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MOND � synopsis
MOND hinges on accelerations: These are many orders of magnitude in
galactic systems and the universe at large (e.g., cH0) compared with lab and
SS ones.

• Departure at small accelerations.

• Works very well in predicting many properties of galaxies of all types.

• Leaves some discrepancy in galaxy cluster. Not yet a coherent picture for
cosmology.

• Strongly connected with cosmology in di�erent ways.

• Several full-�edged theories (relativistic and their NR limits), but I think we do
not have the �nal one (maybe not even close).
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Basic tenets

A theory of dynamics (gravity/inertia) involving a new constant a0 (beside G, ...)

Standard limit (a0 → 0): The Newtonian limit

MOND limit : a0 → ∞, G→ 0, A0 ≡ Ga0 fixed:

Scale invariance: (t, r) → λ(t, r)
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Scale invariance

X ma = F, F = mMG/r2

V ma2/a0 = F, F = mMG/r2,
or ma = F, F ∝ m(MA0)

1/2/r
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In analogy to c in the relativity/classical, or ~ in QM/classical context: a0 marks
the boundary between the two regimes, and also appear in many phenomena in

the deep-MOND regime, where it can only appear as A0.
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Example:

Point-like central mass: a = MG
R2 f

(
MG
R2a0

)

a ≈
{
MG/R2 : a≫ a0
(MA0)

1/2/R : a≪ a0
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a0 =?

a0 can be derived in several independent ways:

a0 ≈ 1.2× 10−8 cm s−2

• ā0 ≡ 2πa0 ≈ cH0

• ā0 ≈ c(Λ/3)1/2

Why a critical acceleration? MOND length, MOND mass.

No MOND black hole with RS . RHubble

No MOND departure for cosmological strong lensing

No signi�cant gravitational Cherenkov losses
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Nonrelativistic theories

Nonlinear Poisson equation:

I = − a20
8πG

∫
F

[
(∇⃗ϕ)2

a20

]
d3r −

∫
ρϕ d3r

∇⃗ · [µ(|∇⃗ϕ|/a0)∇⃗ϕ] = 4πGρ µ(x) ≡ F ′(x2) (a = −∇⃗ϕ)

The deep-MOND limit: Scaling F(y) ∝ y3/2, µ(x≪ 1) = x:

∆3ϕ ≡ ∇⃗ · [|∇⃗ϕ|∇⃗ϕ] = 4πA0ρ

conformally invariant
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Quaslinear MOND (QUMOND)

I = − 1

8πG

∫
{2∇⃗ϕ · ∇⃗ϕN − a20Q

(∇⃗ϕN
a0

)2
}d3r − ∫ ρϕ d3r

∆ϕN = 4πGρ, ∆ϕ = ∇⃗ · [ν(|∇⃗ϕN |)∇⃗ϕN ]

The deep-MOND limit: Scaling Q(y) ∝ y3/4, ν(y ≪ 1) = y−1/2:
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Relativistic theories

• Tensor-Vector-Scalar Gravity (TeVeS�Bekenstein 2004, after Sanders 1997)
Gravity is described by gαβ, Uα, ϕ: g̃αβ = e−2ϕ(gαβ+UαUβ)−e2ϕUαUβ

Reproduces NR modi�ed gravity on galactic scales (a0 ∝ kk̂−1/2). Lensing:
Similar to the GR result with modi�ed potential Cosmology and structure
formation: preliminary work (Dodelson and Liguori, Skordis et al.) CMB:
preliminary work: has potential to mimic aspects of cosmological DM (Skordis
et al.).

• MOND adaptations of Aether theories (Zlosnik, Ferreira, & Starkman 2007 )

L(A, g) = a20
16πG

F(K) + λ(AµAµ + 1), (1)

where
K = a−2

0 Kαβ
γσA

γ
;αA

σ
;β. (2)

Kαβ
γσ = c1g

αβgγσ + c2δ
α
γ δ

β
σ + c3δ

α
σδ

β
γ + c4A

αAβgγσ,
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• Galileon k-mou�age MOND adaptation (Babichev, De�ayet, & Esposito-Farese
2011)

Also a tensor-vector-scalar theory. Said to improve on TeVeS in various regards
(e.g., small enough departures from GR in high-acceleration environments)

• Nonlocal metric MOND theories (Soussa & Woodard 2003; De�ayet, Esposito-
Farese, & Woodard 2011) Pure metric, but highly nonlocal in that they involve
F (�).
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BIMOND

I = IEH + IM + ÎEH + ÎM + IInt

I = − 1

16πG

∫
[g1/2R+ĝ1/2R̂−2(gĝ)1/4a20M]d4x+IM(gµν, ψi)+ÎM(ĝµν, χi)

M a dimensionless scalar a function of (quadratic) scalars of

a−1
0 Cα

βγ, Cα
βγ = Γα

βγ − Γ̂α
βγ

Υµν = Cγ
µλC

λ
νγ − Cγ

µνC
λ
λγ

Υ = gµνΥµν, Υ̂ = ˆgµνΥµν
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�Microscopic� approaches

• DM with novel, unexpected properties, that may behave as dictated by MOND:

◃ Polarized dark medium (Blanchet 2007, Blanchet & Le Tiec 2009)
◃ Novel baryon-DM interactions (Bruneton & al. 2008)
◃ Dark Fluid (Zhao 2008)

• Entropic e�ect (Verlinde): (Klinkhamer & Kopp 2011, Pikhitsa Ho & al. 2010,
Li & Chang 2010), others

• Vacuum e�ects (Milgrom 1999 )

• Membranes with gravitational DoF extra coordinates (Milgrom 2002)

• Horava gravity (Romero & al. 2010), Sanders (2011), Blanchet & Marsat
(2011)
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MOND laws of galactic dynamics

• Essentially follow from only the basic tenets of MOND

• Are independent as phenomenological laws�e.g., if interpreted as e�ects of DM
(just as the BB spectrum, the photo electric e�ect, H spectrum, superconduc-
tivity, etc. are independent in QM)

• Pertain separately to properties of the �DM� alone (e.g., asymptotic �atness,
�universal� Σ), of the baryons alone (e.g., M − σ, maximum Σ), relations
between the two (e.g., M − V )

• Revolve around a0 in di�erent roles
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Some of the MOND laws

• Asymptotic constancy of orbital velocity: V (r) → V∞ (H)

• Light-bending angle becomes asymptotically constant (H)

• The velocity mass relation: V 4
∞ =MGa0 (H-B)

• Discrepancy appears always at V 2/R = a0 (H-B)

• Isothermal spheres have surface densities Σ̄ . a0/G (B)

• σ4 ∼MGa0 relation (�isothermal� spheres, virial relation) (B, H-B)

• The central surface density of �dark halos� is ≈ a0/2πG (H)

• Disc galaxies have a disc AND a spherical �DM� components (H)

• Full rotation curves from baryon distribution alone (H-B)
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Mass-asymptotic-speed relation�McGaugh
2011
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Discrepancy-acceleration correlation

g = f(gN) → g = gNν(gN/a0)

ν(y → ∞) → 1, ν(y ≪ 1) ≈ y−1/2
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Discrepancy-acceleration correlation for
rotationally-supported systems

From review by Famaey and McGaugh 2012
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Discrepancy-acceleration correlation for
pressure-supported systems

From Scarpa (2006)
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Mass-velocity-dispersion-correlation

From review by Famaey and McGaugh 2012
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�Halo� central SD�Salucci et al. 2012

a0/2πG = 138M⊙pc
−2

[log(a0/2πG) = 2.14]
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Rotation Curves of Disc Galaxies

From Sanders 2005 and Sanders and McGaugh 2002
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From review by Famaey and McGaugh 2012
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From review by Famaey and McGaugh 2012
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McGaugh
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from Sanders and McGaugh 2002
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x-ray Ellipticals, tested over an acceleration
range ∼ 10a0 − 0.1a0

Baryon (dashed) and dynamical masses (grey band and large circles) from Humphrey et al. 2011,2012; MOND

points (squares and small rings) from Milgrom 2012
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Andromeda satellites�internal dynamics

McGaugh and Milgrom 2013.
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Galaxy-galaxy lensing

Data from Brimioulle et al. 2013, analysis from Milgrom 2013.
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All is not roses

• Galaxy clusters

Sanders 1999

Clowe et al. 2006

• Cosmological DM
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Summary

• MOND is a paradigm still under construction that replaces DM with new
physics (or novel DM) at accelerations below a0 ∼ cH0 ∼ cΛ1/2.

• Strongly anchored in symmetry (NR space-time scaling, de Sitter symmetry)

• Several theoretical directions; can di�er greatly on second-rank predictions
(e.g., EFE, solar system)

• There are some important things that it was not yet shown with certainty to
do (e.g. replacing cosmological DM�some preliminary work).

• Still, it does a lot, and it does it extremely well.

• Rather inconceivable that MOND phenomenology can be explained as some
organizing principle for CDM.
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