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First part: preliminaries on Finsler metrics and stationary
spacetimes
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Finsler metrics

DEFINITION: F : TM → [0,+∞) continuous and

1 smooth in TM \ {0}
2 Positively homogeneous of degree one

F (λv) = λF (v) for all λ > 0

3 Fiberwise strongly convex square:

gv (w , z) =
1

2

∂2

∂t∂s
F (v+tw+sz)2|t=s=0 =

1

2
Hess(F 2)v (w , z)

for every w , z ∈ Tπ(v)M. Then gv (w ,w) > 0 for
every 0 6= w ∈ Tπ(v)M.

It can be showed that this implies:

F is positive in TM \ {0} and F 2 is C 1 on TM.

Triangle inequality holds in the fibers

Paul Finsler (1894-1970)
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Interpretation of the fundamental tensor

S = Indicatrix of F = {v ∈ A : F (v) = 1} (the unit sphere of F ).

The fundamental tensor gv of F in v ∈ S coincides with the second
fundamental form of S in the hyperplane tangent to S

gv (v , v) = F (v)2

v and TvS are gv -orthogonal

The indicatrix contains all the geometric information of F
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Non-symmetric “distance”

We can define the length of a curve: `F (γ) =
∫ b
a F (γ̇)ds

and then the distance between two points:
dist(p, q) = infγ∈C∞(p,q) `F (γ)

dist is non-symmetric because F is non-reversible

the length of a curve t → γ(t) is different from the length of its
reverse t → γ(−t)!!

We have to distinguish between forward and backward:

balls B+(p, r) = {x ∈ M : dist(p, x) < r} and

B−(p, r) = {x ∈ M : dist(x , p) < r}

Cauchy sequence

topological completeness

geodesical completeness
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Randers metrics

Randers metrics in a manifold M is a
function R : TM → R defined as:

R(v) =
√

h(v , v) + ω(v)

where h is Riemannian and ω a 1-form with
‖ω‖h < 1 ∀x ∈ M,

are basic examples of non-reversible Finsler
metrics: R(−v) 6= R(v).

Named after the norwegian physicist Gunnar
Randers (1914-1992):

Randers, G.: On an asymmetrical metric
in the fourspace of General Relativity.
Phys. Rev. (2) 59, 195–199 (1941)

G. Randers and A. Einstein
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Zermelo metrics

Given a Riemannian metric g ,
Zermelo metric:

Z (v) =

√
1

α
g(v , v) +

1

α2
g(W , v)2− 1

α
g(W , v),

where α = 1− g(W ,W ).

It is of Randers type

Geodesics minimize time in the
presence of a wind or current
W .

Meeting of waters
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Matsumoto metrics

Given a Riemannian metric g , and a
one-form β

M(v) =
g(v , v)√

g(v , v)− β(v)

defined in

A = {v ∈ TM :
√

g(v , v) > 2β(v)}

Geodesics minimize time in the presence
of a slope

M. Matsumoto. A slope of a mountain
is a Finsler surface with respect to a
time measure, J. Math. Kyoto Univ.,
29 (1989), pp. 17–25

Mount Fuji (near Tokyo)

Makoto Matsumoto (19?? –2005)
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Stationary spacetimes

A Lorentzian manifold (M, g) with index 1
(+, · · · ,+,−)

v ∈ TM is


timelike if g(v , v) < 0

lightlike if g(v , v) = 0

causal if g(v , v) ≤ 0

spacelike if g(v , v) > 0

A spacetime is a Lorentzian manifold endowed
with a time-orientation

The time-orientation is determined by a timelike
vector field T

A causal vector v ∈ TM is future-pointing if
g(v ,T ) < 0 (if g(v ,T ) > 0 is past-pointing)

A stationary spacetime (M, g) is a Lorentzian
manifold endowed with a timelike Killing vector
field
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Second part: causality of stationary spacetimes via Finsler
geometry

L1=Observer

↘
lightlike geodesic (x, t)

S

↖
Fermat geodesic x

(S ×R, l) is a standard sta-
tionary spacetime

S is naturally endowed with
a Randers metric F called
the Fermat metric
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Conformally Standard Stationary Spacetimes

A spacetime (M, g) is Conformastationary if it admits a timelike
Conformal field K , that is, a timelike vector field satisfying

LKg = λg ,

for some function λ : M → R

Standard Conformastationary means that M = S ×R and

g((v , τ), (v , τ)) = ϕ(g0(v , v) + 2ω(v)τ − τ2),

in (x , t) ∈ S ×R, where (v , τ) ∈ TxS ×R, ϕ : S ×R→ (0,+∞)

and g0 is a Riemannian metric on S and ω a 1-form on S .

In this case, ∂t is a timelike conformal field.

A conformastationary spacetime is standard whenever it is
distinguishing and the timelike conformal vector field is complete:

M. A. J. and M. Sánchez, A note on the existence of
standard splittings for conformally stationary spacetimes,
Classical Quantum Gravity, 25 (2008), pp. 168001, 7.
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Fermat principle in General Relativity

First established by Herman Weyl in 1917 for static spacetimes

The stationary case is considered by Tulio Levi-Civita in 1927

It appears in classical books as Landau-Lifshitz “The classical theory
of fields” 1962

I. Kovner gave a version of Fermat principle for an arbitrary
spacetime in 1990

Volker Perlick gave a rigorous proof of this general principle in the
same year (1990)

H. Weyl
→ (1885-1955)

T. Levi-Civita
→ (1873-1941)

Lev Landau
→ (1908-1968)

E. Lifshitz
→ (1915-1985)

V. Perlick
→ (Born in 1956)

I. Kovner
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Fermat principle in standard stationary spacetimes

Relativistic Fermat Principle: lightlike pregeodesics
are critical points of the arrival time function
corresponding to an observer in a suitable class of
lightlike curves

If you consider as observer s → L1(s) = (x1, s) in
(S ×R, g), given a lightlike curve γ = (x , t), the
arrival time AT(γ) is

L1=Observer

↘
lightlike curves

S

t(b)=t(a)+
∫ b
a

(
ω(ẋ)+

√
g0(ẋ ,ẋ)+ω(ẋ)2

)
ds.

because g0(ẋ , ẋ) + 2ω(ẋ)ṫ − ṫ2 = 0 (g(γ̇, γ̇) = 0)

Let us define the Fermat (Finslerian) metric in S as

F (v)=ω(v)+
√

g0(v ,v)+ω(v)2,
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)
ds.
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Fermat metric and lightlike geodesics

Theorem

A curve s → γ(s) = (x(s), s) is a lightlike
pregeodesic of (S ×R, g) iff s → x(s) is a
Fermat geodesic with unit speed.

Consequences:

Gravitational lensing can be studied from
geodesic connectedness in Fermat metric

Existence of t-periodic lightlike geodesics is
equivalent to existence of Fermat closed
geodesics
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Einstein Ring

Gravitational lensing
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Miguel Sánchez (Granada)
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Lorentzian Causality

Causality studies if given two points
p, q ∈ M they are joined by a causal curve

p, q ∈ M are chronologically related, and
write p � q if there exists a future-pointing
timelike curve γ from p to q

p, q ∈ M are causally related p < q) if there
exists a future-pointing causal curve γ from
p to q

The chronological future of p ∈ M is defined
as I +(p) = {q ∈ M : p � q}
The causal future of p ∈ M is defined as
J+(p) = {q ∈ M : p ≤ q}
Analogously we define the chronological past
I−(p) and the causal past J−(p).
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The causal ladder

Causal properties classify spacetimes depending
on the behaviour of causal cones. A spacetime is:

Chronological if p 6∈ I +(p) for every p ∈ M.

Distinguishing if I +(p) = I +(q) or
I−(p) = I−(q) implies p = q

Causally continuous if it is distinguishing and
the Chronological cones I±(p) are
continuous in p ∈ M

Causally simple if the causal cones J±(p) are
closed for every p ∈ M

Globally hyperbolic if it admits a Cauchy
hypersurface (a subset S that meets exactly
once every inextendible timelike curve)

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal

⇓
Chronological

⇓
Non-totally vicious
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Causality via the Fermat metric

Let d the non-symmetric distance in S
associated to the Fermat metric

B+(x0, s) = {p ∈ S : d(x0, p) < s} forward
balls

B−(x0, s) = {p ∈ S : d(p, x0) < s}
backward balls

Let (R× S , g) be a standard stationary
spacetime. Then

I±(t0, x0) = ∪s>0{t0 ± s} × B±(x0, s),
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Causality through the Fermat metric

Theorem

Let (S ×R, g) be a standard stationary spacetime.
Then (S ×R, g) is causally continuous and

(a) the following assertions become equivalent:

(i) (S ×R, g) is causally simple,
(ii) the associated Finsler manifold (S ,F ) is convex,

(b) it is globally hyperbolic if and only if
B̄+(x , r) ∩ B̄−(x , r) is compact for every x ∈ S
and r > 0.

(c) a slice S × {t0}, t0 ∈ R, is a Cauchy hypersurface
if and only if the Fermat metric F on S is forward
and backward complete.

Globally hyperbolic

⇓
Causally simple

⇓
Causally continuous

⇓
Stably causal

⇓
Strongly causal

⇓
Distinguishing

⇓
Causal

⇓
Chronological

⇓
Non-totally vicious
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and r > 0.

(c) a slice S × {t0}, t0 ∈ R, is a Cauchy hypersurface
if and only if the Fermat metric F on S is forward
and backward complete.

Globally hyperbolic

⇓
Causally simple

⇓
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⇓
Stably causal

⇓
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⇓
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Causal

⇓
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Generalized Hopf-Rinow theorem

Theorem (Accurate Hopf-Rinow for Randers metrics)

Let (S ,R) a Randers manifold and given a function
f : S → R such that df ≤ R define
Rf (x , v) = R(x , v)− dfx(v). The following conditions are
equivalent:

(A) the intersection B̄+(x , r) ∩ B̄−(x , r) of (S ,R) is
compact for every r > 0 and x ∈ S

(B) there exists f such that Rf is geodesically complete

(C) there exists f and p ∈ S such that the forward and
the backward exponentials of Rf are defined in TpS

(E) there exists f such that the quasi-metric df associated
to Rf is forward and backward complete

In such a case, (S ,R) is convex.

Heinz Hopf (1894-1971)
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Last part: Almost Isometries. My collaborators

Leandro Lichtenfelz
Notre Dame University (USA)

Paolo Piccione
Universidade de Sao Paulo (Brasil)
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Almost isometries of quasi-metrics

Definition

Given a set X , we say that a function d : X × X → R is a quasi-metric if

(i) d(x , y) ≥ 0 for every x , y ∈ X and d(x , y) = 0 if and only if x = y ,

(ii) d(x , y) + d(y , z) ≥ d(x , z) (triangle inequality).

As a consequence of the lack of symmetry, there are two kinds of balls:

B+
d (x , r) = {y ∈ X : d(x , y) < r} (forward balls)

B−d (x , r) = {y ∈ X : d(y , x) < r} (backward balls)

respectively, for x ∈ X and r > 0.

Definition

A pair (X , d) will be called a quasi-metric space endowed with the
topology induced by the family B+

d (x , r) ∩ B−d (x , r), x ∈ M and r > 0.

Let us observe that this topology coincides with the topology generated by
(the balls of) the symmetrized metric d̃(x , y) = 1

2

(
d(x , y) + d(y , x)

)
.
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Quasi-metrics

Quasi-metrics spaces have been studied by many
mathematicians:

Fréchet 1909, Hausdorff 1914, Mazurkiewicz 1930,
Wilson 1931, Busemann 1944

and also by a spanish mathematician: Julio Rey
Pastor 1940

Our seminar in the university of Murcia is called “Rey
Pastor” after him

Rey Pastor (1888-1962)
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GEOMETŔIA

On hypersurfaces with
prescribed curvature and
boundary in Riemannian

manifolds.

Flávio França Cruz
Universidade Regional do Cariri -

URCA (Brasil)

Resumen

In this talk we will make a brief description of the recent advances
in the problem about the existence of hypersurfaces with prescribed
curvature due to the development of the elliptic PDE theory. In this
context, we present some recent results obtained by Jorge Lira and
the speaker on the existence of graphs with prescribed curvature in
the Riemannian product Mf ×R.

D́ıa y lugar:

Miércoles 30 de mayo de 2012, 12:00 ho-
ras

Sala EULER 0.01 (Planta baja)
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Quasi-metrics and the triangular function

In a quasi-metric space we can define the length of a continuous curve
α : [a, b] ⊆ R→ X as

`(α) = sup
P

r∑
1=1

d(α(si ), α(si+1)),

where P is the set of partitions a = s1 < s2 < . . . < sr+1 = b, r ∈ N.

We say that α is rectifiable when `(α) is finite.

Moreover, we say that a curve γ in X from p to q is a minimizing
geodesic if `(γ) = d(p, q).

Definition

Let us define the triangular function T : X × X × X → [0,+∞[ of a
quasi-metric space (X , d) as T (x , y , z) = d(x , y) + d(y , z)− d(x , z) for
every x , y , z ∈ X .

Evidently, T is continuous.
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Almost isometries

Proposition

A curve α : [a, b] ⊆ R→ X is a minimizing geodesic of a quasi-metric
space (X , d) iff T (α(s1), α(s2), α(s3)) = 0 for every a ≤ s1 < s2 < s3 ≤ b.

Definition

Let (X1, d1) and (X2, d2) be two quasi-metric spaces. A bijection
ϕ : X1 → X2 is an almost isometry if it preserves the triangular function,
that is,

T2(ϕ(x), ϕ(y), ϕ(z)) = T1(x , y , z)

for every x , y , z ∈ X1, where T1 and T2 are the triangular functions
associated respectively to (X1, d1) and (X2, d2).

Corollary

Almost isometries preserve minimizing geodesics.
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Almost isometries

Proposition

Given quasi-metric spaces (X1, d1) and (X2, d2), a bijection ϕ : X1 → X2 is
an almost isometry iff ∃ f : X2 → R such that for every x , y ∈ X1:

d2

(
ϕ(x), ϕ(y)

)
= d1(x , y) + f

(
ϕ(x)

)
− f
(
ϕ(y)

)
(1)

Proof.

⇒ (the converse is straightforward)

Fix a point x0 ∈ X1 and define f : X2 → R as
f (z) = d2(z , ϕ(x0))− d1(ϕ−1(z), x0) for every z ∈ X2.

Given x , y ∈ X1, as ϕ preserves the triangular function, we have

d1(x , y) + d1(y , x0)− d1(x , x0)

= d2(ϕ(x), ϕ(y)) + d2(ϕ(y), ϕ(x0))− d2(ϕ(x), ϕ(x0)),

which is equivalent to (1).
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Almost isometries

Some observations:

In metric spaces, almost isometries are always isometries

If ϕ : (X1, d1)→ (X2, d2) is an almost isometry, then

ϕ : (X1, d̃1)→ (X2, d̃2)

is an isometry, where

d̃1(x , y) = 1
2

(
d1(x , y) + d1(y , x)

)
,

d̃2(x , y) = 1
2

(
d2(x , y) + d2(y , x)

)
.

Moreover, ϕ is a homeomorphism and the functions f : X2 → R are
continuous
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Almost isometries

Notation:

Iso(X , d) is the group of isometries of (X , d)

Ĩso(X , d) is the group of almost isometries of (X , d). It will be called
the extended isometry group of (X , d).

Proposition

With the above notation, Ĩso(X , d) and Iso(X , d) are topological
groups endowed with the compact-open topology.

If the topology induced by d is locally compact, then Ĩso(X , d) and
Iso(X , d) are locally compact.

Proof.

The proof follows from the inclusions:

Iso(X , d) ⊆ Ĩso(X , d) ⊆ Iso(X , d̃).
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With the above notation, Ĩso(X , d) and Iso(X , d) are topological
groups endowed with the compact-open topology.

If the topology induced by d is locally compact, then Ĩso(X , d) and
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Local almost isometries

Definition

Let (X1, d1) and (X2, d2) be two quasi-metric spaces. A map ϕ : X1 → X2

is a local almost isometry if ∀x ∈ X1, ∃ U ⊆ X1, V ⊆ X2 open subsets,
with x ∈ U, such that ϕ|U : U → V is an almost isometry.

define dl as the infimum of the lengths of curves between two points.
We say that (X , d) is a length space when dl = d .

We say that a quasi-metric space is weakly finitely compact if
B+(x , r) ∩ B−(x , r) are precompact ∀x ∈ X and r > 0.

Theorem

Let ϕ : (X1, d1)→ (X2, d2) be a local almost isometry. Assume that
(X1, d1) and (X2, d2) are length spaces, d1 is weakly finitely compact and
X2 is locally arc-connected and simply connected. Then ϕ is an almost
isometry.
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Almost isometries of Finsler metrics

Let us define the symmetrized Finsler metric of F as

F̂ (v) = 1
2

[
F (v) + F (−v)

]
for every v ∈ TM. The sum of Finsler metrics is a Finsler metric:

M. A. J. and M. Sánchez, On the definition and examples of
Finsler metrics, to appear in Ann. Sc. Nor. Pisa

Lemma

If ϕ : (M1,F1)→ (M2,F2) is an almost isometry then

ϕ : (M1, F̂1)→ (M2, F̂2)

is an isometry and ϕ is smooth.

Proof.

To see that ϕ is an isometry prove that preserves the length of curves

ϕ is smooth because it is an isometry of a Riemannian average metric
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Finsler metrics

Proposition

If ∃ an almost isometry ϕ : (M1,F1)→ (M2,F2), then there exists a
smooth f : M2 → R such that ϕ∗(F1) = F2 + df .

Conversely, if ϕ∗(F1) = F2 + df , the map ϕ is an almost isometry.

Proposition

Let (M,F ) be a Finsler manifold. Then the extended isometry group

Ĩso(M,F ) is a closed subgroup of Iso(M, F̂ ). In particular, Ĩso(M,F ) is a
Lie group.

Proof.

Use that Ĩso(M,F ) ⊂ Iso(M, F̂ )
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Randers metrics

Corollary

Let (M,R) be a Randers manifold and ϕ : M → M an almost isometry for
R. Then ϕ is an isometry for h.

Proof.

Just observe that the symmetrized Finsler metric of R is given by
R̂(v) =

√
h(v , v) for v ∈ TM.
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K -conformal maps

Let (M, g) be a spacetime and K a Killing field
We say that a diffeomorphism ψ : M → M is K -conformal if

It is conformal, ψ∗(g) = λg , λ 6= 0, (ψ∗ is the pushforward) and
preserves K , ψ∗(K ) = K

Now consider a normalized standard stationary spacetime (S ×R, g)
with

g((v , τ), (v , τ)) = g0(v , v) + 2ω(v)τ − τ2

v ∈ TS and τ ∈ R.

Theorem

If ψ : (S ×R, g)→ (S ×R, g) is a K -conformal map, then

ψ(x , t) = (ϕ(x), t + f (x)),

and ϕ∗(F ) = F + df and ϕ : (S , h)→ (S , h) is an isometry, where

h(v , v) = g0(v , v) + ω(v)2.
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K -conformal maps

Theorem

If ψ : (S ×R, g)→ (S ×R, g) is a K -conformal map, then
ψ(x , t) = (ϕ(x), t + f (x)) and ϕ∗(F ) = F + df and ϕ : (S , h)→ (S , h) is
an isometry, where

h(v , v) = g0(v , v) + ω(v)2.

Proof.

K -conformal implies that ψ maps orbits of ∂t to orbits of ∂t , that is,
ψ(x , t) = (ϕ(x), t + f (x))

As ψ is conformal, maps lightlike pregeodesics to lightlike pregeodesics

Then Fermat metric maps Fermat pregeodesics to Fermat
pregeodesics and `ϕ∗(F )(γ) = `F (γ) + f (γ(1))− f (γ(0))

This means that ϕ∗(F ) and F + df have the same geodesics and
therefore they are equal
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K -conformal maps

Lemma

ConfK (M, g) (here M = R× S) is a closed subgroup of Conf(M, g).
Moreover the one-parameter subgroup K generated by K is closed and
normal in ConfK (M, g).

Proof.

First part is obvious in the C 1 topology.

If ψ ∈ ConfK (M, g) then ψ(x , t) = (ϕ(x), t + f (x)) with

ϕ ∈ Ĩso(S ,F )

Moreover, ψ−1(x , t) = (ϕ−1(x), t − f (ϕ−1(x)))

Then if KT : M → M is given by KT (x , t) = (x , t + T ), it follows
that ψ ◦ KT ◦ ψ−1 = KT (K is normal)
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K -conformal maps

Proposition

The map π : ConfK (M, g)→ Ĩso(S ,F ) defined as π(ψ) = ϕ is a Lie group

homomorphism and π̄ : ConfK (M, g)/K → Ĩso(S ,F ) is an isomorphism.

Proof.

We just have to prove that π̄ is one-to-one.

Injective: if ψ1 and ψ2 project on the same almost isometry map ϕ,
then by last Prop. ψ1(x , t) = (ϕ(x), t + f (x) + c1) and
ψ2(x , t) = (ϕ(x), t + f (x) + c2), ψ2 ◦ ψ−1

1 = K c2−c1 and [ψ1] = [ψ2]

Surjective: given an almost isometry ϕ, we construct the map

ψ(x , t) = (ϕ(x), t + f (x))

Clearly, it preserves ∂t . By Fermat principle, it maps lightlike
pregeodesics to lightlike pregeodesics, then it preserves the lightcone
and it must be conformal (by Dajcker-Nomizu [83]).
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Applications

Corollary

Given a manifold S, for a generic set of data (g0, ω), the stationary metric
g = g(g0, ω) on M = S ×R has discrete K -conformal group
ConfK (M, g)/K.

Corollary

If S is compact, then ConfK (S ×R, g)/K and Ĩso(S ,F ) are compact Lie
groups.
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Open problems and work in progress

Compute explicitly some extended isometry group

to study the case in that K is not timelike
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