Interplay between Randers metrics and the causal

geometry of stationary spacetimes

Miguel Angel Javaloyes (Universidad de Murcia)

Partially supported by MINECO project MTM2012-34037, Regional J. Andalucia Grant
P09-FQM-4496 and Fundacién Séneca project 04540/GERM/06, Spain

IPMU (Tokyo), Februrary 10th, 2014

M. A. Javaloyes (UM) Interplay between Randers metrics and static

1/

43



First part: preliminaries on Finsler metrics and stationary spacetimes
@ Introduction to Finsler metrics
@ Introduction to stationary spacetimes

Second part: causality of stationary spacetimes via the Fermat metric
@ Fermat Principle in stationary spacetime and Fermat metrics
@ Introduction to Causality of a spacetime

@ Characterization of causality of a statonary spacetime in terms of the
Fermat metric

Third part: almost isometries of Finsler metrics and K-isometries of a
stationary spacetime

@ Almost isometries of quasi-metrics
@ Almost isometries of Finsler metrics

@ Applications to the study of K-isometries of a stationary spacetime
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First part: preliminaries on Finsler metrics and stationary
spacetimes
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Finsler metrics

DEFINITION: F : TM — [0, +00) continuous and
@ smooth in TM \ {0}

@ Positively homogeneous of degree one
F(Av) = AF(v) forall A >0

© Fiberwise strongly convex square:

1 2 PAUL FINSLER (1894-1970)

1
F(v—i—tw—i—sz)2 lt=s=0 = EHess(Fz)v(w, z)

P
8 (w.2) =5 555

for every w,z € T (,yM. Then g,(w, w) > 0 for
every 0 # w € T, M.
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@ smooth in TM \ {0}

@ Positively homogeneous of degree one
F(Av) = AF(v) forall A >0

© Fiberwise strongly convex square:

1 2 PAUL FINSLER (1894-1970)

1
= 5 910s F(v+tw+sz)?|j=s=0 = EHess(F2)V(W, z)

gv(w, 2)

for every w,z € T (,yM. Then g,(w, w) > 0 for
every 0 # w € T, M.
It can be showed that this implies:
e F is positive in TM \ {0} and F?is C! on TM.
@ Triangle inequality holds in the fibers
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Interpretation of the fundamental tensor

e S = Indicatrix of F = {v € A: F(v) = 1} (the unit sphere of F).

@ The fundamental tensor g, of F in v € S coincides with the second
fundamental form of S in the hyperplane tangent to S

e g,(v,v) = F(v)?
e vand T,S are g,-orthogonal
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Interpretation of the fundamental tensor

e S = Indicatrix of F = {v € A: F(v) = 1} (the unit sphere of F).

@ The fundamental tensor g, of F in v € S coincides with the second
fundamental form of S in the hyperplane tangent to S

e g,(v,v) = F(v)?
e vand T,S are g,-orthogonal

The indicatrix contains all the geometric information of F

M. A. Javaloyes (UM) Interplay between Randers metrics and static 5/43



Non-symmetric “distance”

@ We can define the length of a curve: lg(v) = fab F(¥)ds

@ and then the distance between two points:
dist(p, q) = inf e coo(p,q) €F (V)
@ dist is non-symmetric because F is non-reversible

o the length of a curve t — (t) is different from the length of its
reverse t — y(—t)!!
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@ We can define the length of a curve: lg(v) = fab F(¥)ds

@ and then the distance between two points:
dist(p, q) = inf e coo(p,q) €F (V)
@ dist is non-symmetric because F is non-reversible

o the length of a curve t — (t) is different from the length of its
reverse t — y(—t)!!

We have to distinguish between forward and backward:
e balls B (p,r) = {x € M : dist(p,x) < r} and
B~ (p,r) ={x € M : dist(x,p) < r}

@ Cauchy sequence
@ topological completeness

@ geodesical completeness
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Randers metrics

@ Randers metrics in a manifold M is a
function R : TM — R defined as:

R(v) = v/ h(v,v) +w(v)
where h is Riemannian and w a 1-form with
lwllp <1VxeM,
@ are basic examples of non-reversible Finsler
metrics: R(—v) # R(v).
@ Named after the norwegian physicist Gunnar
Randers (1914-1992):

[§ Randers, G.: On an asymmetrical metric
in the fourspace of General Relativity.
Phys. Rev. (2) 59, 195-199 (1941)

G. RANDERS AND A. EINSTEIN
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Zermelo metrics

Given a Riemannian metric g,
Zermelo metric:

2) =/ 2av )+ Haw.v-Lew ),

where a =1 — g(W, W).
It is of Randers type

Geodesics minimize time in the
presence of a wind or current
Ww.

MEETING OF WATERS
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Matsumoto metrics

Given a Riemannian metric g, and a
one-form (3

g(v,v)

M) = e - )

defined in

A={veTM: g(v,v) > 25(v)}

Geodesics minimize time in the presence
of a slope

[ M. Matsumoto. A slope of a mountain
. . . MAKOTO MATSUMOTO (1977 ~2005)
is a Finsler surface with respect to a
time measure, J. Math. Kyoto Univ.,

29 (1989), pp. 17-25
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Stationary spacetimes

e A Lorentzian manifold (M, g) with index 1
(+a SRR _)

timelike if g(v,v) <0 O

lightlike if g(v,v) =0

oveTMis _
causal if g(v,v) <0

spacelike if g(v,v) >0

. . . . // ZAST LIGHT CONE \\\
@ A spacetime is a Lorentzian manifold endowed ¢ )

with a time-orientation

@ The time-orientation is determined by a timelike
vector field T

@ A causal vector v € TM is future-pointing if
g(v, T) <0 (if g(v, T) > 0 is past-pointing)
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Stationary spacetimes

e A Lorentzian manifold (M, g) with index 1

(_f_’ cee 4 _)
timelike if g(v,v) <0 N
. veTMis lightlike if g(v,v) =0 —
causal if g(v,v) <0
spacelike if g(v,v) >0
@ A spacetime is a Lorentzian manifold endowed r

with a time-orientation

@ The time-orientation is determined by a timelike
vector field T

A causal vector v € TM is future-pointing if
g(v, T) <0 (if g(v, T) > 0 is past-pointing)
A stationary spacetime (M, g) is a Lorentzian

manifold endowed with a timelike Killing vector KERR SPACETIME
field

M. A. Javaloyes (UM) Interplay between Randers metrics and static 10 / 43




Second part: causality of stationary spacetimes via Finsler

geometry

(5 xR, /) is a standard sta-
tionary spacetime

L, =Observer

lightlike geodesic (x, t)
N

S is naturally endowed with
a Randers metric F called
s the Fermat metric

N

ermat geodesic x

11/ 43



Conformally Standard Stationary Spacetimes

o A spacetime (M, g) is Conformastationary if it admits a timelike
Conformal field K, that is, a timelike vector field satisfying

Lkg = Ag,
for some function A: M - R
@ Standard Conformastationary means that M =S x R and
g((v,7), (v,7)) = ¢(go(v, v) + 2w (v)T — 72),

in (x,t) € S xR, where (v,7) € TS X R, ¢: S xR — (0,+00)
@ and gp is a Riemannian metric on S and w a 1-form on S.
@ In this case, 0; is a timelike conformal field.
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Conformally Standard Stationary Spacetimes

o A spacetime (M, g) is Conformastationary if it admits a timelike
Conformal field K, that is, a timelike vector field satisfying

Lkg = Ag,

for some function A: M - R
@ Standard Conformastationary means that M =S x R and

g((v, 7—)7 (V7T)) - gp(go(v, V) + 2"‘)(\/)7_ - 7—2)7

in (x,t) € S xR, where (v,7) € T,S xR, ¢:SxR — (0,+00)
@ and gp is a Riemannian metric on S and w a 1-form on S.
@ In this case, 0; is a timelike conformal field.
A conformastationary spacetime is standard whenever it is
distinguishing and the timelike conformal vector field is complete:

[ M. A. J. AND M. SANCHEZ, A note on the existence of
standard splittings for conformally stationary spacetimes,
Classical Quantum Gravity, 25 (2008), pp. 168001, 7.
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Fermat principle in General Relativity

o First established by Herman Weyl in 1917 for static spacetimes

@ The stationary case is considered by Tulio Levi-Civita in 1927

@ It appears in classical books as Landau-Lifshitz “The classical theory
of fields” 1962

@ |. Kovner gave a version of Fermat principle for an arbitrary
spacetime in 1990

@ Volker Perlick gave a rigorous proof of this general principle in the
same year (1990)

H. WEYL T. LEVI-CIVITA LEV LANDAU E. LIFSHITZ I. KOVNER V. PERLICK
—  (1885-1955) — (1873-1941) — (1908-1968) — (1915-1985) — (BORN IN 1956)
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Fermat principle in standard stationary spacetimes

@ Relativistic Fermat Principle: lightlike pregeodesics iightiike curves
N

are critical points of the arrival time function
corresponding to an observer in a suitable class of

lightlike curves
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Fermat principle in standard stationary spacetimes

@ Relativistic Fermat Principle: lightlike pregeodesics iightiike curves
N

are critical points of the arrival time function
corresponding to an observer in a suitable class of
lightlike curves

@ If you consider as observer s — L;(s) = (x1,s) in
(S xR, g), given a lightlike curve v = (x, t), the
arrival time AT(~) is

t(b)=t(a)+ f, (w()+ /o (x 1) +w(%)? ) ds.

e because go(x, X) + 2w(x)t — 2 =0 (g(5,%) = 0)
o Let us define the Fermat (Finslerian) metric in S as

F(v)=w(v)++/go(v,v)+w(v)?3,

PIERRE DE FERMAT (1601-1665)
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Fermat metric and lightlike geodesics

A curve s — y(s) = (x(s), s) is a lightlike
pregeodesic of (S x R, g) iff s — x(s) is a
Fermat geodesic with unit speed.
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Fermat metric and lightlike geodesics

A curve s — y(s) = (x(s), s) is a lightlike
pregeodesic of (S x R, g) iff s — x(s) is a
Fermat geodesic with unit speed.

Consequences:

EINSTEIN RING

@ Gravitational lensing can be studied from
geodesic connectedness in Fermat metric

@ Existence of t-periodic lightlike geodesics is
equivalent to existence of Fermat closed
geodesics

GRAVITATIONAL LENSING
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Lorentzian Causality

o Causality studies if given two points
p, g € M they are joined by a causal curve

SPINRE LiGHT COM

@ p,q € M are chronologically related, and

timelike curve v from p to g

@ p,q € M are causally related p < q) if there y AN
exists a future-pointing causal curve v from ¢ )
ptoq

@ The chronological future of p € M is defined
as IT(p)={geM:p<q}

@ The causal future of p € M is defined as
JHp)={qeM:p<gq}

@ Analogously we define the chronological past
I~ (p) and the causal past J~(p).
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The causal ladder

4
Causal properties classify spacetimes depending Causally simple
on the behaviour of causal cones. A spacetime is: )
Causally continuous
e Chronological if p & I*(p) for every p € M. U
e Distinguishing if IT(p) = I*(q) or Stably causal
I=(p) = 17(q) implies p=q 4
@ Causally continuous if it is distinguishing and Stmngﬁ causal
the Chronological cones I*(p) are T
. . Distinguishing
continuous in p € M i
o Causally simple if the causal cones J*(p) are Causal
closed for every p € M Il
@ Globally hyperbolic if it admits a Cauchy Chronological
hypersurface (a subset S that meets exactly [}
once every inextendible timelike curve) Non-totally vicious

M. A. Javaloyes (UM) Interplay between Randers metrics and static 18 / 43



The causal ladder

4
Causal properties classify spacetimes depending Causally simple
on the behaviour of causal cones. A spacetime is: )
Causally continuous
e Chronological if p & I*(p) for every p € M. U
e Distinguishing if IT(p) = I*(q) or Stably causal
I=(p) = 17(q) implies p=q 4
@ Causally continuous if it is distinguishing and Stmngﬁ causal
the Chronological cones I*(p) are T
. . Distinguishing
continuous in p € M i
o Causally simple if the causal cones J*(p) are Causal
closed for every p € M Il
@ Globally hyperbolic if it admits a Cauchy Chronological
hypersurface (a subset S that meets exactly [}
once every inextendible timelike curve) Non-totally vicious

M. A. Javaloyes (UM) Interplay between Randers metrics and static 18 / 43



The causal ladder

4
Causal properties classify spacetimes depending Causally simple
on the behaviour of causal cones. A spacetime is: )
Causally continuous
e Chronological if p & I*(p) for every p € M. U
e Distinguishing if IT(p) = I*(q) or Stably causal
I=(p) = 17(q) implies p=q 4
@ Causally continuous if it is distinguishing and Stmngﬁ causal
the Chronological cones I*(p) are T
. . Distinguishing
continuous in p € M i
o Causally simple if the causal cones J*(p) are Causal
closed for every p € M Il
@ Globally hyperbolic if it admits a Cauchy Chronological
hypersurface (a subset S that meets exactly [}
once every inextendible timelike curve) Non-totally vicious

M. A. Javaloyes (UM) Interplay between Randers metrics and static 18 / 43



The causal ladder

4
Causal properties classify spacetimes depending Causally simple
on the behaviour of causal cones. A spacetime is: )
Causally continuous
e Chronological if p & I*(p) for every p € M. U
e Distinguishing if IT(p) = I*(q) or Stably causal
I=(p) = 17(q) implies p=q 4
@ Causally continuous if it is distinguishing and Stmngﬁ causal
the Chronological cones I*(p) are T
. . Distinguishing
continuous in p € M i
o Causally simple if the causal cones J*(p) are Causal
closed for every p € M Il
@ Globally hyperbolic if it admits a Cauchy Chronological
hypersurface (a subset S that meets exactly [}
once every inextendible timelike curve) Non-totally vicious

M. A. Javaloyes (UM) Interplay between Randers metrics and static 18 / 43



The causal ladder

4
Causal properties classify spacetimes depending Causally simple
on the behaviour of causal cones. A spacetime is: )
Causally continuous
e Chronological if p & I*(p) for every p € M. U
e Distinguishing if IT(p) = I*(q) or Stably causal
I=(p) = 17(q) implies p=q 4
@ Causally continuous if it is distinguishing and Stmngﬁ causal
the Chronological cones I*(p) are T
. . Distinguishing
continuous in p € M i
o Causally simple if the causal cones J*(p) are Causal
closed for every p € M Il
@ Globally hyperbolic if it admits a Cauchy Chronological
hypersurface (a subset S that meets exactly [}
once every inextendible timelike curve) Non-totally vicious

M. A. Javaloyes (UM) Interplay between Randers metrics and static 18 / 43



The causal ladder

4
Causal properties classify spacetimes depending Causally simple
on the behaviour of causal cones. A spacetime is: )
Causally continuous
e Chronological if p & I*(p) for every p € M. U
e Distinguishing if IT(p) = I*(q) or Stably causal
I=(p) = 17(q) implies p=q 4
@ Causally continuous if it is distinguishing and Stmngﬁ causal
the Chronological cones I*(p) are T
. . Distinguishing
continuous in p € M i
o Causally simple if the causal cones J*(p) are Causal
closed for every p € M Il
@ Globally hyperbolic if it admits a Cauchy Chronological
hypersurface (a subset S that meets exactly [}
once every inextendible timelike curve) Non-totally vicious

M. A. Javaloyes (UM) Interplay between Randers metrics and static 18 / 43



Causality via the Fermat metric

@ Let d the non-symmetric distance in S
associated to the Fermat metric

e BT (x0,s)={p €S :d(x,p) < s} forward
balls

® B (x0,s) ={peS:d(p,x) < s}
backward balls
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Causality via the Fermat metric

@ Let d the non-symmetric distance in S
associated to the Fermat metric

e BT (x0,s)={p €S :d(x,p) < s} forward
balls

® B (x0,s) ={peS:d(p,x) < s}
backward balls

o Let (R x S, g) be a standard stationary
spacetime. Then

I (to, x0) = Us=o{to + s} x B*(x, 5),
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Causality through the Fermat metric

Theorem

Let (S x R, g) be a standard stationary spacetime.
Then (S x R, g) is causally continuous and

(a) the following assertions become equivalent:
(i) (S xR, g) is causally simple,
(ii) the associated Finsler manifold (S, F) is convex,
(b) it is globally hyperbolic if and only if
B*(x,r)n B~ (x,r) is compact for every x € S
and r > 0.
(c) aslice S x {to},to € R, is a Cauchy hypersurface
if and only if the Fermat metric F on S is forward
and backward complete.
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Generalized Hopf-Rinow theorem

Theorem (Accurate Hopf-Rinow for Randers metrics)

Let (S, R) a Randers manifold and given a function

f: S — R such that df < R define

Re¢(x,v) = R(x, v) —dfi(v). The following conditions are

equivalent:

(A) the intersection B (x,r) N B~(x,r) of (S,R) is ‘
compact for every r > 0 and x € S Heivz Hopr (1894-1071)

(B) there exists f such that Ry is geodesically complete

(C) there exists f and p € S such that the forward and
the backward exponentials of Ry are defined in T,S

(E) there exists f such that the quasi-metric ds associated
to Ry is forward and backward complete

In such a case, (S, R) is convex.
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Last part: Almost Isometries. My collaborators

LEANDRO LICHTENFELZ PAoLO PICCIONE

NOTRE DAME UNIVERSITY (USA) UNIVERSIDADE DE SAO PAULO (BRASIL)
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Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function d : X x X — R is a quasi-metric if
(i) d(x,y) > 0 for every x,y € X and d(x,y) =0 if and only if x =y,
(it) d(x,y)+ d(y,z) > d(x, z) (triangle inequality).
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Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function d : X x X — R is a quasi-metric if
(i) d(x,y) > 0 for every x,y € X and d(x,y) =0 if and only if x =y,
(it) d(x,y)+ d(y,z) > d(x, z) (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:
o BS(x,r)={y € X :d(x,y) < r} (forward balls)
° B (x,r)={y € X:d(y,x) < r} (backward balls)

respectively, for x € X and r > 0.
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Almost isometries of quasi-metrics

Definition

Given a set X, we say that a function d : X x X — R is a quasi-metric if
(i) d(x,y) > 0 for every x,y € X and d(x,y) =0 if and only if x =y,
(it) d(x,y)+ d(y,z) > d(x, z) (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:
o BS(x,r)={y € X :d(x,y) < r} (forward balls)
° B (x,r)={y € X:d(y,x) < r} (backward balls)

respectively, for x € X and r > 0.

Definition

A pair (X, d) will be called a quasi-metric space endowed with the
topology induced by the family Bj(x, r)NBy(x,r), x€ Mand r > 0.

Let us observe that this topology coincides with the topology generated by
(the balls of ) the symmetrized metric d(x,y) = 3 (d(x,y) + d(y.x)).
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Quasi-metrics

Quasi-metrics spaces have been studied by many
mathematicians:

@ Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930,
Wilson 1931, Busemann 1944

@ and also by a spanish mathematician: Julio Rey REY PASTOR (1888-1962)
Pastor 1940
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Quasi-metrics

Quasi-metrics spaces have been studied by many
mathematicians:
@ Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930,
Wilson 1931, Busemann 1944
@ and also by a spanish mathematician: Julio Rey REY PASTOR (1888-1962)
Pastor 1940

Our seminar in the university of Murcia is called “Rey
Pastor” after him

DEPARTAMENTO de MATEMATICAS
Seminario REY PASTOR
GEOMETRIA

s 30 de mayo de 2012, 1200 o-

http://www.matematicas.um.es/

Sal EULER 001 (Plants o)
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Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve
a:la,b)CR — X as

la) = s;njp Z d(a(si), a(siy1)),
1=1

where P is the set of partitions a=s51 < s <...<s41=b, r e IN.
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Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve
a:la,b)CR — X as

r
() =sup Y _d(a(si), alsit1)),
P 1=
where P is the set of partitions a=s51 < s <...<s41=b, r e IN.
o We say that « is rectifiable when ¢(«) is finite.

@ Moreover, we say that a curve v in X from p to g is a minimizing
geodesic if £(v) = d(p, q).
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Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve
a:la,b)CR — X as

r
Ua) =sup ) d(a(si), a(si+1),
P 1=
where P is the set of partitions a=s51 < s <...<s41=b, r e IN.
o We say that « is rectifiable when ¢(«) is finite.
@ Moreover, we say that a curve v in X from p to g is a minimizing
geodesic if £(v) = d(p, q).

Definition

Let us define the triangular function T : X x X x X — [0, +oc[ of a
quasi-metric space (X, d) as T(x,y,z) =d(x,y) + d(y, z) — d(x, z) for
every x,y,z € X.

Evidently, T is continuous.
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Almost isometries

Proposition

A curve « : [a,b] C R — X is a minimizing geodesic of a quasi-metric
space (X, d) iff T(a(s1),a(s2),(s3)) =0 for every a < s; < sp < s3 < b.
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Almost isometries

Proposition

A curve « : [a,b] C R — X is a minimizing geodesic of a quasi-metric
space (X, d) iff T(a(s1),a(s2),(s3)) =0 for every a < s; < sp < s3 < b.

Definition

Let (X1, d1) and (X2, d2) be two quasi-metric spaces. A bijection
w : X1 — Xp is an almost isometry if it preserves the triangular function,
that is,

Ta(p(x), 0(y), ¢(2)) = Ti(x,y,2)

for every x,y,z € X1, where T; and T, are the triangular functions
associated respectively to (X1, di) and (X2, d2).
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Almost isometries

A curve « : [a,b] C R — X is a minimizing geodesic of a quasi-metric
space (X, d) iff T(a(s1),a(s2),(s3)) =0 for every a < s; < sp < s3 < b.

Let (X1, d1) and (X2, d2) be two quasi-metric spaces. A bijection
@ : X1 — Xy is an almost isometry if it preserves the triangular function,
that is,

T2((P(X)7 (,0(}/), SO(Z)) = Tl(X7y7 Z)

for every x,y,z € X1, where T; and T, are the triangular functions
associated respectively to (X1, di) and (X2, d2).

N

Corollary

Almost isometries preserve minimizing geodesics.
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Almost isometries

Proposition

Given quasi-metric spaces (X1, d1) and (Xz, d>), a bijection ¢ : X1 — Xy is
an almost isometry iff 3 f : Xo — R such that for every x,y € Xi:

da(0(x), p(y)) = di(x,y) + f(@(x)) — £ ((y)) (1)
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Almost isometries

Given quasi-metric spaces (X1, d1) and (Xz, d>), a bijection ¢ : X1 — Xy is
an almost isometry iff 3 f : Xo — R such that for every x,y € Xi:

da(0(x), p(y)) = di(x,y) + f(@(x)) — £ ((y)) (1)

v

Proof.

= (the converse is straightforward)

@ Fix a point xp € Xi and define f : X — R as
f(z) = da(z,0(x0)) — di(¢p~(2), x0) for every z € X,.
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Almost isometries

Given quasi-metric spaces (X1, d1) and (Xz, d>), a bijection ¢ : X1 — Xy is
an almost isometry iff 3 f : Xo — R such that for every x,y € Xi:

da(0(x), p(y)) = di(x,y) + f(@(x)) — £ ((y)) (1)

v

Proof.

= (the converse is straightforward)

@ Fix a point xg € X7 and define f : X, — R as
f(z) = da(z,0(x0)) — di(¢p~(2), x0) for every z € X,.
o Given x,y € Xj, as @ preserves the triangular function, we have
di(x,y) + di(y, x0) — c1(x;, o)
= da((x), (y)) + da(0(y), e(x0)) — da2((x), ¢(x0)).

which is equivalent to (1).
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Almost isometries

Some observations:

@ In metric spaces, almost isometries are always isometries
o If p: (X1,d1) = (Xo, da) is an almost isometry, then

(X1, dh) = (Xa, db)
is an isometry, where

(di(x,y) + dily, x)),
(da(x,y) + da(y, x)).

gl(xay) =
gz(x,y) =

Nl= N[=

@ Moreover, ¢ is a homeomorphism and the functions f : X — R are
continuous
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Almost isometries

Notation:
e Iso(X,d) is the group of isometries of (X, d)
o Iso(X,d) is the group of almost isometries of (X, d). It will be called
the extended isometry group of (X, d).
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Almost isometries

Notation:
e Iso(X,d) is the group of isometries of (X, d)
e Iso(X, d) is the group of almost isometries of (X, d). It will be called

the extended isometry group of (X, d).

Proposition
o With the above notation, Iso(X,d) and Iso(X,d) are topological
groups endowed with the compact-open topology.
@ If the topology induced by d is locally compact, then fsB(X, d) and
Iso(X, d) are locally compact.
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Almost isometries

Notation:
e Iso(X,d) is the group of isometries of (X, d)
o Iso(X, d) is the group of almost isometries of (X, d). It will be called
the extended isometry group of (X, d).

o With the above notation, Iso(X,d) and Iso(X,d) are topological
groups endowed with the compact-open topology.

@ If the topology induced by d is locally compact, then fsB(X, d) and
Iso(X, d) are locally compact.

The proof follows from the inclusions:

Iso(X, d) C Iso(X, d) C Iso(X, d).
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Local almost isometries

Definition

Let (X1,d1) and (X2, d2) be two quasi-metric spaces. A map ¢ : X; — Xz
is a local almost isometry if Vx € X1, 3 U C X1, V C X5 open subsets,
with x € U, such that ¢|y : U — V is an almost isometry.
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Local almost isometries

Definition

Let (X1,d1) and (X2, d2) be two quasi-metric spaces. A map ¢ : X; — Xz
is a local almost isometry if Vx € X1, 3 U C X1, V C X5 open subsets,
with x € U, such that ¢|y : U — V is an almost isometry.

o define d; as the infimum of the lengths of curves between two points.
We say that (X, d) is a length space when d; = d.

@ We say that a quasi-metric space is weakly finitely compact if
B*(x,r) N B~ (x,r) are precompact Vx € X and r > 0.
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Local almost isometries

Definition

Let (X1,d1) and (X2, d2) be two quasi-metric spaces. A map ¢ : X; — Xz
is a local almost isometry if Vx € X1, 3 U C X1, V C X5 open subsets,
with x € U, such that ¢|y : U — V is an almost isometry.

o define d; as the infimum of the lengths of curves between two points.
We say that (X, d) is a length space when d; = d.

@ We say that a quasi-metric space is weakly finitely compact if
B*(x,r) N B~ (x,r) are precompact Vx € X and r > 0.

Let ¢ : (X1,d1) — (X2, d2) be a local almost isometry. Assume that

(X1, d1) and (X2, do) are length spaces, di is weakly finitely compact and
X is locally arc-connected and simply connected. Then ¢ is an almost
isometry.
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Almost isometries of Finsler metrics

Let us define the symmetrized Finsler metric of F as
F(v) = L[F(v) + F(-v)]
for every v € TM. The sum of Finsler metrics is a Finsler metric:

[ M. A.J. AND M. SANCHEZ, On the definition and examples of
Finsler metrics, to appear in Ann. Sc. Nor. Pisa
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Almost isometries of Finsler metrics

Let us define the symmetrized Finsler metric of F as
F(v) = %[F(v) + F(—v)]
for every v € TM. The sum of Finsler metrics is a Finsler metric:

[ M. A.J. AND M. SANCHEZ, On the definition and examples of
Finsler metrics, to appear in Ann. Sc. Nor. Pisa

Lemma

If ¢ : (My, F1) — (M2, F2) is an almost isometry then
(Vo (Ml, //:_1) — (Mg, F_Q)

is an isometry and ¢ is smooth.

@ To see that ¢ is an isometry prove that preserves the length of curves

@ ¢ is smooth because it is an isometry of a Riemannian average metric
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Finsler metrics

Proposition

e If 3 an almost isometry ¢ : (M1, F1) — (M2, F»), then there exists a
smooth f : My — R such that ¢*(F1) = F, + df.

o Conversely, if o*(F1) = Fa + df, the map ¢ is an almost isometry.
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Finsler metrics

Proposition

e If 3 an almost isometry ¢ : (M1, F1) — (M2, F»), then there exists a
smooth f : My — R such that ¢*(F1) = F, + df.

o Conversely, if o*(F1) = Fa + df, the map ¢ is an almost isometry.

Proposition

Let (M, F) be a Finsler manifold. Then the extended isometry group
Iso(M, F) is a closed subgroup of Iso(M, F). In particular, Iso(M, F) is a
Lie group.

M. A. Javaloyes (UM) Interplay between Randers metrics and static 33 /43



Finsler metrics

Proposition

e If 3 an almost isometry ¢ : (My, F1) — (M2, F2), then there exists a
smooth f : My — R such that ¢*(F1) = F, + df.

o Conversely, if o*(F1) = Fp + df, the map ¢ is an almost isometry.

Let (M, F) be a Finsler manifold. Then the extended isometry group
Iso(M, F) is a closed subgroup of Iso(M, F). In particular, Iso(M, F) is a
Lie group.

Proof.
Use that Iso(M, F) C Iso(M, F)
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Randers metrics

Let (M, R) be a Randers manifold and ¢ : M — M an almost isometry for
R. Then ¢ is an isometry for h.
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Randers metrics

Corollary

Let (M, R) be a Randers manifold and ¢ : M — M an almost isometry for
R. Then ¢ is an isometry for h.

v

Proof.

Just observe that the symmetrized Finsler metric of R is given by

R(v) = \/h(v, V) for v € TM. O
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K-conformal maps

o Let (M, g) be a spacetime and K a Killing field
@ We say that a diffeomorphism ¢ : M — M is K-conformal if
o It is conformal, ¥, (g) = Ag, A # 0, (¢ is the pushforward) and
o preserves K, 1.(K) =K
@ Now consider a normalized standard stationary spacetime (S x R, g)
with
g((v,7), (v, 7)) = go(v, v) + 2w(v)T — 72

ve TS and 7 € R.
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K-conformal maps

o Let (M, g) be a spacetime and K a Killing field
@ We say that a diffeomorphism ¢ : M — M is K-conformal if
o It is conformal, ¥, (g) = Mg, A # 0, (¢ is the pushforward) and
o preserves K, 1.(K) =K
@ Now consider a normalized standard stationary spacetime (S x R, g)
with
g((v,7), (v, 7)) = go(v, v) + 2w(v)T — 72

ve TS and 7 € R.

Ify:(SxR,g)— (S xR,g) is a K-conformal map, then

P(x; 1) = (p(x), t + £(x)),
and p.(F) = F +df and ¢ : (S, h) — (S, h) is an isometry, where

h(v,v) = go(v,v) + w(v)2.
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K-conformal maps

Ify:(SxR,g)— (SxR,g) is a K-conformal map, then
P(x,t) = (p(x),t+ f(x)) and p.(F) = F + df and ¢ : (S, h) — (S, h) is
an isometry, where

h(v,v) = go(v,v) + w(v)z.

Proof.
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K-conformal maps

Ify:(SxR,g)— (SxR,g) is a K-conformal map, then
P(x,t) = (p(x),t+ f(x)) and p.(F) = F + df and ¢ : (S, h) — (S, h) is
an isometry, where

h(v,v) = go(v,v) + w(v)z.

Proof.
@ K-conformal implies that v maps orbits of 0; to orbits of 0, that is,
¥(x, 1) = (p(x), t + f(x))

@ As ¢ is conformal, maps lightlike pregeodesics to lightlike pregeodesics

@ Then Fermat metric maps Fermat pregeodesics to Fermat
pregeodesics and £, () (7) = Lr(7y) + f(7(1)) — f(7(0))

@ This means that ¢.(F) and F + df have the same geodesics and
therefore they are equal
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K-conformal maps

Confk (M, g) (here M =R x S) is a closed subgroup of Conf(M, g).
Moreover the one-parameter subgroup K generated by K is closed and

normal in Confy (M, g).

Proof.
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K-conformal maps

Lemma

Confk (M, g) (here M =R x S) is a closed subgroup of Conf(M, g).
Moreover the one-parameter subgroup K generated by K is closed and
normal in Confy (M, g).

Proof.
o First part is obvious in the C! topology.
o If ¢ € Confy (M, g) then ¢(x,t) = (p(x), t + f(x)) with
o € Iso(S, F)
o Moreover, ¥ 1(x, t) = (¢~ 1(x), t — f(¢~1(x)))
o Then if KT : M — M is given by K (x,t) = (x,t+ T), it follows
that o KT o9y~ = KT (K is normal)
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K-conformal maps

The map 7 : Confx (M, g) — Iso(S, F) defined as (1)) = ¢ is a Lie group
homomorphism and 7 : Confx (M, g)/K — Iso(S, F) is an isomorphism.
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K-conformal maps

Proposition

The map 7 : Confx (M, g) — Iso(S, F) defined as (1)) = ¢ is a Lie group
homomorphism and 7 : Confx (M, g)/K — Iso(S, F) is an isomorphism.

| A

Proof.
@ We just have to prove that 7 is one-to-one.
@ Injective: if ¥ and 1o project on the same almost isometry map ¢,
then by last Prop. ¥1(x, t) = (p(x),t + f(x) + c¢1) and
pa(x, t) = (p(x), t + F(x) + c2), Y2 0 97" = K= and [¢h1] = [o]
@ Surjective: given an almost isometry ¢, we construct the map

b(x; 1) = (p(x), t + f(x))

Clearly, it preserves 0;. By Fermat principle, it maps lightlike
pregeodesics to lightlike pregeodesics, then it preserves the lightcone
and it must be conformal (by Dajcker-Nomizu [83]).
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Applications

Given a manifold S, for a generic set of data (go,w), the stationary metric
g = g(go,w) on M =S x R has discrete K-conformal group
Confx (M, g)/K.
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Applications

Given a manifold S, for a generic set of data (go,w), the stationary metric
g = g(go,w) on M =S x R has discrete K-conformal group
Confx (M, g)/K.

If S is compact, then Confx(S x R, g)/K and IASB(S, F) are compact Lie
groups.
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Other references
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Math., 37(1):127-146, 2011.
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Linéaire, 27(3):857-876, 2010.
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Other references

More about causality:
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and causal boundaries for Riemannian, Finslerian and Lorentzian
manifolds. Mem. Amer. Math. Soc.

Other aspects:

[ G. W. GiBBons, C. A. R. HERDEIRO, C. M. WARNICK, AND
M. C. WERNER, Stationary metrics and optical
Zermelo-Randers-Finsler geometry, Phys. Rev. D, 79 (2009),
pp. 044022, 21.

[ A. DIRMEIER, M. PLAUE, AND M. SCHERFNER. Growth
conditions, Riemannian completeness and Lorentzian causality. J.
Geom. Phys., 62(3):604-612, 2011.

[ M. C. WERNER, Gravitational lensing in the Kerr-Randers optical
geometry, Gen. Relativity Gravitation 44 (2012), 3047-3057.
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Open problems and work in progress

o Compute explicitly some extended isometry group

@ to study the case in that K is not timelike
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