)/(M_1^2 + M_2^2)^{\frac{1}{2}}$$

$$a' = (M_2a_1 - M_1a_2)/(M_1^2 + M_2^2)^{\frac{1}{2}}$$

$$M = \frac{1}{2} \left(M_1^2 + M_2^2 \right)^{\frac{1}{2}}$$
$$M' = M_1 M_2 \left(M_1^2 + M_2^2 \right)^{\frac{1}{2}} / (M_1^2 - M_2^2)$$

Equation for perturbations (only one family of gauge fields for now)

$$\delta\ddot{\phi}+3\,H\,\delta\dot{\phi}+\left(-
abla^2+V''(\phi)
ight)\,\delta\phi=-rac{lpha}{f}\,\delta\left[ec{E}\cdotec{B}
ight]$$

System can be reduced to one integro-differential eqn (very, very complicated!)

Equation for perturbations (only one family of gauge fields for now)

$$\delta\ddot{\phi} + 3\,H\,\delta\dot{\phi} + \left(-
abla^2 + V''(\phi)
ight)\,\delta\phi = -rac{lpha}{f}\,\delta\left[ec{E}\cdotec{B}
ight]$$

Fourier-transformed effective equation for perturbations

$$\begin{split} \delta\ddot{\phi}_{p} + H \begin{pmatrix} 3 & \overbrace{\pi \alpha V'(\Phi_{0})}^{\pi \alpha V'(\Phi_{0})} \delta\dot{\phi}_{p} + \begin{pmatrix} p^{2} \\ a^{2} + V''(\Phi_{0}) \end{pmatrix} \phi_{p} = -\frac{\alpha}{f} \, \delta_{\vec{E}\cdot\vec{B}}(p) \\ & O(\alpha \, M_{P}^{2}/f^{2}) \\ & \text{Solution (using Green function)} \\ \delta\phi_{\vec{p}}(t) &= -\frac{\alpha}{f} \int dt' \, G(t, t') \, \delta_{\vec{E}\cdot\vec{B}}(t', \vec{p}) \\ & & \text{two point function of inflaton perturbations} \\ & \langle 0|\delta\phi_{\vec{p}} \, \delta\phi_{\vec{p}'}|0\rangle = \frac{\alpha^{2}}{f^{2}} \int dt' \, G(t, t') \int dt'' \, G(t, t'') \, \langle 0|\delta_{\vec{E}\cdot\vec{B}}(t', \vec{p}) \, \delta_{\vec{E}\cdot\vec{B}}(t'', \vec{p}') \, |0\rangle \end{split}$$

Spectrum of metric perturbations

 $\xi {<} 20$ or so, so need $N {\sim} 10^5$

 $N \sim 10^5$ gauge fields can originate from $SU(\sqrt{N})$ gauge group

(e.g., from a stack of 200 branes)

need gauge coupling to be tiny to prevent gauge-field self-interactions

Anber and LS 12

Nongaussianities (equilateral)

Tensors

Conclusions

- A "natural" system can give inflation on a steep potential
- Unfortunately large perturbations, but there is a way out
- Specific signatures possible

Other ways to suppress perts?

Why are perturbations large?

Amplitude of inhomogeneities generating perts

Energy in gauge field

(only one scale in the problem)

Possible solution?

Anber, LS, in progress

Make the gauge field massive!

(same energy, less fluctuations)

Equation for a massive photon

$$A_{\pm}'' + \left(k^2 \pm \alpha \frac{\Phi'}{f} k + m^2 a^2\right) A_{\pm} = 0$$

For $\xi > \mu \neq m/H$:

 $A_{-} \simeq \exp\left\{\pi\left(\xi - \mu\right)\right\}$

Analysis as before, but now

$$\xi - \mu \sim \frac{2}{\pi} \log \frac{M_P}{\Lambda} \sim 3 \div 20$$

still with
$$\mathcal{P}_{\zeta} \propto \frac{10^{-2}}{\xi^2}$$

Can choose $\mu \sim 10^4$ and get COBE normalization with a single photon family!

But how about nongaussianities?

Work still in progress, but for time being result

 $f_{NL}^{\rm equil} \propto \xi$

would rule the model out...

One final note...

$$A_{\pm}^{\prime\prime} + \left(k^2 \pm \alpha \frac{\Phi^{\prime}}{f} k + m^2 a^2\right) A_{\pm} = 0$$

existence proof of fact that you can get cosmologically relevant fields even if $m \gg H$

another example...

One final note...
$$\mathcal{L} = e^{2\phi/M} \left[-\frac{1}{2} \partial_{\mu} \chi \, \partial^{\mu} \chi - \frac{m^2}{2} \, \chi^2 \right]$$

Peloso, LS, Tasinato one week ago

the canonically normalized field $\psi = e^{\phi/M} \chi$ obeys

$$\psi'' + \left[k^2 - \frac{1}{\tau^2} \left(-\frac{m^2}{H^2} + 2 + 3\frac{\dot{\phi}}{MH} + \frac{\dot{\phi}^2}{M^2H^2}\right)\right] \psi = 0$$

scale invariant spectrum even for m»H provided

$$3 \frac{\dot{\phi}}{M H} + \frac{\dot{\phi}^2}{M^2 H^2} = \frac{m^2}{H^2}$$