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Even the simplest case
Ry, =0

are very hard to solve



A small parameter can take you a long way

Quantum ElectroDynamics

Perturb around e? = 0



Quantum GluoDynamics
SU(3) Yang-Miills theory

No parameter?



Quantum GluoDynamics
SU(N) Yang-Mills theory

\

parameter!



Quantum GluoDynamics
SU(N) Yang-Mills theory

Well-defined for all N

Many problems can be formulated keeping N
arbitrary

— N = continuous parameter
— expand in 1/N



Quantum GluoDynamics
SU(N) Yang-Mills theory

Large N
keeps essential physics of N=3

confinement

asymptotic freedom

simplifies the theory

reformulation in terms of string variables?
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Classical General Relativity
D-diml Einstein’s theory

Well-defined for all D

Many problems can be formulated keeping D
arbitrary

— D = continuous parameter
— expand in 1/D



Quantum GluoDynamics
SU(N) Yang-Mills theory

Large N
keeps essential physics of N=3

confinement

asymptotic freedom

simplifies the theory

reformulation in terms of string variables?



Classical General Relativity
D-diml Einstein’s theory

Large D

keeps essential physics of D=4
3 black holes

3 gravitational waves

simplifies the theory

reformulation in terms of string variables??



Shouldn’t we take this analogy further?

YM: SU(N) local gauge group
GR: SO(D-1,1) local Lorentz group

Strominger 1981
BjerrumBohr 2004



YM: SU(N) local gauge group

Large N: # gluon polarizations grows
Topological expansion of Feynman diagrams

Gluons arrange into worldsheets — strings!

SICICHC




Quantum GR: SO(D-1,1) local Lorentz group

Large D: # graviton polarizations grows
Topological expansion of Feynman diagrams?



Quantum GR: SO(D-1,1) local Lorentz group

Large D: # graviton polarizations grows
Topological expansion of Feynman diagrams?

Alas, no!
No arrangement into string worldsheets

Worse:
Large D — UV behavior infinitely bad



YM W Quantum GR
SU(N—c0) SO (D —0,1)




Classical General Relativity
D-diml Einstein’s theory

Well-defined for all D

Understand this theory first
Maybe later go back to quantum theory

Kol+Miyamoto et k



How do we take

D — oo
N

R,, = 0?

U



Regard R, = 0 as a theory of
Black Holes

interacting with/via
gravitational waves



Black Hole
dynamics at large D



K Schwarzschild to A Einstein . .
(letter dated 22 December 1915) "' Ny

“ Inade at once by good lucksaarch
for a full solution. A not too difficult
calculation gavehe following resutt ”

T, 2

ds? =—(1—?)dt2+ "
r

+ r%(d6? + sin® 0d¢p?)



In D dimensions

Tangherlini 1963

ro\P 3 dr?
ds? = — (1 - (—0) >dt2 + — (%)D_S +1r2dQ,_,

scale 1y
determines the length scale
of all bh dynamics



Large D black holes

To hot the only scale

Small parameterl/D = scale hierarchy

10/D K 14



Localization of interactions

Large potential gradient:

d(r)
Ty D3
O(r) ~ (7)
VCI) ~ D/T‘O
To
—> Hierarchy of scales T
D

To
> K 1y



Fixedr >ry, D —> o

RO

ds? - —dt* + dr* + r?dQp_,

Flat, empty space atr > r

no gravitational field



Black Hole scattering:

\ no deflection
\

“infinitely difficult to
catch a line of force”



Black Hole scattering:

T nodeflection
Cross section \

vanishes

“infinitely difficult to
catch a line of force”



Black Hole scattering

No absorption of waves
with wavelength

ANTO

Perfect reflection



No interaction

Holes cut out in Minkowski space



o °
We are keeping length scales ~ 1 finite as
we send D — oo

“Far-zone” limit



Now take a limit that does not
trivializethe gravitational field

ro\DP—3 T,
(70) =0(1) & r —r, <EO
<
To
&f\r_ro"’_
D

“Near-horizon” limit



Physics at ~ 1y/D close to the
horizon is NOt trivial

Perfect absorption

of waves with
A ~ TO/D
w~ D/ry

“Near-horizon” dynamics



Not an exact solution
Non-trivial interaction

“Near-horizon” dynamics



Large D = Two scales of BH physics

Far zone
A~ o
Dynamics in flat space with holes

Near-horizon
A ~ TO/D

Non-trivial curved space dynamics



Two scales — Effective Theoryhinking

Solve near-horizon equations

Integrate-out shortdistance dynamics

— Boundary conds for far-zone fields

long-distance effective theory

Wave propagation in flat space
w/ bdry conds @ holes




Get practical

Solve BH problems by
Matched Asymptotic Expansion
(a.k.a.Classical Effective Field Theory)

1. Solve near-horizon w/ ingoing bdry conds
2. Solve far-zone w/ asymp bdry conds
3. Match where they overlap



Solve far-zone
Easyflat spacetime

Solve near-horizon

Not trivial, but 3 enhanced symmetry
SL(2,R)

Bonus: universality



V Analytic solution

Schw

Linear perturbations

olac

Schw(-Ac

S)b

< hole scattering of waves

ack ho

Instabilities of rapid

e quasinormal modes
y rotating black holes

Instabilities of black branes

Holographic superconductors



V Analytic + num’l ODE

Fully non-linear

(in progress)

Non-uniform black strings
“Black droplets” at AdS boundary



How accurate?

. 1
Small expansion parameter: p—

not quite good for D =4 ...



How accurate?

. 1
Small expansion parameter: p—

not quite good for D =4 ...

1
2(D-3)

But it seems to be

not SObad in D = 4, if we can compute
higher orders

1

(in AdS: 200-1)

)



Quite accurate

Comparison with D=4

|H

“algebraically special” quasi-normal mode

—Im wry =}
) — 4D exact
150 . ;
: Large D (to1/D")




Conclusion
so far



It works

(not obvious beforehand!)

(" )
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Black Hole dynamics
at large D

(1)



Near-horizon geometry

rozP—3 dr?
ds? = — (1 -~ (70) )dtz + — (7;_0)13_3 +r2dQ,_,

D-3
r 2
(—) = cosh“p
To - finite

D as D — o

—



Near-horizon geometry

47§
dsz, — D—( tanh? p dt2,, +dp?) + 76dQ5_,



Near-horizon geometry

4r
dsz, — D—( tanh? p dt2,, +dp?) + 16dQ5_,
\ J
|
. Elitzur etal

2d string black hole  wandal et al
Witten 1991
Soda 1993

Grumiller et al 2002



Near-horizon universality

2d string bh = near-horizon geometry
of all neutral non-extremal bhs

rotation = local boost

(along horizon)

cosmo const = 2d bh mass-shift



Entropy
14+——
S ~ M" D-3 (Dfinite)
M:Ml‘l‘Mz = S>51+Sz

Black hole merger = entropy gain

Cannot break up: entropy cost



Entropy

1 D—co
S~M'D3 — S~M

M:Ml‘l‘Mz = S:.Sl+52

Black hole merger: no entropy gain

Can break up at no entropy cost

Far-zone absence of interactions



Entropy, nearhorizonview

Lipts
S~M D-3>5~M

Hagedorn string entropy

S = TstringM

D

Tstring — E



Really strings?
What kind?

Or, is this just moonshine?



Near-horizon geometries

Well-defined limiting geometry
Requires small parameter/scale separation

Well known: (near-)extremal black holes

small near-extremality parameter

2 _ N2 4 _ 12
VM * VM 2

M M? 1



(Near-)Extremal black holes

Throat geometries near-horizon

throat supports

B

“decoupled” dynamics

e.g. AdS/CFT decoupling limit



(Near-)Extremal black holes

Decoupled dynamics:

finite-frequency

excitations that are
normalizable in n-h
geometry



(Near-)Extremal black holes

Decoupled dynamics:

finite-frequency

excitations that are

S normalizable in n-h
geometry

™|

effective radial
potential



Is the large D limit
a decoupling limit?



Is the large D limit
a decoupling limit?
No



Perturbative BH dynamics @ large D
Is concentrated close to the horizon

States can be characterized in terms of
their properties within N-H geometry



but N-H geometry is not long throat

2 4rg 2 2
dss, = —( tanh? p dtZ,q + dp?) + r6dQ5_,

A\

small extent « 1y/D

D

crossed very quickly t,.4 = pol’
0

Can’t expect to support excitations fully trapped within



Black Hole dynamics:
Quasinormal modes



Quasinormal modes @ large D

Most QNMs are not decoupled states

not normalizable N-H states

But 3 a few decoupled QNMs

normalizable N-H states



Non-decoupling and decoupling
sectors are very different



Non-decoupling QNMs

High frequencies w ~ D /1y

Imw

- (

Small damping ratios —

Control interaction between bh and
environment

Little information about black hole

Universal spectrum



Decoupling QNMs

Low frequencies w ~ D°/r,

Imw

~1

Damping ratio .

Insulated from far-zone

Specific dynamics of each black hole

instabilities, hydrodynamic modes etc

Non-universal



Massless scalar field dynamics

D-2

O =0 ®=r"2 ¢(r)e @t y,(Q)
d*¢
| 2 .
dr2 (w*=V(r))e =0
V() 1.: tortoise coord

horizon



Schwarzschild bh grav perturbations
Kodama+lIshibash

Gravitational scalar, vector, tensor modes
SO(D — 1) reps




[)2
V(ir,) — " O(r, —1p)

(P/ 2r0)2 /‘

Truncated flat-space barrier

/ 2 =0(1)

(for simplicity)

. - r*
horizon



DZ

V(ir,) — " O(r, —1p)

D .
MWL ) > — : perfect transmission
(D/Zr )2 ZTO

w = 0(D®) /1, : perfect reflection

——AA\N\N\N—
N\ "\"\N—>

T

horizon infty



Quasinormal modes

Free, damped
oscillations of

black hole
V
ingoing outgoing
hori "
orizon infty




Non-decoupled QNMs

W ~ D/ro




Non-decoupled QNMs

W ~ D/ro

Universal structure
VY black holes @ D — oo




Decoupled QNMs

(D/Zro)z

horizon



Decoupled QNMs

(P/ zn,)

1 D
w~—<KL—
o To

horizon

W .
Wnear =7, = 0 : static N-H states

(leading 1/D order)



Static, zero-energy N-H states
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Static, zero-energy N-H states

scalar vector tensor

3 zero-energy

scalar vector

not tensor

] A 1
020 L.

1.0 1.03

3 decoupled states



Decoupled QNMs

We’ve computed the

QNM frequencies up
to1/D?3




BH dynamics @ large D

BH excitations (quasinormal modes) in
terms of near-horizon dynamics




BH dynamics @ large D

BH excitations (quasinormal modes) in
terms of near-horizon dynamics

“Decoupled” states

strongly localized near the horizon

“Non-decoupled” states

communicate bh to asymptotic region



Quantitative accuracy

Decoupled modes wry = 0(1)

At D = 100: (£ = 2 vector mode, purely imaginary)

Im wry =-1.01044742 (analytical)
-1.01044741 (numerical Diaset al)



Quantitative accuracy

Non-decoupled modes wry = O(D)

Re wry: good at moderate D

35
20F
15f
1LOF
05F
e N

0 '”mD

Im wry ~ D/3 . only good at veryhigh D



Going fully non-linear

Non-linear theory of decoupled zero-modes
(static deformations)

Radial direction solved analytically
reduce 2 dim PDE to ODE

Obtain non-linear eq for zero mode (collective
field)



10(2)

AdS boundary

Z

—_—

10(2)

AdS bulk

Non-uniform black string

R Suzuki

Black droplet at
AdS boundary



Outlook



Universal features @ large D

Far region

vbhs: empty space

Near-horizon region
Vneutralbhs: 2D string bh



BH dynamics splits into:

wtry = O(D) : non-decoupled dynamics
scalar field oscillations of a hole in space
universal normal modes

wry = O(DY) : decoupled dynamics

localized in near-horizon region



wry = O(DY) : decoupled dynamics
— specific of each bh
—less numerous
— ultraspinning instabilities in this sector
—hydro modes of black branes



wtry = O(D) : non-decoupled dynamics
— universal normal modes of hole in space
— much more numerous
— describe interaction of bh w/ environment



Full non-linear dynamics

Stationary black holes

deformed rotating bhs

Time evolution

non-linear Gregory-Laflamme as 1+1 system

Towards a general theory of
horizon dynamics @ large D






