Interplay between Randers metrics and the causal geometry of stationary spacetimes

Miguel Ángel Javaloyes (Universidad de Murcia)

Partially supported by MINECO project MTM2012-34037, Regional J. Andalucía Grant P09-FQM-4496 and Fundación Séneca project 04540/GERM/06, Spain

IPMU (Tokyo), Februrary 10th, 2014

Outline

First part: preliminaries on Finsler metrics and stationary spacetimes

- Introduction to Finsler metrics
- Introduction to stationary spacetimes

Second part: causality of stationary spacetimes via the Fermat metric

- Fermat Principle in stationary spacetime and Fermat metrics
- Introduction to Causality of a spacetime
- Characterization of causality of a statonary spacetime in terms of the Fermat metric

Third part: almost isometries of Finsler metrics and K-isometries of a stationary spacetime

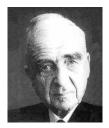
- Almost isometries of quasi-metrics
- Almost isometries of Finsler metrics
- Applications to the study of K-isometries of a stationary spacetime

First part: preliminaries on Finsler metrics and stationary spacetimes

Finsler metrics

DEFINITION: F : $\mathit{TM} \rightarrow [0, +\infty)$ continuous and

- **1** smooth in $TM \setminus \{0\}$
- Positively homogeneous of degree one F(λν) = λF(ν) for all λ > 0
- Fiberwise strongly convex square:



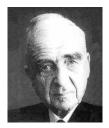
$$g_{v}(w,z) = \frac{1}{2} \frac{\partial^{2}}{\partial t \partial s} F(v + tw + sz)^{2}|_{t=s=0} = \frac{1}{2} \text{Hess}(F^{2})_{v}(w,z)$$

for every $w, z \in T_{\pi(v)}M$. Then $g_v(w, w) > 0$ for every $0 \neq w \in T_{\pi(v)}M$.

Finsler metrics

DEFINITION: F : $\textit{TM} \rightarrow [0, +\infty)$ continuous and

- **1** smooth in $TM \setminus \{0\}$
- Positively homogeneous of degree one F(λν) = λF(ν) for all λ > 0
- Siberwise strongly convex square:



$$g_{\nu}(w,z) = \frac{1}{2} \frac{\partial^2}{\partial t \partial s} F(\nu + tw + sz)^2|_{t=s=0} = \frac{1}{2} \operatorname{Hess}(F^2)_{\nu}(w,z)^{\operatorname{Paul FINSLER}(1894-1976)}$$

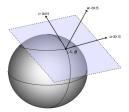
for every $w, z \in T_{\pi(v)}M$. Then $g_v(w, w) > 0$ for every $0 \neq w \in T_{\pi(v)}M$.

It can be showed that this implies:

- *F* is positive in $TM \setminus \{0\}$ and F^2 is C^1 on TM.
- Triangle inequality holds in the fibers

Interpretation of the fundamental tensor

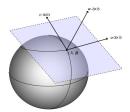
- S =Indicatrix of $F = \{v \in A : F(v) = 1\}$ (the unit sphere of F).
- The fundamental tensor g_v of F in $v \in S$ coincides with the second fundamental form of S in the hyperplane tangent to S
- $g_v(v, v) = F(v)^2$
- v and $T_v S$ are g_v -orthogonal



Interpretation of the fundamental tensor

- S =Indicatrix of $F = \{v \in A : F(v) = 1\}$ (the unit sphere of F).
- The fundamental tensor g_v of F in $v \in S$ coincides with the second fundamental form of S in the hyperplane tangent to S
- $g_v(v, v) = F(v)^2$
- v and $T_v S$ are g_v -orthogonal

The indicatrix contains all the geometric information of F



Non-symmetric "distance"

- We can define the length of a curve: $\ell_F(\gamma) = \int_a^b F(\dot{\gamma}) ds$
- and then the distance between two points: $dist(p,q) = \inf_{\gamma \in C^{\infty}(p,q)} \ell_{F}(\gamma)$
- dist is non-symmetric because F is non-reversible
- the length of a curve $t \to \gamma(t)$ is different from the length of its reverse $t \to \gamma(-t)!!$

Non-symmetric "distance"

- We can define the length of a curve: $\ell_F(\gamma) = \int_a^b F(\dot{\gamma}) ds$
- and then the distance between two points: $dist(p,q) = \inf_{\gamma \in C^{\infty}(p,q)} \ell_{F}(\gamma)$
- dist is non-symmetric because F is non-reversible
- the length of a curve $t \to \gamma(t)$ is different from the length of its reverse $t \to \gamma(-t)!!$
- We have to distinguish between forward and backward:
 - balls $B^+(p,r) = \{x \in M : \operatorname{dist}(p,x) < r\}$ and

$$B^-(p,r) = \{x \in M : \operatorname{dist}(x,p) < r\}$$

- Cauchy sequence
- topological completeness
- geodesical completeness

Randers metrics in a manifold *M* is a function *R* : *TM* → ℝ defined as:

$$R(v) = \sqrt{h(v, v)} + \omega(v)$$

where *h* is Riemannian and ω a 1-form with $\|\omega\|_h < 1 \ \forall x \in M$,

- are basic examples of non-reversible Finsler metrics: R(−v) ≠ R(v).
- Named after the norwegian physicist Gunnar Randers (1914-1992):
 - Randers, G.: On an asymmetrical metric in the fourspace of General Relativity. Phys. Rev. (2) 59, 195–199 (1941)

G. RANDERS AND A. EINSTEIN

Given a Riemannian metric g, Zermelo metric:

$$Z(\mathbf{v}) = \sqrt{rac{1}{lpha} g(\mathbf{v},\mathbf{v}) + rac{1}{lpha^2} g(W,\mathbf{v})^2} - rac{1}{lpha} g(W,\mathbf{v}),$$

where
$$\alpha = 1 - g(W, W)$$
.

It is of Randers type

Geodesics minimize time in the presence of a wind or current W.

MEETING OF WATERS

Matsumoto metrics

Given a Riemannian metric g, and a one-form β

$$M(v) = \frac{g(v, v)}{\sqrt{g(v, v)} - \beta(v)}$$

defined in

$$A = \{v \in TM : \sqrt{g(v,v)} > 2\beta(v)\}$$

Geodesics minimize time in the presence of a slope

 M. Matsumoto. A slope of a mountain is a Finsler surface with respect to a time measure, J. Math. Kyoto Univ., 29 (1989), pp. 17–25

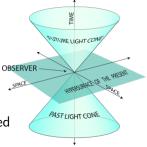
Mount Fuji (near Tokyo)

Макото Матѕимото (19?? -2005)

 A Lorentzian manifold (M, g) with index 1 (+, · · · , +, -) (timelike if g(v, v) < 0

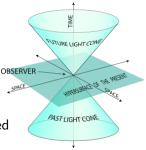
•
$$v \in TM$$
 is

$$\begin{cases} \text{lightlike if } g(v,v) = 0 \\ \text{causal if } g(v,v) \leq 0 \\ \text{spacelike if } g(v,v) > 0 \end{cases}$$



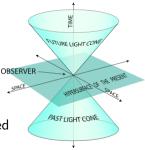
- A spacetime is a Lorentzian manifold endowed with a time-orientation
- The time-orientation is determined by a timelike vector field *T*
- A causal vector v ∈ TM is future-pointing if g(v, T) < 0 (if g(v, T) > 0 is past-pointing)

• A Lorentzian manifold (M, g) with index 1 $(+, \dots, +, -)$ • $v \in TM$ is $\begin{cases} \text{timelike if } g(v, v) < 0 \\ \text{lightlike if } g(v, v) = 0 \\ \text{causal if } g(v, v) \le 0 \\ \text{spacelike if } g(v, v) > 0 \end{cases}$



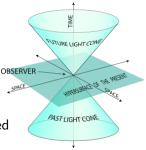
- A spacetime is a Lorentzian manifold endowed with a time-orientation
- The time-orientation is determined by a timelike vector field *T*
- A causal vector v ∈ TM is future-pointing if g(v, T) < 0 (if g(v, T) > 0 is past-pointing)

• A Lorentzian manifold (M, g) with index 1 $(+, \dots, +, -)$ • $v \in TM$ is $\begin{cases} \text{timelike if } g(v, v) < 0 \\ \text{lightlike if } g(v, v) = 0 \\ \text{causal if } g(v, v) \le 0 \\ \text{spacelike if } g(v, v) > 0 \end{cases}$



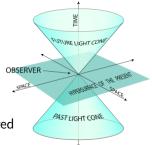
- A spacetime is a Lorentzian manifold endowed with a time-orientation
- The time-orientation is determined by a timelike vector field *T*
- A causal vector v ∈ TM is future-pointing if g(v, T) < 0 (if g(v, T) > 0 is past-pointing)

• A Lorentzian manifold (M, g) with index 1 $(+, \dots, +, -)$ • $v \in TM$ is $\begin{cases} \text{timelike if } g(v, v) < 0 \\ \text{lightlike if } g(v, v) = 0 \\ \text{causal if } g(v, v) \le 0 \\ \text{spacelike if } g(v, v) > 0 \end{cases}$



- A spacetime is a Lorentzian manifold endowed with a time-orientation
- The time-orientation is determined by a timelike vector field *T*
- A causal vector v ∈ TM is future-pointing if g(v, T) < 0 (if g(v, T) > 0 is past-pointing)

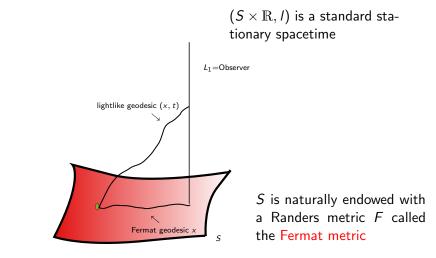
- A Lorentzian manifold (M, g) with index 1 $(+, \dots, +, -)$ timelike if g(v, v) < 0lightlike if g(v, v) = 0
- $v \in TM$ is $\begin{cases} \text{timelike if } g(v, v) < 0 \\ \text{lightlike if } g(v, v) = 0 \\ \text{causal if } g(v, v) \le 0 \\ \text{spacelike if } g(v, v) > 0 \end{cases}$



- A spacetime is a Lorentzian manifold endowed with a time-orientation
- The time-orientation is determined by a timelike vector field *T*
- A causal vector v ∈ TM is future-pointing if g(v, T) < 0 (if g(v, T) > 0 is past-pointing)
- A stationary spacetime (*M*, *g*) is a Lorentzian manifold endowed with a timelike Killing vector field

Kerr spacetime

Second part: causality of stationary spacetimes via Finsler geometry



Conformally Standard Stationary Spacetimes

• A spacetime (M, g) is Conformastationary if it admits a timelike Conformal field K, that is, a timelike vector field satisfying

$$\mathcal{L}_{K}g = \lambda g,$$

for some function $\lambda: M \to \mathbb{R}$

• Standard Conformastationary means that $M = S \times \mathbb{R}$ and

 $g((\mathbf{v},\tau),(\mathbf{v},\tau)) = \varphi(g_0(\mathbf{v},\mathbf{v}) + 2\omega(\mathbf{v})\tau - \tau^2),$

in $(x,t) \in S imes \mathbb{R}$, where $(v,\tau) \in \mathcal{T}_x S imes \mathbb{R}$, $arphi : S imes \mathbb{R} o (0,+\infty)$

- and g_0 is a Riemannian metric on S and ω a 1-form on S.
- In this case, ∂_t is a timelike conformal field.

Conformally Standard Stationary Spacetimes

• A spacetime (M, g) is Conformastationary if it admits a timelike Conformal field K, that is, a timelike vector field satisfying

$$\mathcal{L}_{K}g = \lambda g,$$

for some function $\lambda: M \to \mathbb{R}$

• Standard Conformastationary means that $M = S imes \mathbb{R}$ and

 $g((\mathbf{v},\tau),(\mathbf{v},\tau)) = \varphi(g_0(\mathbf{v},\mathbf{v}) + 2\omega(\mathbf{v})\tau - \tau^2),$

- in $(x,t)\in S imes \mathbb{R}$, where $(v, au)\in \mathcal{T}_xS imes \mathbb{R}$, $arphi:S imes \mathbb{R} o (0,+\infty)$
- and g_0 is a Riemannian metric on S and ω a 1-form on S.
- In this case, ∂_t is a timelike conformal field.

A conformastationary spacetime is standard whenever it is distinguishing and the timelike conformal vector field is complete:

M. A. J. AND M. SÁNCHEZ, A note on the existence of standard splittings for conformally stationary spacetimes, Classical Quantum Gravity, 25 (2008), pp. 168001, 78.

Miguel Sánchez

12 / 43

Fermat principle in General Relativity

- First established by Herman Weyl in 1917 for static spacetimes
- The stationary case is considered by Tulio Levi-Civita in 1927
- It appears in classical books as Landau-Lifshitz "The classical theory of fields" 1962
- I. Kovner gave a version of Fermat principle for an arbitrary spacetime in 1990
- Volker Perlick gave a rigorous proof of this general principle in the same year (1990)

(1885 - 1955)

 \rightarrow (1873-1941)

(1908 - 1968) \rightarrow

(BORN IN 1956)

M. A. Javaloyes (UM)

Interplay between Randers metrics and static

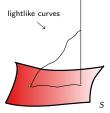
 \rightarrow

13 / 43

Fermat principle in standard stationary spacetimes

 $L_1 = Observer$

• Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an *observer* in a suitable class of lightlike curves



Fermat principle in standard stationary spacetimes

- Relativistic Fermat Principle: lightlike pregeodesics are critical points of the arrival time function corresponding to an *observer* in a suitable class of lightlike curves
- If you consider as observer $s \to L_1(s) = (x_1, s)$ in $(S \times \mathbb{R}, g)$, given a lightlike curve $\gamma = (x, t)$, the arrival time $AT(\gamma)$ is

Pierre de Fermat (1601-1665)

• because $g_0(\dot{x}, \dot{x}) + 2\omega(\dot{x})\dot{t} - \dot{t}^2 = 0$ $(g(\dot{\gamma}, \dot{\gamma}) = 0)$

 $t(b) = t(a) + \int_a^b \left(\omega(\dot{x}) + \sqrt{g_0(\dot{x}, \dot{x}) + \omega(\dot{x})^2} \right) \mathrm{d}s.$

• Let us define the Fermat (Finslerian) metric in S as

$$F(v) = \omega(v) + \sqrt{g_0(v,v) + \omega(v)^2},$$

Theorem

A curve $s \to \gamma(s) = (x(s), s)$ is a lightlike pregeodesic of $(S \times \mathbb{R}, g)$ iff $s \to x(s)$ is a Fermat geodesic with unit speed.

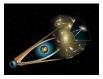
Theorem

A curve $s \to \gamma(s) = (x(s), s)$ is a lightlike pregeodesic of $(S \times \mathbb{R}, g)$ iff $s \to x(s)$ is a Fermat geodesic with unit speed.

Consequences:

- Gravitational lensing can be studied from geodesic connectedness in Fermat metric
- Existence of *t*-periodic lightlike geodesics is equivalent to existence of Fermat closed geodesics

EINSTEIN RING



GRAVITATIONAL LENSING

My Collaborators

Erasmo Caponio (Bari)

Antonio Masiello (Bari)

MIGUEL SÁNCHEZ (GRANADA)

Interplay between Randers metrics and static

Lorentzian Causality

- Causality studies if given two points $p, q \in M$ they are joined by a causal curve
- $p, q \in M$ are chronologically related, and write $p \ll q$ if there exists a future-pointing OBSERVER timelike curve γ from p to q
- p, q ∈ M are causally related p < q) if there exists a future-pointing causal curve γ from p to q
- The chronological future of p ∈ M is defined as I⁺(p) = {q ∈ M : p ≪ q}
- The causal future of $p \in M$ is defined as $J^+(p) = \{q \in M : p \le q\}$
- Analogously we define the chronological past $I^{-}(p)$ and the causal past $J^{-}(p)$.

UTURE LIGHT CON

PAST LIGHT CONE

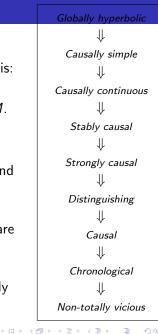
HIPPOURH OF THE PRESER

Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

• Chronological if $p \notin I^+(p)$ for every $p \in M$.

• Distinguishing if
$$I^+(p) = I^+(q)$$
 or $I^-(p) = I^-(q)$ implies $p = q$

- Causally continuous if it is distinguishing and the Chronological cones I[±](p) are continuous in p ∈ M
- Causally simple if the causal cones J[±](p) are closed for every p ∈ M
- Globally hyperbolic if it admits a Cauchy hypersurface (a subset *S* that meets exactly once every inextendible timelike curve)

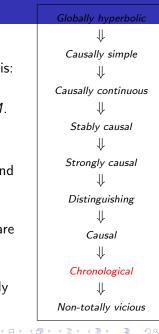


Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

• Chronological if $p \notin I^+(p)$ for every $p \in M$.

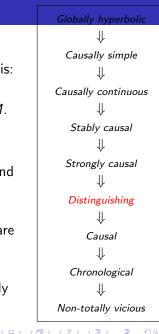
• Distinguishing if
$$I^+(p) = I^+(q)$$
 or $I^-(p) = I^-(q)$ implies $p = q$

- Causally continuous if it is distinguishing and the Chronological cones I[±](p) are continuous in p ∈ M
- Causally simple if the causal cones J[±](p) are closed for every p ∈ M
- Globally hyperbolic if it admits a Cauchy hypersurface (a subset *S* that meets exactly once every inextendible timelike curve)



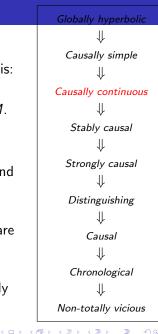
Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

- Chronological if $p \notin I^+(p)$ for every $p \in M$.
- Distinguishing if $I^+(p) = I^+(q)$ or $I^-(p) = I^-(q)$ implies p = q
- Causally continuous if it is distinguishing and the Chronological cones I[±](p) are continuous in p ∈ M
- Causally simple if the causal cones J[±](p) are closed for every p ∈ M
- Globally hyperbolic if it admits a Cauchy hypersurface (a subset *S* that meets exactly once every inextendible timelike curve)



Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

- Chronological if $p \notin I^+(p)$ for every $p \in M$.
- Distinguishing if $I^+(p) = I^+(q)$ or $I^-(p) = I^-(q)$ implies p = q
- Causally continuous if it is distinguishing and the Chronological cones I[±](p) are continuous in p ∈ M
- Causally simple if the causal cones J[±](p) are closed for every p ∈ M
- Globally hyperbolic if it admits a Cauchy hypersurface (a subset *S* that meets exactly once every inextendible timelike curve)

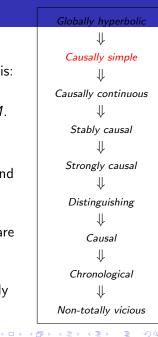


Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

• Chronological if $p \notin I^+(p)$ for every $p \in M$.

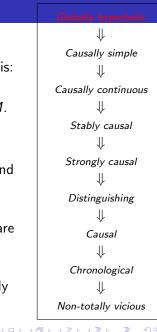
• Distinguishing if
$$I^+(p) = I^+(q)$$
 or $I^-(p) = I^-(q)$ implies $p = q$

- Causally continuous if it is distinguishing and the Chronological cones I[±](p) are continuous in p ∈ M
- Causally simple if the causal cones J[±](p) are closed for every p ∈ M
- Globally hyperbolic if it admits a Cauchy hypersurface (a subset *S* that meets exactly once every inextendible timelike curve)



Causal properties classify spacetimes depending on the behaviour of causal cones. A spacetime is:

- Chronological if $p \notin I^+(p)$ for every $p \in M$.
- Distinguishing if $I^+(p) = I^+(q)$ or $I^-(p) = I^-(q)$ implies p = q
- Causally continuous if it is distinguishing and the Chronological cones I[±](p) are continuous in p ∈ M
- Causally simple if the causal cones J[±](p) are closed for every p ∈ M
- Globally hyperbolic if it admits a Cauchy hypersurface (a subset *S* that meets exactly once every inextendible timelike curve)



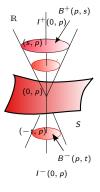
- Let d the non-symmetric distance in *S* associated to the Fermat metric
- $B^+(x_0, s) = \{ p \in S : d(x_0, p) < s \}$ forward balls

Causality via the Fermat metric

- Let d the non-symmetric distance in *S* associated to the Fermat metric
- $B^+(x_0, s) = \{ p \in S : d(x_0, p) < s \}$ forward balls

• Let ($\mathbb{R} \times S, g$) be a standard stationary spacetime. Then

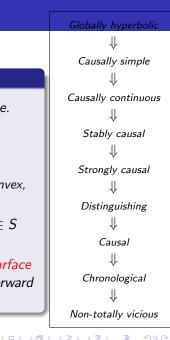
$$I^{\pm}(t_0, x_0) = \cup_{s>0} \{t_0 \pm s\} \times B^{\pm}(x_0, s),$$



Theorem

Let $(S \times \mathbb{R}, g)$ be a standard stationary spacetime. Then $(S \times \mathbb{R}, g)$ is causally continuous and

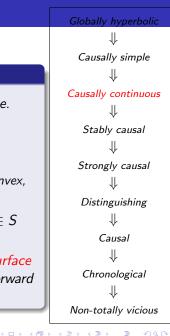
- (a) the following assertions become equivalent:
 - (i) $(S \times \mathbb{R}, g)$ is causally simple,
 - (ii) the associated Finsler manifold (S, F) is convex,
- (b) it is globally hyperbolic if and only if $\overline{B}^+(x,r) \cap \overline{B}^-(x,r)$ is compact for every $x \in S$ and r > 0.
- (c) a slice $S \times \{t_0\}, t_0 \in \mathbb{R}$, is a Cauchy hypersurface if and only if the Fermat metric F on S is forward and backward complete.



Theorem

Let $(S \times \mathbb{R}, g)$ be a standard stationary spacetime. Then $(S \times \mathbb{R}, g)$ is causally continuous and

- (a) the following assertions become equivalent:
 - (i) $(S \times \mathbb{R}, g)$ is causally simple,
 - (ii) the associated Finsler manifold (S, F) is convex,
- (b) it is globally hyperbolic if and only if $\overline{B}^+(x,r) \cap \overline{B}^-(x,r)$ is compact for every $x \in S$ and r > 0.
- (c) a slice $S \times \{t_0\}, t_0 \in \mathbb{R}$, is a Cauchy hypersurface if and only if the Fermat metric F on S is forward and backward complete.



Theorem

Let $(S \times \mathbb{R}, g)$ be a standard stationary spacetime. Then $(S \times \mathbb{R}, g)$ is causally continuous and

- (a) the following assertions become equivalent:
 - (i) $(S \times \mathbb{R}, g)$ is causally simple,
 - (ii) the associated Finsler manifold (S, F) is convex,
- (b) it is globally hyperbolic if and only if $\overline{B}^+(x,r) \cap \overline{B}^-(x,r)$ is compact for every $x \in S$ and r > 0.
- (c) a slice $S \times \{t_0\}, t_0 \in \mathbb{R}$, is a Cauchy hypersurface if and only if the Fermat metric F on S is forward and backward complete.



Theorem

Let $(S \times \mathbb{R}, g)$ be a standard stationary spacetime. Then $(S \times \mathbb{R}, g)$ is causally continuous and

- (a) the following assertions become equivalent:
 - (i) $(S \times \mathbb{R}, g)$ is causally simple,
 - (ii) the associated Finsler manifold (S, F) is convex,
- (b) it is globally hyperbolic if and only if $\overline{B}^+(x,r) \cap \overline{B}^-(x,r)$ is compact for every $x \in S$ and r > 0.
- (c) a slice $S \times \{t_0\}, t_0 \in \mathbb{R}$, is a Cauchy hypersurface if and only if the Fermat metric F on S is forward and backward complete.

Causally simple Causally continuous Stably causal Strongly causal Distinguishing Causal Chronological Non-totally vicious

イロト 不得下 イヨト イヨト

3

Theorem (Accurate Hopf-Rinow for Randers metrics)

Let (S, R) a Randers manifold and given a function $f: S \to \mathbb{R}$ such that $df \leq R$ define $R_f(x, v) = R(x, v) - df_x(v)$. The following conditions are equivalent:

- (A) the intersection $\overline{B}^+(x,r) \cap \overline{B}^-(x,r)$ of (S,R) is compact for every r > 0 and $x \in S$
- (B) there exists f such that R_f is geodesically complete
- (C) there exists f and $p \in S$ such that the forward and the backward exponentials of R_f are defined in T_pS
- (E) there exists f such that the quasi-metric d_f associated to R_f is forward and backward complete

In such a case, (S, R) is convex.

Heinz Hopf (1894-1971)

< 🗇 🕨

- E. CAPONIO, M. A. J., AND A. MASIELLO, On the energy functional on Finsler manifolds and applications to stationary spacetimes, Math. Ann., 351 (2011), pp. 365–392.
- E. CAPONIO, M. A. J., AND M. SÁNCHEZ, On the interplay between Lorentzian Causality and Finsler metrics of Randers type, Rev. Mat. Iberoamericana, 27 (2011), pp. 919–952.

- E. CAPONIO, M. A. J., AND A. MASIELLO, On the energy functional on Finsler manifolds and applications to stationary spacetimes, Math. Ann., 351 (2011), pp. 365–392.
- E. CAPONIO, M. A. J., AND M. SÁNCHEZ, On the interplay between Lorentzian Causality and Finsler metrics of Randers type, Rev. Mat. Iberoamericana, 27 (2011), pp. 919–952.

For a review see:

M. A. J., *Conformally standard stationary spacetimes and Fermat metrics*, Proceedings of GeLoGra 2011.

Last part: Almost Isometries. My collaborators

LEANDRO LICHTENFELZ NOTRE DAME UNIVERSITY (USA)

PAOLO PICCIONE Universidade de Sao Paulo (Brasil)

Given a set X, we say that a function $d : X \times X \to \mathbb{R}$ is a *quasi-metric* if (i) $d(x, y) \ge 0$ for every $x, y \in X$ and d(x, y) = 0 if and only if x = y, (ii) $d(x, y) + d(y, z) \ge d(x, z)$ (triangle inequality).

Given a set X, we say that a function $d : X \times X \to \mathbb{R}$ is a *quasi-metric* if (i) $d(x, y) \ge 0$ for every $x, y \in X$ and d(x, y) = 0 if and only if x = y, (ii) $d(x, y) + d(y, z) \ge d(x, z)$ (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:

•
$$B_d^+(x, r) = \{y \in X : d(x, y) < r\}$$
 (forward balls)

• $B_d^-(x, r) = \{y \in X : d(y, x) < r\}$ (backward balls)

respectively, for $x \in X$ and r > 0.

Given a set X, we say that a function $d : X \times X \to \mathbb{R}$ is a *quasi-metric* if (i) $d(x, y) \ge 0$ for every $x, y \in X$ and d(x, y) = 0 if and only if x = y, (ii) $d(x, y) + d(y, z) \ge d(x, z)$ (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:

•
$$B_d^+(x,r) = \{y \in X : d(x,y) < r\}$$
 (forward balls)

•
$$B^-_d(x,r) = \{y \in X : d(y,x) < r\}$$
 (backward balls)

respectively, for $x \in X$ and r > 0.

Definition

A pair (X, d) will be called a *quasi-metric space* endowed with the topology induced by the family $B_d^+(x, r) \cap B_d^-(x, r)$, $x \in M$ and r > 0.

Let us observe that this topology coincides with the topology generated by (the balls of) the symmetrized metric $\tilde{d}(x, y) = \frac{1}{2} (d(x, y) + d(y, x))$.

- Quasi-metrics spaces have been studied by many mathematicians:
 - Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930, Wilson 1931, Busemann 1944
 - and also by a spanish mathematician: Julio Rey Pastor 1940

Rey Pastor (1888-1962)

- Quasi-metrics spaces have been studied by many mathematicians:
 - Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930, Wilson 1931, Busemann 1944
 - and also by a spanish mathematician: Julio Rey Pastor 1940
- Our seminar in the university of Murcia is called "Rey Pastor" after him

Rey Pastor (1888-1962)

Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve $\alpha: [a, b] \subseteq \mathbb{R} \to X$ as

$$\ell(\alpha) = \sup_{\mathcal{P}} \sum_{1=1}^{r} d(\alpha(s_i), \alpha(s_{i+1})),$$

where \mathcal{P} is the set of partitions $a = s_1 < s_2 < \ldots < s_{r+1} = b$, $r \in \mathbb{N}$.

Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve $\alpha : [a, b] \subseteq \mathbb{R} \to X$ as

$$\ell(\alpha) = \sup_{\mathcal{P}} \sum_{1=1}^{r} d(\alpha(s_i), \alpha(s_{i+1})),$$

where \mathcal{P} is the set of partitions $a = s_1 < s_2 < \ldots < s_{r+1} = b$, $r \in \mathbb{N}$.

- We say that α is *rectifiable* when $\ell(\alpha)$ is finite.
- Moreover, we say that a curve γ in X from p to q is a minimizing geodesic if ℓ(γ) = d(p, q).

Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve $\alpha : [a, b] \subseteq \mathbb{R} \to X$ as

$$\ell(\alpha) = \sup_{\mathcal{P}} \sum_{1=1}^{r} d(\alpha(s_i), \alpha(s_{i+1})),$$

where \mathcal{P} is the set of partitions $a = s_1 < s_2 < \ldots < s_{r+1} = b$, $r \in \mathbb{N}$.

- We say that α is *rectifiable* when $\ell(\alpha)$ is finite.
- Moreover, we say that a curve γ in X from p to q is a minimizing geodesic if ℓ(γ) = d(p, q).

Definition

Let us define the *triangular function* $T : X \times X \times X \rightarrow [0, +\infty[$ of a quasi-metric space (X, d) as T(x, y, z) = d(x, y) + d(y, z) - d(x, z) for every $x, y, z \in X$.

Evidently, T is continuous.

M. A. Javaloyes (UM)

・ロン ・四 ・ ・ ヨン ・ ヨン

Proposition

A curve $\alpha : [a, b] \subseteq \mathbb{R} \to X$ is a minimizing geodesic of a quasi-metric space (X, d) iff $T(\alpha(s_1), \alpha(s_2), \alpha(s_3)) = 0$ for every $a \le s_1 < s_2 < s_3 \le b$.

Proposition

A curve $\alpha : [a, b] \subseteq \mathbb{R} \to X$ is a minimizing geodesic of a quasi-metric space (X, d) iff $T(\alpha(s_1), \alpha(s_2), \alpha(s_3)) = 0$ for every $a \le s_1 < s_2 < s_3 \le b$.

Definition

Let (X_1, d_1) and (X_2, d_2) be two quasi-metric spaces. A bijection $\varphi : X_1 \to X_2$ is an *almost isometry* if it preserves the triangular function, that is,

$$T_2(\varphi(x),\varphi(y),\varphi(z)) = T_1(x,y,z)$$

for every $x, y, z \in X_1$, where T_1 and T_2 are the triangular functions associated respectively to (X_1, d_1) and (X_2, d_2) .

- < A > < B > < B >

Proposition

A curve $\alpha : [a, b] \subseteq \mathbb{R} \to X$ is a minimizing geodesic of a quasi-metric space (X, d) iff $T(\alpha(s_1), \alpha(s_2), \alpha(s_3)) = 0$ for every $a \le s_1 < s_2 < s_3 \le b$.

Definition

Let (X_1, d_1) and (X_2, d_2) be two quasi-metric spaces. A bijection $\varphi : X_1 \to X_2$ is an *almost isometry* if it preserves the triangular function, that is,

$$T_2(\varphi(x),\varphi(y),\varphi(z)) = T_1(x,y,z)$$

for every $x, y, z \in X_1$, where T_1 and T_2 are the triangular functions associated respectively to (X_1, d_1) and (X_2, d_2) .

Corollary

Almost isometries preserve minimizing geodesics.

Proposition

Given quasi-metric spaces (X_1, d_1) and (X_2, d_2) , a bijection $\varphi : X_1 \to X_2$ is an almost isometry iff $\exists f : X_2 \to \mathbb{R}$ such that for every $x, y \in X_1$:

$$d_2(\varphi(x),\varphi(y)) = d_1(x,y) + f(\varphi(x)) - f(\varphi(y))$$
(1)

Proposition

Given quasi-metric spaces (X_1, d_1) and (X_2, d_2) , a bijection $\varphi : X_1 \to X_2$ is an almost isometry iff $\exists f : X_2 \to \mathbb{R}$ such that for every $x, y \in X_1$:

$$d_2(\varphi(x),\varphi(y)) = d_1(x,y) + f(\varphi(x)) - f(\varphi(y))$$
(1)

Proof.

- \Rightarrow (the converse is straightforward)
 - Fix a point $x_0 \in X_1$ and define $f : X_2 \to \mathbb{R}$ as $f(z) = d_2(z, \varphi(x_0)) d_1(\varphi^{-1}(z), x_0)$ for every $z \in X_2$.

Proposition

Given quasi-metric spaces (X_1, d_1) and (X_2, d_2) , a bijection $\varphi : X_1 \to X_2$ is an almost isometry iff $\exists f : X_2 \to \mathbb{R}$ such that for every $x, y \in X_1$:

$$d_2(\varphi(x),\varphi(y)) = d_1(x,y) + f(\varphi(x)) - f(\varphi(y))$$
(1)

Proof.

 \Rightarrow (the converse is straightforward)

- Fix a point $x_0 \in X_1$ and define $f : X_2 \to \mathbb{R}$ as $f(z) = d_2(z, \varphi(x_0)) d_1(\varphi^{-1}(z), x_0)$ for every $z \in X_2$.
- Given $x, y \in X_1$, as φ preserves the triangular function, we have

$$\begin{aligned} d_1(x,y) + d_1(y,x_0) - d_1(x,x_0) \\ &= d_2(\varphi(x),\varphi(y)) + d_2(\varphi(y),\varphi(x_0)) - d_2(\varphi(x),\varphi(x_0)), \end{aligned}$$

which is equivalent to (1).

Some observations:

- In metric spaces, almost isometries are always isometries
- If $\varphi: (X_1, d_1)
 ightarrow (X_2, d_2)$ is an almost isometry, then

$$\varphi:(X_1,\widetilde{d}_1) \to (X_2,\widetilde{d}_2)$$

is an isometry, where

$$\begin{split} \widetilde{d}_1(x,y) &= \frac{1}{2} \big(d_1(x,y) + d_1(y,x) \big), \\ \widetilde{d}_2(x,y) &= \frac{1}{2} \big(d_2(x,y) + d_2(y,x) \big). \end{split}$$

• Moreover, φ is a homeomorphism and the functions $f: X_2 \to \mathbb{R}$ are continuous

Notation:

- Iso(X, d) is the group of isometries of (X, d)
- $I_{SO}(X, d)$ is the group of almost isometries of (X, d). It will be called the *extended isometry group* of (X, d).

Notation:

- Iso(X, d) is the group of isometries of (X, d)
- Iso(X, d) is the group of almost isometries of (X, d). It will be called the *extended isometry group* of (X, d).

Proposition

- With the above notation, $\widetilde{Iso}(X, d)$ and Iso(X, d) are topological groups endowed with the compact-open topology.
- If the topology induced by d is locally compact, then $\widetilde{\text{Iso}}(X, d)$ and Iso(X, d) are locally compact.

Notation:

- Iso(X, d) is the group of isometries of (X, d)
- Iso(X, d) is the group of almost isometries of (X, d). It will be called the *extended isometry group* of (X, d).

Proposition

- With the above notation, $\overline{Iso}(X, d)$ and Iso(X, d) are topological groups endowed with the compact-open topology.
- If the topology induced by d is locally compact, then $\widetilde{\text{Iso}}(X, d)$ and Iso(X, d) are locally compact.

Proof.

The proof follows from the inclusions:

$$\operatorname{Iso}(X,d)\subseteq \widetilde{\operatorname{Iso}}(X,d)\subseteq \operatorname{Iso}(X,\widetilde{d}).$$

Let (X_1, d_1) and (X_2, d_2) be two quasi-metric spaces. A map $\varphi : X_1 \to X_2$ is a *local almost isometry* if $\forall x \in X_1$, $\exists U \subseteq X_1$, $V \subseteq X_2$ open subsets, with $x \in U$, such that $\varphi|_U : U \to V$ is an almost isometry.

Let (X_1, d_1) and (X_2, d_2) be two quasi-metric spaces. A map $\varphi : X_1 \to X_2$ is a *local almost isometry* if $\forall x \in X_1$, $\exists U \subseteq X_1$, $V \subseteq X_2$ open subsets, with $x \in U$, such that $\varphi|_U : U \to V$ is an almost isometry.

- define d_l as the infimum of the lengths of curves between two points.
 We say that (X, d) is a *length space* when d_l = d.
- We say that a quasi-metric space is weakly finitely compact if $B^+(x,r) \cap B^-(x,r)$ are precompact $\forall x \in X$ and r > 0.

Let (X_1, d_1) and (X_2, d_2) be two quasi-metric spaces. A map $\varphi : X_1 \to X_2$ is a *local almost isometry* if $\forall x \in X_1$, $\exists U \subseteq X_1$, $V \subseteq X_2$ open subsets, with $x \in U$, such that $\varphi|_U : U \to V$ is an almost isometry.

- define d_l as the infimum of the lengths of curves between two points.
 We say that (X, d) is a *length space* when d_l = d.
- We say that a quasi-metric space is weakly finitely compact if $B^+(x,r) \cap B^-(x,r)$ are precompact $\forall x \in X$ and r > 0.

Theorem

Let $\varphi : (X_1, d_1) \rightarrow (X_2, d_2)$ be a local almost isometry. Assume that (X_1, d_1) and (X_2, d_2) are length spaces, d_1 is weakly finitely compact and X_2 is locally arc-connected and simply connected. Then φ is an almost isometry.

Almost isometries of Finsler metrics

Let us define the symmetrized Finsler metric of ${\ensuremath{\mathcal{F}}}$ as

$$\hat{F}(v) = \frac{1}{2} \big[F(v) + F(-v) \big]$$

for every $v \in TM$. The sum of Finsler metrics is a Finsler metric:

M. A. J. AND M. SÁNCHEZ, *On the definition and examples of Finsler metrics*, to appear in Ann. Sc. Nor. Pisa

Almost isometries of Finsler metrics

Let us define the symmetrized Finsler metric of F as

$$\hat{F}(v) = \frac{1}{2} \big[F(v) + F(-v) \big]$$

for every $v \in TM$. The sum of Finsler metrics is a Finsler metric:

M. A. J. AND M. SÁNCHEZ, *On the definition and examples of Finsler metrics*, to appear in Ann. Sc. Nor. Pisa

Lemma

If
$$\varphi: (M_1,F_1)
ightarrow (M_2,F_2)$$
 is an almost isometry then

$$\varphi: (M_1, \hat{F}_1) \rightarrow (M_2, \hat{F}_2)$$

is an isometry and φ is smooth.

Proof.

• To see that φ is an isometry prove that preserves the length of curves

• φ is smooth because it is an isometry of a Riemannian average metric M. A. Javaloyes (UM) Interplay between Randers metrics and static 32 / 43

Proposition

- If ∃ an almost isometry φ : (M₁, F₁) → (M₂, F₂), then there exists a smooth f : M₂ → ℝ such that φ*(F₁) = F₂ + df.
- Conversely, if $\varphi^*(F_1) = F_2 + df$, the map φ is an almost isometry.

- ∢ ศ⊒ ▶

Proposition

- If ∃ an almost isometry φ : (M₁, F₁) → (M₂, F₂), then there exists a smooth f : M₂ → ℝ such that φ*(F₁) = F₂ + df.
- Conversely, if $\varphi^*(F_1) = F_2 + df$, the map φ is an almost isometry.

Proposition

Let (M, F) be a Finsler manifold. Then the extended isometry group $\widetilde{\mathrm{Iso}}(M, F)$ is a closed subgroup of $\mathrm{Iso}(M, \hat{F})$. In particular, $\widetilde{\mathrm{Iso}}(M, F)$ is a Lie group.

- A I I I A I I I I

Proposition

- If ∃ an almost isometry φ : (M₁, F₁) → (M₂, F₂), then there exists a smooth f : M₂ → ℝ such that φ*(F₁) = F₂ + df.
- Conversely, if $\varphi^*(F_1) = F_2 + df$, the map φ is an almost isometry.

Proposition

Let (M, F) be a Finsler manifold. Then the extended isometry group $\widetilde{\mathrm{Iso}}(M, F)$ is a closed subgroup of $\mathrm{Iso}(M, \hat{F})$. In particular, $\widetilde{\mathrm{Iso}}(M, F)$ is a Lie group.

Proof.

Use that $\widetilde{\mathrm{Iso}}(M,F) \subset \mathrm{Iso}(M,\hat{F})$

3

イロト イ理ト イヨト イヨト

Corollary

Let (M, R) be a Randers manifold and $\varphi : M \to M$ an almost isometry for R. Then φ is an isometry for h.

Corollary

Let (M, R) be a Randers manifold and $\varphi : M \to M$ an almost isometry for R. Then φ is an isometry for h.

Proof.

Just observe that the symmetrized Finsler metric of R is given by $\hat{R}(v) = \sqrt{h(v, v)}$ for $v \in TM$.

K-conformal maps

- Let (M,g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \to M$ is K-conformal if
 - It is conformal, $\psi_*(g)=\lambda g$, $\lambda
 eq 0$, $(\psi_*$ is the pushforward) and

• preserves K,
$$\psi_*({\sf K})={\sf K}$$

• Now consider a normalized standard stationary spacetime $(S imes \mathbb{R}, g)$ with

$$g((v,\tau),(v,\tau)) = g_0(v,v) + 2\omega(v)\tau - \tau^2$$

 $v \in TS$ and $\tau \in \mathbb{R}$.

- Let (M,g) be a spacetime and K a Killing field
- We say that a diffeomorphism $\psi: M \to M$ is K-conformal if
 - It is conformal, $\psi_*(g) = \lambda g$, $\lambda
 eq 0$, $(\psi_* ext{ is the pushforward})$ and

• preserves K,
$$\psi_*({\sf K})={\sf K}$$

• Now consider a normalized standard stationary spacetime $(S imes \mathbb{R}, g)$ with

$$g((v,\tau),(v,\tau))=g_0(v,v)+2\omega(v)\tau-\tau^2$$

 $v \in TS$ and $\tau \in \mathbb{R}$.

Theorem

If $\psi: (S imes \mathbb{R}, g) o (S imes \mathbb{R}, g)$ is a K-conformal map, then

$$\psi(x,t)=(\varphi(x),t+f(x)),$$

and $\varphi_*(F) = F + df$ and $\varphi: (S,h) \to (S,h)$ is an isometry, where

$$h(v,v) = g_0(v,v) + \omega(v)^2.$$

Theorem

If $\psi : (S \times \mathbb{R}, g) \to (S \times \mathbb{R}, g)$ is a K-conformal map, then $\psi(x, t) = (\varphi(x), t + f(x))$ and $\varphi_*(F) = F + df$ and $\varphi : (S, h) \to (S, h)$ is an isometry, where

$$h(v,v) = g_0(v,v) + \omega(v)^2.$$

Proof.

Theorem

If $\psi : (S \times \mathbb{R}, g) \to (S \times \mathbb{R}, g)$ is a K-conformal map, then $\psi(x, t) = (\varphi(x), t + f(x))$ and $\varphi_*(F) = F + df$ and $\varphi : (S, h) \to (S, h)$ is an isometry, where

$$h(v,v) = g_0(v,v) + \omega(v)^2.$$

Proof.

- K-conformal implies that ψ maps orbits of ∂_t to orbits of ∂_t, that is, ψ(x, t) = (φ(x), t + f(x))
- As ψ is conformal, maps lightlike pregeodesics to lightlike pregeodesics
- Then Fermat metric maps Fermat pregeodesics to Fermat pregeodesics and ℓ_{φ*(F)}(γ) = ℓ_F(γ) + f(γ(1)) − f(γ(0))
- This means that $\varphi_*(F)$ and F + df have the same geodesics and therefore they are equal

Lemma

 $\operatorname{Conf}_{\mathcal{K}}(M,g)$ (here $M = \mathbb{R} \times S$) is a closed subgroup of $\operatorname{Conf}(M,g)$. Moreover the one-parameter subgroup \mathcal{K} generated by K is closed and normal in $\operatorname{Conf}_{\mathcal{K}}(M,g)$.

Proof.

(日) (同) (三) (三)

Lemma

 $\operatorname{Conf}_{K}(M,g)$ (here $M = \mathbb{R} \times S$) is a closed subgroup of $\operatorname{Conf}(M,g)$. Moreover the one-parameter subgroup \mathcal{K} generated by K is closed and normal in $\operatorname{Conf}_{K}(M,g)$.

Proof.

- First part is obvious in the C^1 topology.
- If $\psi \in \operatorname{Conf}_{\mathcal{K}}(M,g)$ then $\psi(x,t) = (\varphi(x), t + f(x))$ with $\varphi \in \widetilde{\operatorname{Iso}}(S,F)$
- Moreover, $\psi^{-1}(x,t) = (\varphi^{-1}(x), t f(\varphi^{-1}(x)))$
- Then if $K^T : M \to M$ is given by $K^T(x, t) = (x, t + T)$, it follows that $\psi \circ K^T \circ \psi^{-1} = K^T$ (\mathcal{K} is normal)

3

(日) (周) (三) (三)

Proposition

The map π : Conf_K(M, g) \rightarrow $\widetilde{Iso}(S, F)$ defined as $\pi(\psi) = \varphi$ is a Lie group homomorphism and $\overline{\pi}$: Conf_K(M, g)/ $\mathcal{K} \rightarrow \widetilde{Iso}(S, F)$ is an isomorphism.

Proof.

Proposition

The map π : Conf_K(M, g) \rightarrow $\widetilde{Iso}(S, F)$ defined as $\pi(\psi) = \varphi$ is a Lie group homomorphism and $\overline{\pi}$: Conf_K(M, g)/ $\mathcal{K} \rightarrow \widetilde{Iso}(S, F)$ is an isomorphism.

Proof.

- We just have to prove that $\bar{\pi}$ is one-to-one.
- Injective: if ψ_1 and ψ_2 project on the same almost isometry map φ , then by last Prop. $\psi_1(x, t) = (\varphi(x), t + f(x) + c_1)$ and $\psi_2(x, t) = (\varphi(x), t + f(x) + c_2), \ \psi_2 \circ \psi_1^{-1} = K^{c_2-c_1}$ and $[\psi_1] = [\psi_2]$
- Surjective: given an almost isometry φ , we construct the map

$$\psi(x,t) = (\varphi(x),t+f(x))$$

Clearly, it preserves ∂_t . By Fermat principle, it maps lightlike pregeodesics to lightlike pregeodesics, then it preserves the lightcone and it must be conformal (by Dajcker-Nomizu [83]).

M. A. Javaloyes (UM)

Corollary

Given a manifold S, for a generic set of data (g_0, ω) , the stationary metric $g = g(g_0, \omega)$ on $M = S \times \mathbb{R}$ has discrete K-conformal group $\operatorname{Conf}_K(M, g)/\mathcal{K}$.

э

Corollary

Given a manifold S, for a generic set of data (g_0, ω) , the stationary metric $g = g(g_0, \omega)$ on $M = S \times \mathbb{R}$ has discrete K-conformal group $\operatorname{Conf}_K(M, g)/\mathcal{K}$.

Corollary

If S is compact, then $\operatorname{Conf}_{\mathcal{K}}(S \times \mathbb{R}, g)/\mathcal{K}$ and $\operatorname{Iso}(S, F)$ are compact Lie groups.

About behavior of geodesics:

- L. BILIOTTI AND M. Á. JAVALOYES. *t*-periodic light rays in conformally stationary spacetimes via Finsler geometry. *Houston J. Math.*, 37(1):127–146, 2011.
- E. CAPONIO, M. Á. JAVALOYES, AND A. MASIELLO. Finsler geodesics in the presence of a convex function and their applications. J. Phys. A, 43(13):135207, 15, 2010.
- E. CAPONIO, M. Á. JAVALOYES, AND A. MASIELLO. Morse theory of causal geodesics in a stationary spacetime via Morse theory of geodesics of a Finsler metric. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 27(3):857–876, 2010.

E. CAPONIO, A. GERMINARIO, AND M. SÁNCHEZ. Geodesics on convex regions of stationary spacetimes and Finslerian Randers spaces. *arXiv:1112.3892v1 [math.DG]*, 2011. More about causality:

J. L. FLORES, J. HERRERA, AND M. SÁNCHEZ. Gromov, Cauchy and causal boundaries for Riemannian, Finslerian and Lorentzian manifolds. *Mem. Amer. Math. Soc.*

Other aspects:

- G. W. GIBBONS, C. A. R. HERDEIRO, C. M. WARNICK, AND M. C. WERNER, Stationary metrics and optical Zermelo-Randers-Finsler geometry, *Phys. Rev. D*, 79 (2009), pp. 044022, 21.
- A. DIRMEIER, M. PLAUE, AND M. SCHERFNER. Growth conditions, Riemannian completeness and Lorentzian causality. J. Geom. Phys., 62(3):604–612, 2011.
- M. C. WERNER, Gravitational lensing in the Kerr-Randers optical geometry, *Gen. Relativity Gravitation* 44 (2012), 3047–3057.

- Compute explicitly some extended isometry group
- to study the case in that K is not timelike

"That's all Folks!"

Thanks a lot for your attention

Interplay between Randers metrics and static