The Stellar IMF in low metallicity gas

Simon Glover (ITA, Heidelberg)

Collaborators

Paul Clark (ITA, Heidelberg) Ralf Klessen (ITA, Heidelberg) Katharina Jappsen (Cardiff) Ian Bonnell (St Andrews) Mordecai-Mark Mac Low (AMNH, New York) Spyros Kitsionas (formerly at AIP, Potsdam)

The Stellar Initial Mass Function

 Characterizes mass distribution of newlyformed stars

Not the same as present-day mass function, as more massive stars have shorter lifetimes

Appears to be universal; no widely accepted evidence for significant variation

Main features:

– Characteristic mass scale at ~ 1 M_{\odot}

- Power law slope above this scale, with index $\alpha = 1.35$ (Salpeter, 1955)

- Possible high mass cutoff at ~ 150 Mo

Question: does the IMF vary with metallicity?

There's little evidence for evolution down to metallicities ~ 0.01 Z_☉ (Globular clusters).
But what about at lower Z?

Metal-free gas

Inefficient cooling

Collapse occurs on cooling timescale

Gravitational fragmentation is ineffective

Yoshida et al, 2006

High temperature ↓ High accretion rate ↓ Large stellar mass

O'Shea & Norman, 2007

No Z=O star yet found

 Would expect to have found some if pop. III IMF were standard (Tumlinson, 2006)

Beers, 2005

Population III IMF \neq population II IMF

But why does the IMF change?

Perhaps because of the metals themselves

Metal-enriched gas

More efficient cooling Cooling is faster than collapse Gravitational fragmentation

- If the gas cools quickly, then we can build up many Jeans masses of cold gas before any can collapse
- Many Jeans masses => many fragments
- Fragments compete for available gas mass, in a process called competitive accretion
- Larger fragments accrete faster: "the rich get richer"
- Resulting IMF has a power-law slope that is close to the Salpeter value

Rapid cooling at low metallicity

Two main mechanisms:

 H₂, HD and atomic fine structure lines at low densities

- Dust at high densities

So far, most studies have treated them separately

Cooling at low densities

Ø Bromm et al, 2001:

Iow-resolution SPH simulations

- atomic fine structure cooling
- no molecular hydrogen

Gas with Z = 10⁻⁴ Z_{sun} does not fragment
 Gas with Z = 10⁻³ Z_{sun} does fragment

Bromm et al, 2001

Bromm et al, 2001

Jappsen et al, 2007: (arXiv: 0709.3530)
 Similar SPH simulations
 BUT: include H₂ cooling and chemistry
 Fragmentation now occurs even in Z=0 case
 Top-hat initial conditions lead to overly synchronized collapse

Jappsen et al 2007

Jappsen et al, 2008: (arXiv:0810.1867) High-resolution SPH simulations with particle splitting Detailed molecular chemistry model & cooling function (including CO and H_2O) Hot initial conditions (T = 10^4 K, ionized gas)

Jappsen et al, 2008 (JMGKS08)

JMGKS08

Why don't we get fragmentation in this case?

- Gas cools too quickly reaches CMB temperature while still at low density
- Low density => large Jeans mass even at T_{CMB}
- Gas at T_{CMB} can't cool further no opportunity for further fragmentation while it remains there

Smith et al 2008:

- AMR simulations using Enzo
- \odot H₂ chemistry, cooling
- C, O, Si etc. cooling assuming chemical equilibrium (CLOUDY)
- cosmological initial conditions
- find fragmentation for Z > 10⁻⁴ Z_{sun}; but if Z is too large, we cool to T_{CMB} too quickly and get no fragmentation
- reducing T_{CMB} allows fragmentation for wider range of Z

B. Smith, private communication

- CMB temperature floor also affects characteristic mass
- Competitive accretion gives Salpeter slope for masses > initial Jeans mass
- Initial Jeans mass set by T, n at point when gas stops cooling quickly
- \odot If T = T_{cmb}, then:

 $M_{char} \approx 10 (n/10^6 \text{ cm}^{-3})^{-1/2} (z/20)^{3/2} M_{sun}$ • For n < 10⁶ cm⁻³ and z = 20, this gives: $M_{char} \gtrsim 10 M_{sun}$

Cooling at high densities

Ø Omukai, 2000:

one-zone models with detailed chemical model and cooling function

predicts sharp drop in temperature at densities above 10¹⁰ cm⁻³ in Z < 10⁻⁴ Z_{sol} gas, resulting from the onset of efficient dust cooling

Schneider et al, 2002 pointed out that this may lead to gravitational fragmentation at this point

Oritical metallicity required: Z_{cr} ≈ 10⁻⁵ F_{dust}⁻¹ Z_{sun}

Omukai et al, 2005

Clark, Glover & Klessen 2008:
 Tabulated equation of state
 Large particle number: N = 2.5 x 10⁷
 Good mass resolution: M_{res} = 0.002 M_{sun}
 Sink particles

Simulated clouds with Z = 0, 10⁻⁶, 10⁻⁵ Z_{sun}

CGK08

Caveats

Single EOS not really appropriate

- Amount of heating prior to dust cooling quite uncertain (dynamics, chemistry)
- No protostellar feedback
- Dust model uncertain
- No magnetic fields

Can the low and high density modes coexist?

Omukai et al, 2005

In principle, yes!

But will depend on details of thermal evolution,
 value of F_{dust}, etc.

There's still a lot of work to do here...

Conclusions

- Competitive accretion yields a power-law IMF even at very low metallicity, provided that gas can cool quickly enough
- Two cooling mechanisms => two fragmentation regimes; these may or may not coexist in practice
- CMB a big problem for producing low mass stars at high redshift by low density cooling