Black Hole dynamics at large D

Roberto Emparan ICREA & U. Barcelona & YITP Kyoto

w/ Kentaro Tanabe, Ryotaku Suzuki Daniel Grumiller Takahiro Tanaka, Tetsuya Shiromizu

Nov 1915

$R_{\mu\nu}=0$

Feb 1917

$R_{\mu\nu} = \Lambda g_{\mu\nu}$

Even the simplest case $R_{\mu\nu} = 0$ are very hard to solve

A small parameter can take you a long way

Quantum ElectroDynamics

Perturb around $e^2 = 0$

Quantum GluoDynamics SU(3) Yang-Mills theory

No parameter?

Quantum GluoDynamics SU(N) Yang-Mills theory parameter!

Quantum GluoDynamics SU(N) Yang-Mills theory

Well-defined for all N

Many problems can be formulated keeping N arbitrary

 \rightarrow N = continuous parameter

 \rightarrow expand in 1/N

Quantum GluoDynamics SU(N) Yang-Mills theory

Large N keeps essential physics of N=3 confinement asymptotic freedom simplifies the theory reformulation in terms of string variables? What parameter in $R_{\mu\nu} = 0$?

What parameter in $R_{\mu\nu} = 0$ $\mu, \nu = 0, ..., 3?$

$R_{\mu\nu} = 0$ $\mu, \nu = 0, ..., D - 1$

Quantum GluoDynamics SU(N) Yang-Mills theory

Well-defined for all N

Many problems can be formulated keeping N arbitrary

 \rightarrow N = continuous parameter

 \rightarrow expand in 1/N

Classical General Relativity D-diml Einstein's theory

Well-defined for all D

Many problems can be formulated keeping D arbitrary

 \rightarrow D = continuous parameter

 \rightarrow expand in 1/D

Quantum GluoDynamics SU(N) Yang-Mills theory

Large N keeps essential physics of N=3 confinement asymptotic freedom simplifies the theory reformulation in terms of string variables?

Classical General Relativity D-diml Einstein's theory

Large D

keeps essential physics of D=4

∃ black holes

∃ gravitational waves

simplifies the theory

reformulation in terms of string variables??

Shouldn't we take this analogy further?

YM: SU(N) local gauge group GR: SO(D-1,1) local Lorentz group

> *Strominger 1981 Bjerrum-Bohr 2004*

YM: SU(N) local gauge group

Large N: # gluon polarizations grows Topological expansion of Feynman diagrams

Gluons arrange into worldsheets \rightarrow strings!

Quantum GR: SO(D-1,1) local Lorentz group

Large D: # graviton polarizations grows Topological expansion of Feynman diagrams? Quantum GR: SO(D-1,1) local Lorentz group

Large D: # graviton polarizations grows Topological expansion of Feynman diagrams? Alas, no!

No arrangement into string worldsheets

Worse:

Large D \rightarrow UV behavior infinitely bad

YMQuantum GRSU(
$$N \rightarrow \infty$$
)SO ($D \rightarrow \infty, 1$)

Classical General Relativity D-diml Einstein's theory

Well-defined for all D

Understand this theory first Maybe later go back to quantum theory

Kol+Miyamoto et al

How do we take $D \rightarrow \infty$ in $R_{\mu\nu} = 0?$ Regard $R_{\mu\nu} = 0$ as a theory of Black Holes interacting with/via gravitational waves

Black Hole dynamics at large D

K Schwarzschild to A Einstein (letter dated 22 December 1915)

"I made at once by good luck a search for a full solution. A not too difficult calculation gave the following result:"

$$ds^{2} = -\left(1 - \frac{r_{0}}{r}\right)dt^{2} + \frac{dr^{2}}{1 - \frac{r_{0}}{r}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2})$$

In D dimensions

Tangherlini 1963

$$ds^{2} = -\left(1 - \left(\frac{r_{0}}{r}\right)^{D-3}\right)dt^{2} + \frac{dr^{2}}{1 - \left(\frac{r_{0}}{r}\right)^{D-3}} + r^{2}d\Omega_{D-2}$$

scale r₀ determines the length scale of *all* bh dynamics

Large D black holes

 r_0 not the only scale

Small *parameter* $1/D \implies$ scale hierarchy

 $r_0/D \ll r_0$

Localization of interactions

Large potential gradient:

$$\Phi(r) \sim \left(\frac{r_0}{r}\right)^{D-3}$$

$$\nabla \Phi \Big|_{r_0} \sim D/r_0$$

 \Rightarrow Hierarchy of scales $\frac{r_0}{D} \ll r_0$

Fixed
$$r > r_0$$
 $D \to \infty$

$$1 - \left(\frac{r_0}{r}\right)^{D-3} \to 1$$

$$ds^2 \rightarrow -dt^2 + dr^2 + r^2 d\Omega_{D-2}$$

Flat, empty space at $r > r_0$ no gravitational field

Black Hole scattering

No absorption of waves with wavelength $\lambda \sim r_0$ Perfect reflection

No interaction

Holes cut out in Minkowski space

We are keeping length scales $\sim r_0$ finite as we send $D \rightarrow \infty$

"Far-zone" limit

Now take a limit that does *not trivialize* the gravitational field

Physics at $\sim r_0/D$ close to the horizon is *not* trivial

Perfect absorption of waves with $\lambda \sim r_0/D$ $\omega \sim D/r_0$

"Near-horizon" dynamics

Not an exact solution Non-trivial interaction

"Near-horizon" dynamics

Large D \Rightarrow Two scales of BH physics Far zone $\lambda \sim r_0$ Dynamics in flat space with holes

Near-horizon $\lambda \sim r_0/D$ Non-trivial curved space dynamics

Two scales → *Effective Theory* thinking Solve near-horizon equations integrate-out short-distance dynamics

\rightarrow Boundary conds for far-zone fields

long-distance effective theory

Wave propagation in flat space w/ bdry conds @ holes

Get practical

Solve BH problems by Matched Asymptotic Expansion (*a.k.a.* Classical Effective Field Theory)

Solve near-horizon w/ ingoing bdry conds
 Solve far-zone w/ asymp bdry conds
 Match where they overlap

Solve far-zone *Easy*: flat spacetime

Solve near-horizon Not trivial, but \exists enhanced symmetry $SL(2, \mathbb{R})$

Bonus: universality

Analytic solution

Linear perturbations

Schw black hole scattering of waves Schw(-AdS) black hole quasinormal modes Instabilities of rapidly rotating black holes Instabilities of black branes Holographic superconductors Analytic + num'l ODE
 Fully non-linear

 (in progress)

Non-uniform black strings "Black droplets" at AdS boundary

How accurate?

Small expansion parameter: $\frac{1}{D-3}$

not quite good for $D = 4 \dots$

How accurate?

Small expansion parameter: $\frac{1}{D-3}$

not quite good for $D = 4 \dots$

But it seems to be
$$\frac{1}{2(D-3)}$$

not *so* bad in D = 4, if we can compute higher orders

(in AdS:
$$\frac{1}{2(D-1)}$$
)

Quite accurate

Comparison with D=4 "algebraically special" quasi-normal mode

Conclusion so far

It works (not obvious beforehand!)

Black Hole dynamics at large D (II)

Near-horizon geometry

$$ds^{2} = -\left(1 - \left(\frac{r_{0}}{r}\right)^{D-3}\right)dt^{2} + \frac{dr^{2}}{1 - \left(\frac{r_{0}}{r}\right)^{D-3}} + r^{2}d\Omega_{D-2}$$

$$\left(\frac{r}{r_0}\right)^{D-3} = \cosh^2 \rho$$
 finite
$$t_{near} = \frac{D}{2r_0} t$$
 as $D \to \infty$

Near-horizon geometry

$$ds_{nh}^2 \to \frac{4r_0^2}{D^2} (-\tanh^2 \rho \ dt_{near}^2 + d\rho^2) + r_0^2 d\Omega_{D-2}^2$$

Near-horizon geometry

$$ds_{nh}^{2} \rightarrow \frac{4r_{0}^{2}}{D^{2}} (-\tanh^{2}\rho \ dt_{near}^{2} + d\rho^{2}) + r_{0}^{2}d\Omega_{D-2}^{2}$$

$$2d \ string \ black \ hole$$

$$Elitzur \ et \ al Mandal \ et \ al Witten \qquad 1991$$

$$Soda \ 1993$$

$$Grumiller \ et \ al \ 2002$$

$$\ell_{string} \sim \frac{r_{0}}{D}, \qquad \alpha' \sim \left(\frac{r_{0}}{D}\right)^{2}$$

Near-horizon universality

2d string bh = near-horizon geometry of all neutral non-extremal bhs

rotation = local boost (along horizon) cosmo const = 2d bh mass-shift

Entropy

$$S \sim M^{1+\frac{1}{D-3}}$$
 (D finite)

$$M = M_1 + M_2 \implies S > S_1 + S_2$$

Black hole merger → entropy gain Cannot break up: entropy cost

Entropy

 $M = M_1 + M_2 \implies S = S_1 + S_2$

Black hole merger: no entropy gain

Can break up at no entropy cost

Far-zone absence of interactions

Entropy, near-horizon view

$$S \sim M^{1+\frac{1}{D-3}} \to S \sim M$$

Hagedorn string entropy

$$S = T_{string}M$$
$$T_{string} = \frac{D}{2r_0}$$

Really strings?

What kind?

Or, is this just moonshine?

Near-horizon geometries

Well-defined limiting geometry

Requires small parameter/scale separation

Well known: (near-)extremal black holes

small near-extremality parameter

$$\frac{\sqrt{M^2 - Q^2}}{M} \,, \qquad \frac{\sqrt{M^4 - J^2}}{M^2} \,\ll 1$$

(Near-)Extremal black holes

Throat geometries near-horizon

e.g. AdS/CFT decoupling limit

(Near-)Extremal black holes

Decoupled dynamics:

finite-frequency excitations that are normalizable in n-h geometry

(Near-)Extremal black holes

Decoupled dynamics:

effective radial potential

finite-frequency excitations that are normalizable in n-h geometry Is the large D limit a decoupling limit?

Is the large D limit a decoupling limit? Perturbative BH dynamics @ large D is concentrated close to the horizon

States can be characterized in terms of their properties within N-H geometry

but N-H geometry is **not long** throat

$$ds_{nh}^{2} = \frac{4r_{0}^{2}}{D^{2}} (-\tanh^{2}\rho \ dt_{near}^{2} + d\rho^{2}) + r_{0}^{2}d\Omega_{D-2}^{2}$$
small extent $\propto r_{0}/D$
crossed very quickly $t_{near} = \frac{D}{2r_{0}}t$

Can't expect to support excitations fully trapped within

Black Hole dynamics: Quasinormal modes

Quasinormal modes @ large D

Most QNMs are not decoupled states not normalizable N-H states

But \exists a few decoupled QNMs normalizable N-H states
Non-decoupling and decoupling sectors are very different

Non-decoupling QNMs

High frequencies $\omega \sim D/r_0$

Small damping ratios $\frac{\mathrm{Im}\omega}{\mathrm{Re}\omega} \to 0$

Control interaction between bh and environment

Little information about black hole

Universal spectrum

Decoupling QNMs

Low frequencies $\omega \sim D^0/r_0$ Damping ratio $\frac{\text{Im}\omega}{\text{Re}\omega} \sim 1$

Insulated from far-zone

Specific dynamics of each black hole

instabilities, hydrodynamic modes etc

Non-universal

Schwarzschild bh grav perturbations Kodama+Ishibashi

Gravitational scalar, vector, tensor modes

Quasinormal modes Free, damped oscillations of black hole Voutgoing ingoing w γ_* horizon infty

 $\omega_{near} = \frac{\omega}{D} \rightarrow 0 : static \text{ N-H states}$ (leading 1/D order)

Static, zero-energy N-H states

scalar vector tensor

Decoupled QNMs

We've computed the QNM frequencies up to $1/D^3$

BH dynamics @ large D

BH excitations (quasinormal modes) in terms of near-horizon dynamics

BH dynamics @ large D

BH excitations (quasinormal modes) in terms of near-horizon dynamics

"Decoupled" states

strongly localized near the horizon

"Non-decoupled" states

communicate bh to asymptotic region

Quantitative accuracy

Decoupled modes $\omega r_0 = \mathcal{O}(1)$

At D = 100: ($\ell = 2$ vector mode, purely imaginary)

Im $\omega r_0 = -1.01044742$ (analytical) -1.01044741 (numerical *Dias et al*)

Quantitative accuracy

Non-decoupled modes $\omega r_0 = \mathcal{O}(D)$

Re ωr_0 : good at moderate D

Im $\omega r_0 \sim D^{1/3}$: only good at *very* high D

Going fully non-linear

Non-linear theory of decoupled **zero-modes** (static deformations)

Radial direction solved analytically reduce 2 dim PDE to ODE

Obtain non-linear eq for zero mode (collective field)

Non-uniform black string *R Suzuki*

Black droplet at AdS boundary

AdS bulk

Outlook

Universal features @ large D

Far region

∀bhs: empty space

Near-horizon region

∀neutral bhs: 2D string bh

BH dynamics splits into:

 $\omega r_0 = \mathcal{O}(D)$: non-decoupled dynamics scalar field oscillations of a hole in space universal normal modes

 $\omega r_0 = \mathcal{O}(D^0)$: decoupled dynamics localized in near-horizon region

$\omega r_0 = \mathcal{O}(D^0)$: decoupled dynamics - specific of each bh

- less numerous
- ultraspinning instabilities in this sector
- hydro modes of black branes

 $\omega r_0 = \mathcal{O}(D)$: non-decoupled dynamics - universal normal modes of hole in space - much more numerous

- describe interaction of bh w/ environment

Full non-linear dynamics

Stationary black holes deformed rotating bhs

Time evolution non-linear Gregory-Laflamme as 1+1 system

Towards a general theory of horizon dynamics @ large D

