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WIMP SIGNAL

© Gamma rays from DM annihilation:
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FERMI MISSION
THE LARGE AREA TELESCOPE

& The Fermi Large AreaTelescope observes the
gamma-ray sky in the 20 MeV to =300 GeV

energy range with unprecedented sensitivity

Large Area Telescope
(LAT)

o Orbit 565 km, 25.6° inclination, circular. The LAT
observes the entire sky every ~3 hrs (2 orbits)

"'_

Gamma-ray Burst
Monitor (GBM)
8 keV - 40 MeV




GAMMA RAYS FROM DM
ANNIHILATION
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THE FERMI SKY

Fermi LAT data : 4 years,E > | GeV




UNDERSTANDING THE
GAMMA-RAY SKY

-

data sources galactic diffuse isotropic

dark matter?



GALACTIC GAMMA-RAY
INTERSTELLAR EMISSION

@ The diffuse gamma-ray emission from the Milky VWay is produced by cosmic rays interacting with the
interstellar gas and radiation field and carries important information on the acceleration, distribution,
and propagation of cosmic rays.

sources galactlc diffuse isotropic
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ALL SKY

& Cosmic ray origin, propagation, and properties of the interstellar medium can be constrained by
comparing the data to predictions.

@ Generate models {in agreement with CR data) varying CR. source distribution, CR halo size, gas
distribution { GALPR.OF, http://galpro p.stanford.edu) and compare the predictions for gamma rays
with Fermi LAT data

(data - prediction)/ prediction) for example model
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INNER GALAXY

& Cosmic ray origin, propagation, and properties of the interstellar medium can be constrained by
comparing the data to predictions.

& Generate models {in agreement with CR data) varying CR. source distribution, CR halo size, gas
distribution {GALPROP, http://galpro p.stanford.edu) and compare with Fermi LAT data
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GALACTIC CENTER REGION

Complex region: CR intensities, density of radiation fields and gas are highest; large
uncertainties modeling the gamma-ray interstellar emission, significant foreground/
background contribution with long integration path over the entire Galactic disc

Large density of gamma-ray sources: many energetic sources near to or in the line of sight
of the GC, difficult to disentangle from interstellar emission

A signal of new physics (dark matter annihilation/
decay) is also predicted to be largest here

An excess in the Fermi LAT GC data was first
cautiously claimed by Goodenough and Hooper
(ar>dv:0910.2998) consistent with a 25-30 GeV
YWIMP annihilating into b-bbar with an
annihilation cross-section a few times larger than
expected from an s-wave thermal relic

(%1 0-*°cm?’/s) and a DM profile somewhat
steeper than MNFW (y=1.1)




CURRENT STATUS OF GC DM
SEARCHES IN GAMMA-RAY

o A re-analysis of the Fermi LAT data by Daylan et al (with more statistics, over 5 years, and improved
event selection aimed at reducing background leakage in the search region) confirms the presence
of an excess on top of the adopted background models

W) The addition of tll'le F}H component improves the data-model Diaylan et al, arxiv: 14026703
agreement very significantly _ o
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CURRENT STATUS OF GC DM
SEARCHES IN GAMMA-RAY

& The morphology of the excess in Daylan et al is consistent with an NFWV profile with slope
¥=1.1-1.3 centered within 0.05° of Sgr A*. Deviations from the spherically symmetric
morphology are disfavored

@ Independent fits in annuli about the direction of the GC confirm the excess up to at least | 0°
from the Galactic plane following a steep MNFVV profile

Draylan et al, arxiv: [ 4026703

.
AX
1%
.\."; T
I'H.
LN
LT S
-;-I.h .\.'-
s
o =
= 5 —i""-—_ 5
= S
"-.-: -."::-..T
B Bt —1—-4""--.ﬂ
= ! e
= o
o 1078 ] ik
[F% -T. | b
¥ |
4 8 A o H ﬁ
I; .
¥ (degrees) .



CURRENT STATUS OF GC DM
SEARCHES IN GAMMA-RAY

O A similar excess has been found by the work of Abazajian et al, focused on a 7°%7° region
centered at the GC. In addition to DM, an unresolved pulsar interpretation is found plausible

o) Based on globular clusters observations, observed signal is found to be consistent with
3000-5000 millisecond pulsars in a | kpc x | kpc region

i D?
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CURRENT STATUS OF GC DM
SEARCHES IN GAMMA-RAY

W More extensive study of the background model systematics

&) Broad range of diffuse emission models

& Results compatible with dark matter annihilation into b-bbar and a mass of ~530 GeV

T T

1 Ml v pr—
- — — hroken PL

E*dN/dE [GeV cm %5 'sr!]

-+ = DM bb

[
=
-

—
—
[ —

—rT

PL with exp. cutoff

ﬂ;al ore et EE',FELPF;-}‘::iVﬂ"q'D‘?.D[;]‘q%

- DM rtr

GC excess spectrum with
stat. and corr. syst. errors |

]

10°



Fermi LAT Collaboration, Fifth Fermi symposium

GALACTIC CENTER REGION

& Focus on a | 5% 5% region (~ | kpc) around Galactic center




Fermi LAT Collaboration, Fifth Fermi symposium

GALACTIC CENTER REGION

& Focus on a | 5% 5% region (~ | kpc) around Galactic center

o) Data selection: | -100 Ge¥V, CLEAM class, FRONT converting events (large effective area and narrow
P5F); PASS 7 reprocessed; 62 months.

LAT counts, |-100 GeV
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Fermi LAT Collaboration, Fifth Fermi symposium

MODELING THE
INTERSTELLAR EMISSION

Interstellar emission models: use GALPROP models with prop. parameters consistent with CR. data
and in good agreement with all-sky gamma-ray data, from Ackermnann ef ol 2012, Ap] 750. Select two
models with broad range in the radial extent of the CR source distribution (Pulsars, OB stars) as

baseline

Tune the baseline medels to gamma-ray data outside of the RO for improved foreground/
background determination

LAT counts, 1-100 GeV
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Fermi LAT Collaboration, Fifth Fermi symposium

BACKGROUND TUNING PROCEDURE

@ Determine intensity for i (from HI and H; gas) and IC contributions in galactocentric rings,

b |IC component divided in rings {dev. version of GALPROP), same boundaries as the gas: these
additional degrees of freedom can compensate for uncertainies in the GALPROP model of the
electron spectrum or ISRF used to calculate the IC templates

Isotropic and Loop | (Wolleben, 2007, Apf 664) emissions also fitted to the data

Different sky regions are employed based on where the components that are fitted contribute

most. Point source locations and spectra taken from the preliminary 3FGL.

Regions containing structures not modeled or that might bias the fit results are not used to tune the
IEM {Fermi bubbles, Cygnus region.JThe | 5%x| 5° region is also excluded

= Two tuning procedures: one adjusting intensity only, the other also allowing spectral adjustment (broken
power law, break at ~2 GeV) for @ production within the solar circle. No freedom in IC spectrum

@ 00

= Four variants for the foreground/background IEM: Pulsars/OB Stars, tuned intensity/index

|sotropic
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Fermi LAT Collaboration, Fifth Fermi symposium

MODELING THE 15°X15° ROI

W Model the emission from the | 5°x1 5° ROl for each of the 4 foreground/background models

@ Point sources in the region are determined consistently with these models - we do not use existing
catalogs

b identify preliminary locations of point source candidates by applying PGWave (Domiani et ol. 1997,
Apf, 4183 wavelet algorithm, assumes flat background) to the datain 4 equally spaced LogE bins in
thel-100 GeV range

p for each of the (fixed) models, determine position and initial values of the spectra of the point

source candidates (Pointlike)
P obtain list of point source candidates with T5>9

for the analysis of the | 5% 5% ROI

= |ntensities for the innermost ring for HI/H: a7,
and |IC are determined by fitting the data in this
region concurrently with the point source
candidates. Fore/background models held fixed

&) Repeat procedure twice, until no significant point-
like excesses are left in the residuals

& Bremsstrahlung and HIl 7” emissions are
subdominant and are fixed to GALPROP

prediction




Fermi LAT Collaboration, Fifth Fermi symposium

RESULTS

& The fore ground/background accounts for most of the emission in the region.

@ The data-model agreement is within 5-1 0% averaged over the 15°x¢|15° ROl up to ~ |0 GeV. The models are too
bright below ~2 Gel and too dim above

Integrated counts in 15°x15° ROT
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Fermi LAT Collaboration, Fifth Fermi symposium

RESULTS

) Agreement is better for tuned index models

= For all foreground/background models, the fitted IC emission for ring | is brighter than the gas emission and
larger {7-30x) than predicted from GALPROP for the baseline models. This could be due to higher intensity of

Integrated fluxin 15%x15° RO, E=1GeY, 104 ph cm* -1

ISRF and‘or higher CR. le pton intensities than assumed
& Point source contribution comparable to IC

© HI/H;: pi0 intensities are subdominant and less than
predicted by GALPROP for the baseline models
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Fermi LAT Collaboration, Fifth Fermi symposium

RESULTS - RESIDUAL MAPS

Counts in 0.19x0.1* pixes
DATA-MODEL 03*radius gaussian smoothing
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Fermi LAT Collaboration, Fifth Fermi symposium

ADDITIONAL TEMPLATES

Ve test the possibility that an additional component centered at the GC contributes to the data (2D
gaussians, Navarro-Frenk-¥¥hite, or a gas-like distribution as proxy for unresoled sources)

Peaked profiles with long tails {NFVY, NFYY contracted) yield the most significant improvements in the data-
model agreement for the four variants of the foreground/background models. IC ring | contribution ~2-3x
smaller than without additional component and HI ring | contribution is ~2-5x larger

The predicted spectrum depends on the fore ground/background models.
Integrated counts in 13°x153° ROI
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Fermi LAT Collaboration, Fifth Fermi symposium

ADDITIONAL TEMPLATES

Ve test the possibility that an additional component centered at the GC contributes to the data (2D
gaussians, Navarro-Frenk-¥¥hite, or a gas-like distribution as proxy for unresoled sources)

Peaked profiles with long tails {NFVY, NFYY contracted) yield the most significant improvements in the data-
model agreement for the four variants of the foreground/background models. IC ring | contribution ~2-3x
smaller than without additional component and HI ring | contribution is ~2-5x larger

The predicted spectrum depends on the fore ground/background models.

Integrated flux in 153°x13° ROIL, NFW component

2 - - - LN ¥ - — R N
PRELIMINARY PRELIMINARY
o
E :

10* |- - ; [V nd Sl -

]

— Pulsars - tumed mtensiy % — Pulsars - tuned miensiy
B Pulsars - iimed mdex F'F § Pulsars - tuned mdex 7
== B Stam - tuimed '||:|I|.'|:|*-.i1!|.' I'.I'J ==ee (VB Stams - tuimed '||:|I|.'|'|x'il:|.'
1 | =30 |
10 - - B Stars - tuned index 3 m 10 - === OB Stars - tumed index -
g gl ; "
1 1

L0y 1’ 10 1’

10t 10°
Energy (MeV) Energy (MeV)



Fermi LAT Collaboration, Fifth Fermi symposium

ADDITIONAL TEMPLATES

Counts in 0.1°x01.1° pixes
Without NFW': DATA-MODE L 03¢ radius gaussian snoothing
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Fermi LAT Collaboration, Fifth Fermi symposium

We have systematically developed a set of models for the diffuse emission in the inner 15%x]5°
of the Milley Way, by fitting GALPROP-derived templates in a way not done before

We determined the point sources as part of the development of this model

We employ all sky data to constrain the foreground/background emission, excluding the
| 5% 57 region, for different assumptions on the CR source distribution, gas intensity and
spectral index, and IC intensity across galactocentric rings

O We find:

¥ IC emission from inner kpc is higher than predicted and is the dominant interstellar emissio
component in this region.We are exploring the origin of the enhanced IC in the |G to see
what combination of ISRF and CR leptons best explains the data.

»  We find an enhancement approximately centered the Galactic center with a spectrum that
peaks in the GeV range, that persist across the models we have employed.The spectral
properties vary widely depending on the modeling of the interstellar emission

»  Foreground/background accounts for most of the emission. lts determination is crucial in
extracting the contribution from the Galactic center region

=  We are further exploring the systematic uncertainties in the IEM, e.g. gas distribution, ISRF,
cylindrical symmetry. This is crucial in determining properties of the IEM in the innermost kpc
and to confirm the presence and properties of an additional component
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H.E.S.S.: GALACTIC HALO

GC is complicated by astrophysics, look away from it!

signal region: relatively dose to GC but “free” from
astrophysical background

Diffuse

Select a region where the contribution from DM is Emisaion
smaller for background subtraction {background
region)

small dependence on DM profile
Abramowski et.al Phys Rev.Lete. 106 (ar>dv:  103.3266)
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DWARF SPHEROIDAL GALAXIES

W Optically observed dwarf spheroidal galaxies (dSph):
largest clumps predicted by N-body simulation.

o’ Excellent targets for gamma-ray DM searches

b Werylarge M/L ratio: 10 to ~>= 1000 (M/L
~1 0 for Milky Vvay)

p DM density inferred from the stellar data!
Data so far cannot discriminate, in most
cases, between cusped or cored dark matter
profiles. However, Fermis DM constraints
with dSph do not have a strong dependence
on the inner profile

b Expected to be free from other gamma ray
sources and have low dust/gas content, very
few stars




DWARF SPHEROIDAL GALAXIES

Fermi LAT Collaboration, arxiv: | 21 0,0828

&) Search for a signal in 25 dSphs
W' 4 years of data, 500 MeV-500 GeV, P7REP CLEAN

= Mo significant emission is found from any of the 25 dSphs
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DWARF SPHEROIDAL GALAXIES

Fermi LAT Collaboration, arxiv: | 21 0,0828

Mo significant detection is found when assuming gamma-ray spectra corresponding to
representative DM annihilation final states (e”e’, 7Y, T'T, b-bbar, u-ubar, W'V} and DM masses

in the 2 GeV-| TeV range

Combine with the DM density
inferred from the stellar data
{assume MNFVV profile) to set
constraints on the annihilation
Cross section

Include 15 dSphs in the
combined fit {include only
dSphs with stellar kinematic
data and non-overlapping ROls)

Largest deviation from the null
hypothesis is for annihilation
into b-bbar for masses in the

| 0-25 GeV range.

Segue |, Ursa Major Il, and
Willman | {large |-factors)

primarily contribute to the
deviation
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DWARF SPHEROIDAL GALAXIES

Fermi LAT Collaboration, arxiv: | 21 0,0828

) Bands and median from simulations:
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DWARF SPHEROIDAL GALAXIES

Fermi LAT Collaboration, arxiv: | 21 0,0828

W) Significance of deviation {T5=8.7):
null hypothesis

Determine distribution of TS values from ﬁ,{pm é | IJ:l
individual fits of a 25 GeV b b annihilation Ib= —<ln T
L{je, 8| D)

spectrum to the null hypothesis
alternative hypothesis

100

. an
TS vs. N>TS A

P Local significance: : R Do
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b Global significance:
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Fermi LAT Collaboration, Fifth Fermi symposium

UPDATE - DWARF
SPHEROIDAL GALAXIES

&) Better agreement between simulations and data with preliminary 4 year point source
catalog

& No significant excess is found

o) Limits in mild tension with the GC excess

n __Fermi-LAT Pass 8 Dwarfs Composite 95% C.L. Upper Limit _
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DWARF SPHEROIDAL GALAXIES

IACTS

W) Observations of dSphs with |ACTs competitive with Fermi above DM masses ~3 TeV

W MAGIC latest results corresponding to 160 hrs of observation of Segue | are the strongest
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SEARCH FOR SPECTRAL LINES:
HINT OF A SIGNAL.?

7
& “Smoking gun” signal of dark matter.

@ The line signal is generally suppressed {(but enhanced in some models!)

) _
L ZH ..

Jll———————

W Some evidence for a line at ~| 30 GeV was daimed {Bringmann et al, arXiv:1203.1312 {internal bremy},
Weniger, arXiv:1204.2797, Su et al,arXiv:] 206.1 61 6)

&) More statistics, data reprocessing, and improved energy dispersion model yield a decrease in significance
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How CONVINCING IS THIS
SIGNAL?

%) The line feature in the data is narrower than the expected energy resolution by a factor 2-3

W' Earth Limb: expected to be featureless. Find excess at putative line energy also when the LAT is

Ewents (5.0 GeV

Avomeo o B B ES 2

Fesid. (o)

pointing at the Limb. NB: feature appears in low-incidence angle events, but not in high-incidence
angle events (both for GC and limb data)
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AND IT MIGHT BE GOING AWAY...

W Signal significance has been decreasing over time
&’ The evidence for a line signal is no longer very convincing

&’ Background fluctuation? Systematics?

YWieniger, Sackler Syrmposium 2014

Fermi LAT Collaboration
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Fermi LAT Collaboration, Fifth Fermi symposium

UPDATE - LINES

& Updated results with new event level reconstruction (Pass 8) and more data

& No significant lines detected

& No significant feature at 133 GeV
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H.E.S.S. LINE RESULTS

&) Search in Galactic center halo (~100 hrs) and around extra-galactic sources (—1200hrs)
&’ Future prospects: lower energy threshold for H.E.5.5. 2 will extend line search down to 80 Ge¥

[95% CL) (cm™/s)
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klieffer, TeWPAN DM 2014
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SUMMARY/OUTLOOK

Intriguing hints of potential signals in gamma-ray data have been claimed and persist, e.g.
few GeV excess in Galactic center in gamma-rays

However the astrophysical background is currently a limitation for the Galactic center,
were a dark matter signal is predicted to be brightest and has therefore huge potential in
terms of discovery or setting constrains. More work and more data are required to
better understand the data

In the meanwhile, indirect dark matter searches continue to set strong constraints on the
nature of DM

Improvements in current experiments as well as upcoming experiments promise more
interesting results to come

Thank you!
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