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Nov 1915  
 

𝑹𝝁𝝂 = 𝟎 



Feb 1917  
 

𝑹𝝁𝝂 = 𝚲𝒈𝝁𝝂 



𝑹𝝁𝝂 = 𝟎 



𝑹𝝁𝝂 = 𝚲𝒈𝝁𝝂 



𝑹𝝁𝝂 = −𝚲𝒈𝝁𝝂 

quark-gluon plasma 



Even the simplest case 

𝑅𝜇𝜈 = 0 

are very hard to solve 



 

A small parameter can take you a long way 

 

Quantum ElectroDynamics 

 

Perturb around 𝑒2 = 0 

 



 

 

Quantum GluoDynamics 

SU(3) Yang-Mills theory 

 

No parameter? 



 

 

Quantum GluoDynamics 

SU(N) Yang-Mills theory 

 

parameter! 



Quantum GluoDynamics 

SU(N) Yang-Mills theory 

 

Well-defined for all N 

Many problems can be formulated keeping N 
arbitrary  

 → N = continuous parameter 

 → expand in 1/N 

 

 



Quantum GluoDynamics 

SU(N) Yang-Mills theory 

 

Large N 

 keeps essential physics of N=3 
 confinement 

 asymptotic freedom 

 simplifies the theory 
 reformulation in terms of string variables? 

 



What parameter in 

𝑅𝜇𝜈 = 0? 



What parameter in 

𝑅𝜇𝜈 = 0 

𝜇, 𝜈 = 0, … , 3? 



  

𝑅𝜇𝜈 = 0 
𝜇, 𝜈 = 0, … , 𝑫 − 1 



Quantum GluoDynamics 

SU(N) Yang-Mills theory 

 

Well-defined for all N 

Many problems can be formulated keeping N 
arbitrary  

 → N = continuous parameter 

 → expand in 1/N 

 

 



Classical General Relativity 

D-diml Einstein’s theory 

 

Well-defined for all D 

Many problems can be formulated keeping D 
arbitrary  

 → D = continuous parameter 

 → expand in 1/D 

 

 



Quantum GluoDynamics 

SU(N) Yang-Mills theory 

 

Large N 

 keeps essential physics of N=3 
 confinement 

 asymptotic freedom 

 simplifies the theory 
 reformulation in terms of string variables? 

 



Classical General Relativity 

D-diml Einstein’s theory 

 

Large D 

 keeps essential physics of D=4 
 ∃ black holes 

 ∃ gravitational waves 

 simplifies the theory 
 reformulation in terms of string variables?? 

 



Shouldn’t we take this analogy further? 

 

YM: SU(N) local gauge group 

GR: SO(D-1,1) local Lorentz group 

 

 

 

      Strominger 1981 

      Bjerrum-Bohr 2004 



YM: SU(N) local gauge group 
 

Large N: # gluon polarizations grows 

Topological expansion of Feynman diagrams 

 

 

 

Gluons arrange into worldsheets → strings! 

∼ 𝑁2 ∼ 𝑁0     ...  



Quantum GR: SO(D-1,1) local Lorentz group 
 

Large D: # graviton polarizations grows 

Topological expansion of Feynman diagrams? 

NO! 

No arrangement into string worldsheets 

 

Worse:  

Large D → UV behavior infinitely bad 



Quantum GR: SO(D-1,1) local Lorentz group 
 

Large D: # graviton polarizations grows 

Topological expansion of Feynman diagrams? 

Alas, no! 

No arrangement into string worldsheets 

 

Worse:  

Large D → UV behavior infinitely bad 



YM 
SU(N→∞) 

Quantum GR 
SO (D →∞,1) 

↭ 



Classical General Relativity 

D-diml Einstein’s theory 

 

Well-defined for all D 

 
Understand this theory first 

Maybe later go back to quantum theory 

 

 

Kol+Miyamoto et al 



 

How do we take  

𝐷 → ∞  

in 

 𝑅𝜇𝜈 = 0? 

  



 

Regard 𝑅𝜇𝜈 = 0 as a theory of 

Black Holes  

interacting with/via  

gravitational waves 



 

Regard 𝑅𝜇𝜈 = 0 as a theory of 

Black Holes  

dynamics at large D 



K Schwarzschild to A Einstein  

(letter dated 22 December 1915) 

 

“I made at once by good luck a search 

 for a full solution. A not too difficult  

calculation gave the following result:” 

 

𝑑𝑠2 = − 1 −
𝑟0
𝑟

𝑑𝑡2 +
𝑑𝑟2

1 −
𝑟0
𝑟

 + 𝑟2(𝑑𝜃2 + sin2 𝜃𝑑𝜙2) 



Tangherlini 1963 

 

𝑑𝑠2 = − 1 −
𝑟0
𝑟

𝐷−3

𝑑𝑡2 +
𝑑𝑟2

1 −
𝑟0
𝑟

𝐷−3  + 𝑟2𝑑Ω𝐷−2 

 

scale 𝑟0 

determines the length scale  

of all bh dynamics 

In D dimensions 



 𝑟0 not the only scale  

Small parameter 1 𝐷 ⟹  scale hierarchy 

 

𝑟0 𝐷 ≪ 𝑟0 

 

  

Large D black holes 



 Large potential gradient: 

 

 

 

 

 

  

⟹ Hierarchy of scales 

  
𝑟0

𝐷
≪ 𝑟0 

Localization of interactions 

𝑟0 

𝑟 

𝐷 

Φ 𝑟 ∼
𝑟0
𝑟

𝐷−3

 

𝛻Φ  
𝑟0

∼ 𝐷/𝑟0 

Φ 𝑟  

⟷ 
𝑟0
𝐷

 



Fixed 𝑟 > 𝑟0  𝐷 → ∞ 
 

1 −
𝑟0
𝑟

𝐷−3

 →  1 

 
𝑑𝑠2 → −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑Ω𝐷−2 

Flat, empty space at 𝑟 > 𝑟0 

no gravitational field 



“infinitely difficult to 
catch a line of force” 

Black Hole scattering: 

no deflection 



Cross section 
vanishes 

“infinitely difficult to 
catch a line of force” 

Black Hole scattering: 

no deflection 



No absorption of waves 

with wavelength 

𝜆 ∼ 𝑟0  

Perfect reflection 

Black Hole scattering 



Holes cut out in Minkowski space 

No interaction 



We are keeping length scales ∼ 𝑟0 finite as 
we send 𝐷 → ∞ 

“Far-zone” limit 



Now take a limit that does not 
trivialize the gravitational field 

𝑟0

𝑟

𝐷−3

= 𝒪 1  ⟺  𝑟 − 𝑟0  <
𝑟0
𝐷

𝑟 − 𝑟0 ∼
𝑟0
𝐷

 

“Near-horizon” limit 



Physics at ∼ 𝑟0/𝐷 close to the 
horizon is not trivial 

Perfect absorption 
of waves with 

𝜆 ∼ 𝑟0/𝐷 

𝜔 ∼ 𝐷/𝑟0 

“Near-horizon” dynamics 



Not an exact solution 

Non-trivial interaction 

“Near-horizon” dynamics 



Large D ⇒ Two scales of BH physics 

Far zone 
𝝀 ∼ 𝒓𝟎 

Dynamics in flat space with holes 

 

Near-horizon 
𝝀 ∼ 𝒓𝟎/𝑫 

Non-trivial curved space dynamics 



Two scales → Effective Theory thinking 

Solve near-horizon equations 

integrate-out short-distance dynamics 

→ Boundary conds for far-zone fields  

long-distance effective theory 

Wave propagation in flat space  
w/ bdry conds @ holes 



Get practical 

Solve BH problems by  

Matched Asymptotic Expansion 

(a.k.a. Classical Effective Field Theory) 

 

1. Solve near-horizon  w/ ingoing bdry conds 

2. Solve far-zone  w/ asymp bdry conds 

3. Match where they overlap 



Solve far-zone 

Easy: flat spacetime 

 

Solve near-horizon 

Not trivial, but ∃ enhanced symmetry 
𝑆𝐿(2, ℝ) 

 

Bonus: universality 



V Analytic solution 

Linear perturbations 

Schw black hole scattering of waves 

Schw(-AdS) black hole quasinormal modes 

Instabilities of rapidly rotating black holes 

Instabilities of black branes  

Holographic superconductors 
 



V Analytic + num’l ODE 

Fully non-linear 
(in progress) 

 

Non-uniform black strings 

“Black droplets” at AdS boundary 

 



Small expansion parameter:   
1

𝐷−3
  

not quite good for 𝐷 = 4 … 

But it seems to be  
1

2(𝐷−3)
 

not so bad in 𝐷 = 4, if we can compute to 
higher order 

    (in AdS:  
1

2(𝐷−1)
) 

How accurate? 



Small expansion parameter:   
1

𝐷−3
  

not quite good for 𝐷 = 4 … 

But it seems to be  
1

𝟐(𝐷−3)
 

 not so bad in 𝐷 = 4,  if we can compute 
      higher orders 

  (in AdS:  
1

2(𝐷−1)
) 

How accurate? 



Quite accurate 

Comparison with D=4  

“algebraically special” quasi-normal mode 

−Im 𝜔𝑟0 

ℓ 

− 4D exact 

− Large D   (to 1/𝐷3) 



Conclusion 
so far 



 

It works 
(not obvious beforehand!) 



End 



Black Hole dynamics 
at large D 

(II) 



 
 

 

Near-horizon geometry 

𝑟

𝑟0

𝐷−3

= cosh2𝜌 

𝑑𝑠2 = − 1 −
𝑟0
𝑟

𝐷−3

𝑑𝑡2 +
𝑑𝑟2

1 −
𝑟0
𝑟

𝐷−3  + 𝑟2𝑑Ω𝐷−2 

𝑡𝑛𝑒𝑎𝑟 =
𝐷

2𝑟0
𝑡 

finite 
as 𝐷 → ∞ 



 

    
 

Near-horizon geometry 

𝑑𝑠𝑛ℎ
2 → 

4𝑟0
2

𝐷2
− tanh2 𝜌  𝑑𝑡𝑛𝑒𝑎𝑟

2 + 𝑑𝜌2 + 𝑟0
2𝑑Ω𝐷−2

2  



 

    
2d string black hole 

 

Elitzur et al 
Mandal et al 
Witten           1991 

Near-horizon geometry 

𝑑𝑠𝑛ℎ
2 → 

4𝑟0
2

𝐷2
− tanh2 𝜌  𝑑𝑡𝑛𝑒𝑎𝑟

2 + 𝑑𝜌2 + 𝑟0
2𝑑Ω𝐷−2

2  

ℓ𝑠𝑡𝑟𝑖𝑛𝑔 ∼
𝑟0
𝐷

, 𝛼′ ~ 
𝑟0

𝐷

2
 

Soda 1993 
Grumiller et al 2002 



2d string bh = near-horizon geometry 
of all neutral non-extremal bhs 

 

rotation = local boost  
(along horizon) 

cosmo const = 2d bh mass-shift 

Near-horizon universality 



Entropy 

𝑆 ∼ 𝑀1+
1

𝐷−3  (D finite) 

 

𝑀 = 𝑀1 + 𝑀2  ⇒  𝑆 > 𝑆1 + 𝑆2 
 

Black hole merger → entropy gain 

Cannot break up: entropy cost 



Entropy 

𝑆 ∼ 𝑀1+
1

𝐷−3   
𝐷→∞

  𝑆 ∼ 𝑀 
 

𝑀 = 𝑀1 + 𝑀2  ⇒  𝑆 = 𝑆1 + 𝑆2 
 

Black hole merger: no entropy gain 

Can break up at no entropy cost 

Far-zone absence of interactions 



Entropy, near-horizon view 

𝑆 ∼ 𝑀1+
1

𝐷−3 → 𝑆 ∼ 𝑀 

 Hagedorn string entropy 

 

𝑆 = 𝑇𝑠𝑡𝑟𝑖𝑛𝑔𝑀 

𝑇𝑠𝑡𝑟𝑖𝑛𝑔 =
𝐷

2𝑟0
  



Really strings? 

What kind? 

Or, is this just moonshine? 



Near-horizon geometries 

Well-defined limiting geometry 

Requires small parameter/scale separation 

Well known: (near-)extremal black holes 

small near-extremality parameter 

𝑀2 − 𝑄2

𝑀
 ,

𝑀4 − 𝐽2

𝑀2
 ≪ 1 



(Near-)Extremal black holes 

Throat geometries near-horizon 

throat supports  

“decoupled” dynamics 

 

e.g. AdS/CFT decoupling limit 



Decoupled dynamics: 

finite-frequency 
excitations that are 
normalizable in n-h 
geometry 

 

(Near-)Extremal black holes 



Decoupled dynamics: 

effective radial 
potential 

(Near-)Extremal black holes 

finite-frequency 
excitations that are 
normalizable in n-h 
geometry 

 



 

Is the large D limit 

a decoupling limit? 



 

Is the large D limit 

a decoupling limit? 

No 



Perturbative BH dynamics @ large D  

is concentrated close to the horizon 

 

States can be characterized in terms of 
their properties within N-H geometry 



but N-H geometry is not long throat 

 

𝑑𝑠𝑛ℎ
2 = 

4𝑟0
2

𝐷2
− tanh2 𝜌  𝑑𝑡𝑛𝑒𝑎𝑟

2 + 𝑑𝜌2 + 𝑟0
2𝑑Ω𝐷−2

2  

 

small extent   ∝ 𝑟0/𝐷 

crossed very quickly    𝑡𝑛𝑒𝑎𝑟 =
𝐷

2𝑟0
𝑡 

 

Can’t expect to support excitations fully trapped within 



Black Hole dynamics: 
Quasinormal modes 



Quasinormal modes @ large D 

 

Most QNMs are not decoupled states 

not normalizable N-H states 

 

But ∃ a few decoupled QNMs 

normalizable N-H states 



Non-decoupling and decoupling 
sectors are very different 



Non-decoupling QNMs 

High frequencies      𝜔 ∼ 𝐷/𝑟0 

Small damping ratios  
Im𝜔

Re𝜔
→ 0 

Control interaction between bh and 
environment 

Little information about black hole 

Universal spectrum 



Decoupling QNMs 

Low frequencies      𝜔 ∼ 𝐷0/𝑟0 

Damping ratio  
Im𝜔

Re𝜔
∼ 1 

Insulated from far-zone 

Specific dynamics of each black hole 

instabilities, hydrodynamic modes etc 

Non-universal 



Massless scalar field dynamics 

□Φ = 0    Φ = 𝑟−
𝐷−2

2  𝜙 𝑟  𝑒−𝑖𝜔𝑡  𝑌ℓ(Ω) 

   

 

 

 

 

𝑑2𝜙

𝑑𝑟∗
2

+ 𝜔2 − 𝑉 𝑟∗ 𝜙 = 0 

𝑉(𝑟∗) 

infty horizon 𝑟0 
𝑟∗ 

𝑟∗: tortoise coord  



Schwarzschild bh grav perturbations 

Gravitational scalar, vector, tensor modes  
      𝑆𝑂(𝐷 − 1) reps 

Kodama+Ishibashi 

𝑉(𝑟∗) 

𝑟∗ 

𝐷 = 7 
ℓ = 2 



   

 

 

 Truncated flat-space barrier  

𝑉 𝑟∗ →
𝐷2

4𝑟∗
2
Θ(𝑟∗ − 𝑟0) 

𝐷 → ∞ 

infty horizon 𝑟0 
𝑟∗ 

𝐷
2𝑟0

 
2
 

ℓ = 𝒪 1   

(for simplicity) 



 

 

 

infty horizon 

𝜔 >
𝐷

2𝑟0
 : perfect transmission  

𝜔 = 𝒪(𝐷0)/𝑟0 : perfect reflection 

𝑟0 
𝑟∗ 

𝐷
2𝑟0

 
2
 

𝑉 𝑟∗ →
𝐷2

4𝑟∗
2
Θ(𝑟∗ − 𝑟0) 



𝑟∗ 

𝑉 

horizon infty 

Quasinormal modes 

Free, damped 
oscillations of 
black hole 

outgoing ingoing 



𝑟∗ 𝑟0 

Non-decoupled QNMs 

𝜔 ∼ 𝐷/𝑟0 



𝑟∗ 𝑟0 

Non-decoupled QNMs 

𝜔 ∼ 𝐷/𝑟0 

Universal structure 

∀ black holes @ 𝑫 → ∞ 



Decoupled QNMs 

 

 

 𝜔 ∼
1

𝑟0
≪

𝐷

𝑟0
 

horizon 

𝐷
2𝑟0

 
2
 



Decoupled QNMs 

 

 

 

𝜔𝑛𝑒𝑎𝑟 =
𝜔
𝐷

→ 0 : static N-H states  

    (leading 1/D order) 

𝜔 ∼
1

𝑟0
≪

𝐷

𝑟0
 

horizon 

𝐷
2𝑟0

 
2
 



scalar vector tensor 

Static, zero-energy N-H states 



scalar vector tensor 
∃ zero-energy 
scalar vector 

not tensor 

Static, zero-energy N-H states 

 

∃ decoupled states 

 



Decoupled QNMs 

We’ve computed the 

QNM frequencies up 

to 1/𝐷3 



BH excitations (quasinormal modes) in 
terms of near-horizon dynamics 

BH dynamics @ large D 



BH excitations (quasinormal modes) in 
terms of near-horizon dynamics 

“Decoupled” states  

strongly localized near the horizon 

“Non-decoupled” states  

communicate bh to asymptotic region 

BH dynamics @ large D 



Quantitative accuracy 

Decoupled modes 𝝎𝒓𝟎 = 𝓞(𝟏) 

 

At 𝐷 = 100: (ℓ = 2 vector mode, purely imaginary) 

 

 Im 𝜔𝑟0 = -1.01044742 (analytical)  

         -1.01044741 (numerical  Dias et al) 



Quantitative accuracy 

Non-decoupled modes 𝝎𝒓𝟎 = 𝓞(𝑫) 

Re 𝜔𝑟0:  good at moderate 𝐷 

 

 

 

 

Im 𝜔𝑟0 ∼ 𝐷1 3   :  only good at very high 𝐷 

Re 𝜔𝑟0 

𝐷 

ℓ = 2 



Going fully non-linear 

Non-linear theory of decoupled zero-modes 
(static deformations) 

 

Radial direction solved analytically 

reduce 2 dim PDE to ODE 

 

Obtain non-linear eq for zero mode (collective 
field) 



AdS boundary 

AdS bulk 

Non-uniform black string 

R Suzuki 

𝑧 

𝑧 

Black droplet at 
AdS boundary 

𝑟0(𝑧) 

𝑟0(𝑧) 



Outlook 



Universal features @ large D 
 

Far region 

∀bhs:  empty space 

 

Near-horizon region 

∀neutral bhs:  2D string bh 



BH dynamics splits into: 

 

𝜔𝑟0 = 𝒪(𝐷) : non-decoupled dynamics 

scalar field oscillations of a hole in space 

universal normal modes 

 

𝜔𝑟0 = 𝒪(𝐷0) : decoupled dynamics 

localized in near-horizon region 



BH dynamics splits into: 

 

𝜔𝑟0 = 𝒪(𝐷0) : decoupled dynamics 

– specific of each bh 

– less numerous 

– ultraspinning instabilities in this sector 

– hydro modes of black branes  
  



BH dynamics splits into: 

 

𝜔𝑟0 = 𝒪(𝐷) : non-decoupled dynamics 

– universal normal modes of hole in space 

– much more numerous 

– describe interaction of bh w/ environment 



Full non-linear dynamics 
 

Stationary black holes 
deformed rotating bhs 

 

Time evolution 
non-linear Gregory-Laflamme as 1+1 system 

 

Towards a general theory of 

horizon dynamics @ large D 



End 


