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Introduction

Recently, (Renyi) entanglement entropy
((R)EE) has a center of wide interest in a broad
array of theoretical physics.

It is useful to study the distinctive features of
various quantum state in condensed matter
physics. (Quantum Order Parameter)

(Renyi) entanglement entropy is expected to
be an important quantity which may shed
light on the mechanism behind the AdS/CFT

correspond .(Gravity <> Entanglement)
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Introduction

Recently, (Renyi) entanglement entropy
((R)EE) has a center of wide interest in a broad

array of theoretical physics.

* In the lattice gauge theory, it is expected that

entanglement entropy is a new order
parameter which helps us study QCD more.

- But entanglement entropy in the gauge theory is ill-defined.

In this work, we investigate the time dependent

property of (Renyi) entanglement entropy.




The Definition of (Renyi) Entanglement Entropy

e Definition of Entanglement Entropy

We divide the total Hilbert spaceintoAandB: H,,, = Hys ® Hp .
The reduced density matrix P A is defined by pA = TTBPtot
This means the D O F in B are traced out.

The entanglement entropy is defined by von Neumann entropy S s

(Renyi) Entanglement Entropy (REE)

GA\

~@-n->1
Entanglement Entropy (EE)

B

Sa = —trapalogpas

on a certain time slice



Example
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DO | —
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=Reduced density matrix: p, =

DO | —

=Entanglement entropy: S, = (

A®Mg)

For an entangled state: [¥) = T(W ®|p+I
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log 2
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Example

(IMa+1h)ells+Mg)
(T + 18 4) ((Tla + (L)

DO | —

For a product state: |¥) =
=Reduced density matrix: p, =

DO | —

=Entanglement entropy: S, = (

®1)5)

For an entangled state: [¥) = 7(”) ® )+
= (1) 4 (La)

(|T> (T1.4) +
log2

) A
=Reduced density matrix : ,, %

= Entanglement Entropy : S, =

In general ,

» Entangled state (not-product state) has the entanglement entropy.
S 4 measures the quantum entanglement.




Properties 1

For a pure state, entanglement entropy satisfies

Sa4 = SB.

For a mixed state (thermal state etc.),
entanglement entropy satisfies

Si+ Sg.

GA\

Strong Subadditivity
Entanglement entropy necessarily satisfies

VA

Sayp+c + 5B Satp + Spic

Sa+ Sco

I

Sa+B + Spic

O,
A >




Entanglement Entropy in QFT

In general, (Renyi) entanglement entropies has
UV divergence.

-> We introduce lattice spacing «.



Entanglement Entropy in QFT

In d dimensional CFT,

Sa=p) (g)“m (Z)+
/ ) <’ pa—2 (1) 4+ pa, d:odd

| Pd-3 (é)Q + clog (é), d : even.

Area law div.

I: characteristic size of a subsystem
B

Most strongly entangled —



Entanglement Entropy in QFT

In d dimensional CFT,

Universal quantities
d—2 d—4
S. =y ( é ) ¥ Dy ( é ) T (do not depend on cutoff)

( [

/ Pd—2 (g)

+ <

pa-s3 ()

Area law div. | Fd—=3 \¢

I: characteristic size of a subsystem




Entanglement Entropy in QFT

In d dimensional CFT,

/ d—2 / d—4 i I d | h
S, = py (E) + o (2) L. c is related to central charge
( [
/ Pd—2 (g)
+ < ,
Area law div. | Pd-3 (E)

I: characteristic size of a subsystem




Our Computation and Result
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‘ HO — Hl (change parameter)

'W)is not the ground state for Hy

A new class of excited state:|¥) = N~'O(¢,z") |0)

Excitation is milder than that in Quantum Quench.

ASX") is finite even for the size of subsystem is infinite.
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A new class of excited state

For example,
In Quantum Quench
|\I’) : ground state for Hy
Hy: Hamiltonian » H, :Hamiltonian

for massive theory for massless theory

A
At 'a‘ Excitation is milder than that in Quantum Quench. [E =2

In our excited state case

State: |‘I’> = N_lo(taxl) ’0>

At late time, [ - oo » (R)EE approaches Some constant.



Motivation

Previously, we studied the property of EE for the subsystem whose
size (/) is very small in d+1 CFT.

| << (The Excitation Energy)_,OI

This temperature is universal.



Motivation

We study the property of (R)EE for

1. The size of subsystem is infinite.
A half of the total system: | I

' >0

2. A state is defined by acting a local operator
on the ground state:

W) = NLO(t, 21) |0) .
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Motivation

We study the property of (R)EE for

1. The size of subsystem is infinite.

AS|Y )

At late time
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Results

We compute ASX”) for a new class of excited states.

W) = N 1Ot z') |0) for O =:(97¢)":
Atl'me

They measure the D.O.F of operators and characterize the
» operators from the viewpoint of quantum entanglement.

(not conformal dim.)
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Setup

We consider d+1 dim. QFT.
We prepare a locally excited state: |U) = N ~1O(—t, —1,x) |0)

x = (22,23, -, z%)

We investigate the time evolution of At
(Renyi) entanglement entropies.

We choose a half space (x' >0) as

X ,=
subsystem A. — | >
|

The reduced density matrix
pa =N "2trg [O(—tl, —1,%) |0) (0] OT (—t4, —l,x)] ‘

—n

We will compute 5§ = 1171 gl l Replica Method !!

\ T Ty ]



How to compute

1. We compute ASYY = 05" — gt by hath-integral:

ASY =
1
1l—n

(10g <(’)T(T2, 02’71)0(7"1, Hl,n) e OT(Tz, 02,1)0(7"1, 91’1)>En — N 10g <OT(T’2, 92’1)(9(7“1, 01)>21) .

2. After that, we perform an analytic continuation to real time.




Replica Method

In d+1 dim. Euclidean space, the reduced density matrix is given by
pa=N">trg [O(1e, —1,x) |0) (0| OF (7, —1,x)]

We would like to focus on the time evolution of the (R)EE.
We define AS&{”)the excess of the (R)EE:
Sﬁln)Ex : (R)EE for pa

Sﬁf)G : (R)EE for the ground state



Replica Method

In d+1 dim. Euclidean space, the reduced density matrix is given by
pa =N">trg [O(1e, —1,%) |0) (0| OF (1, —1,x)]
Configuration on A

(D, B 5|O(r,.. —1.%)|0)
()

Configuration on B
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Replica Method

In d+1 dim. Euclidean space, the reduced density matrix is given by
pa=N""trg [O(1e, —1,%) |0) (0| OV (7, —1,x)]
(®1,Pp|O(1e, —1,%x)|0) = (B, Pg|eT™O(l, x)e ™ |0)

= (D1, Pp|le HO-TIO, x)e  H(T+T) |0)

0<—7, To «——T

Introduce a lattice spacing §

=)

D(t=—10)
/ DOO (1o, —1,%)0 (@ (T= 6,21 > 0) — ®1) 6 (P (T=—6,21 <0) — D) e 5P
P(t=—1T)



(P, PR|O(1e, —1,x)|0)

D (t=—10)
— S DOO(1, —1,%)8 (B (t = =0, 21 > 0) — P1) 6 (P (t = 6,21 < 0) — D) e 5P
t=-—1T

(0101 (T, ~1,%)|®2, @)

P (t=T)
= /( | DOO(1;,—1,%)6 (B (t = 8,21 > 0) — 1) 6 (P (t = 6,21 <0) — Pp)e S
P(t=0

pa=N">trg [O(1e, —1,%) |0) (0| OF (1, —1, )]



(P, PR|O(1e, —1,x)|0)

P (t=—90)
— DOO(1o, —1,x)5 (P (t = 8,21 > 0) — P1) 6 (P (t = —b, 21 <0) — D) e 57
O (t=—T)

(0101 (77, ~1,%)|®2, @)
P(t=T)

= f DOO(1;,—1,%)6 (B (t = 8,21 > 0) — 1) 6 (P (t = 6,21 <0) — Pp)e S
B(t=4)

pa=N">trg [O(1e, —1,%) |0) (0| OF (1, —1, )]

-

PA)e, (a1)0s ()

— (ZFX)~1 /@@,mq D® O (ry,05,)0(r1,0,)e 55 (B(=8,2%) — ®1(2")) - § (B(5,2") — Po(a"))

(—OO,J:?-’)

®(o00,z?)
ZlEX — / Do OT(TQ, 92)0(7’1, 91)€_S(¢)
)

(_Oorri)




Replica Method

In d+1 dim. Euclidean space, the reduced density matrix is given by
pa =N">trg [O(1e, —1,x) |0) (0| OF (1, —1,x)].
In the path-integral formalism,

[ﬁA}@l(xi)@z(ri)

= (zFX /“I’(OO@”) D® OF(ry,0,,)O(ry, 0, )e 1?5 (B(—d,2") — D1(z")) - 6 (B(0,2°) — Po(a"))

(—OO,.III’)

®(00,z?)
ZR = / DD O (r9,0,)O(r1, 61 )e 5@
[6))

(*OO,‘T/’-)

S : a lattice spacing.







(I)S(T — _5a xz)

Identify

(1)3(7' = (5, CUZ)




(I)S(T — _5a :UZ)

Identify

(1)3(7' = (5, CUZ)







4 local operators are
inserted on 2-sheeted geometry




Replica Method

In d+1 dim. Euclidean space, the reduced density matrix is given by
pa =N">trg [O(1e, —1,x) |0) (0| OF (1, —1,x)].

In the path-integral formalism,

Pl (2i)@a(a)

®(co,z?) , , : :
_ (z{fX)l/@ D& O (13, 05, )O(r1, 0 ) S196 (B(—6, ') — By (7)) - 6 (B(6, 2°) — Pa(a))

(—OO,J:II’)

®(00,z?)
FI — / D® O (ry,0,)O(r1, 61 )e 5P
[}

(—OO./CCi)

: a lattice spacing.
o P & Periodicity along 0 : 2m->2nn
X ZEX
trapy = (ZFX)™
®(c0,z?)

= (ZIEX)_”L Do OT(T% 92)0(?“17 91) e OT(TQ:‘ QQ,k)O(Th Ql,k) .. 'OT(TZJ 92,11)0(7'1; 91,n)€_5[®]

(*OO,SCL‘)



ASXL) _ Sgn)Em B Sj(qn)G

(n)Ex 1 [ DPOT(r1,01.1)O(r2,021) - O (r1,01,,)O(ra, 02 ,,)e™ "
Sy = ——log 7
1—mn (fD(I)OT(Tl,HLl)O(TQ,HQ,l)G )
2in
S(n)G — 1 log é OT(T2392,k) I
A 1—n A Ty Aaiinl B
&~ \ A A
X1 )
Z, :Th tition function on 3] a0 |
: The partition func =
" P " t? VO(r, b1 )¢ 1
&« — e 4A
X1 :
OT (’-"2, 92,k:+2) I
4 : 1', VO(?‘1,91 k42) P2 ~1
Z1: The partition function on ¥, P = i

I X1

Flat Space



S(n)Ea: _ 1 log fDq)OT(Tl,gl,l)O(TQ,QQ’l) x 'OT(T1,91’7})0(7"2,92’71)6_3”
A 1—n (fl)(I)(QT(7“1,91’1)(9(”?2,92,1)6_’9)7L
2in
S(n)G — 1 log é OT(T2792,k) I
A 1—n A Vool — =1
&~ \ A A
X1 )
7 -Th titi £ ti O (r2, 02 441) !
. e partition tunction on
T p En T | vO(Tl,Ql}k{.l)( ‘I
&« — e 4A

! log fD(I)OT(""1791,1)0(""2792,1)---O(rl,elan)TO(m,@Q,n)]
Zn

— |
1—n 08

1 (J D‘DOT(%91,1)0(7“2792,1))”]

24




Replica Method

O (12, 02,1, I
M O(Tla Ql,k‘) ,L
& N 4_ A
X1
O (rg,02 k41) I
T
- YO0, O ) A
&~ ) 4A
X1 -
OT(ry, 09 1 42) !
i VYO(ri, 01 142) p = =~1
&” ’ - A
X1

91,@' — 91 ‘|‘27T(“L — 1)
92’7; — 92 + 27T(’L — 1)

(log <OT(""2, 02.0)O(r1,01.0) - O (1, 02,1)O(11, 91=1)>2n

1—n

— nlog <OT(T2, 92,1)0(7"17 91)>21) -



Replica Method

OT(TQaBQ,k) I

Ot (12,05 k12) '
VO(r1, 01 142) p ™= =1

-

91,2' — (91 —|—27T(“L — 1)
92’7; = 92 —|—27T(Z — 1)

W)O(r1,010) -+ OF (13, 05,)O(r1, 6,
—n log <OT(T2, 92’1)0(7"1, 91)>21) .

n



Replica Method
O (ry,05.1) |

v - O(Tl’ 917‘1‘:) ,L

2n-Point Function

on >,

Ot (12,05 k12) '
VO(r1,01 pi2) pp ™ =1




Replica Method
O (ry,05.1) |

v _ O(r1, 61 ) ,;:I__

& - 4

This formula holds for any local operators

91,@' — 91 —|—27T(“L — 1)
92’7; = 92 + 27T(Z — 1)

(log <OT(""2, 02.0)O(r1,01.0) - O (1, 02,1)O(11, 91=1)>2n
— nlog <OT(fr2, 02.1)O(11, 91)>21) :

1—n
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Comment on Analytic Continuation

Analytic continuation: Te — —€ itl,
T = € — 1.

¥

p=N"2eHhe=HO(—1 x,)|0) (0| O (=1, x;)e H et
—

Suppress high energy mode!

For example :2d CFT, ® =a primary operator subsystem= finite interval

@ Conformal dim.
Internal energy in A ~

€



Motivation

We study the properties of REE
for locally excited state
when the size of subsystem is infinite.

Researches:
1. The time dependence of REE
2. The late time value of REE



Example

We consider free massless scalar field theory in d+1 dim.

Especially, we focus on that in 4 dim.

We act a local operator ¢(—t, —{,x) on the ground state:

W) = N~ o(—t,—1,%) |0) . At

We measure the (Renyi) X 1

entanglement entropies at t=0.

m) Time evolution!! T



Example

Let’s compute ASJ(LXZ) for |[¥) = N 1o(—t, —1,x)|0)
in 4-dimensional free massless scalar field theory.

Green function:

<¢ (Ta 0, X) ¢ (37 9,7 X)> —

872 (r+s) (r+ s — 2y/rscos (Q_TQI))



Example

(P(r1,01)0(r2,02)P(r1, 01 + 2m)P(ra, 02 + 27)) 5,
($(r1,01)8(r2, 02))s,

ASEE) = — log

Green function:

, 1
(@(r,0,%)¢ (5,6, x)) = 872 (r +s) (r+s—2y/rscos (52))

After that, we perform
» analytic continuation to
real time.

We computeASf)
by using Green function.




<(b(’l‘1, 91)(b(’l“2, 92)gb(?"1, 0, + 27’(‘)@(?”2, 0o + 271'))22
(6(r1,601)0(r2, 62))s,

After that, we perform
» analytic continuation to
real time.

We computeASf)
by using Green function.




Time Evolution of A5
ASY

Operator
i ] [
M-) » O~ Nge==1-0
Entarlrgled ;;air
B A B A




Time Evolution of AS%
ASY

Operator

| An entangled pair appears.
,54; gled pair app
Entangled palr Each of pair is included in
B A

the region B.




Time Evolution of A5
ASY

In this region, two quanta
isincluded in A and B

respectively .




Time Evolution of A5
ASY

08/\
6

In this region, two quanta
isincluded in A and B

respectively .

Entanglement between quanta can contribute toASf).




Time Evolution of AS'?
ASY

A Subsystem
= a half of the
total space

\ 4

AS'? approaches

Constant!!

Operator

I

] [
O~ @20

R »

Ental;gled ﬁair

B A B A




Time Evolution of A5
ASY

ASff) for |¥) = N~ ¢(—t, —1,x)|0)approaches constants! !

(log2)
We call them the (Renyi) entanglement entropies of
operators.



Entangled Pair Interpretation

We derive ASY) for [¥) =N : ¢"(—t,~1,x) : |0) from
the entangled pair interpretation.

We decompose ¢ into the left moving mode and
the right moving mode,

Generalize

-

\_

In two dimensional CFT, we decompose ¢ into the left moving A

mode and right moving mode,

¢(z,2) = ér(2) + or(2) )




Entangled Pair Interpretation

We derive ASY) for [¥) =N : ¢"(—t,~1,x) : |0) from
the entangled pair interpretation.

We decompose ¢ into the left moving mode and
the right moving mode,

¢ = oL + PR
At late time, the d o f in the region B can be identified with
the d o f of left moving mode.




Entangled Pair Interpretation

Under this decomposition: ¢ — ¢L + ¢R

Tracing,out f_ ok

the d.o’Tin B



Entangled Pair Interpretation

Under this decomposition: ¢ — ¢L + ¢R

Tracing,out ¥

— 927 k(.C C oo C
thed.ofing ©4 (kCo» kCh kCh)
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Entangled Pair Interpretation

Under this decomposition: ¢ — ¢L + ¢R

k
s _ 1 L N
ASy 1n10g(2ﬁ§(kcﬂ)-

k
1
ASA — k-logQ — Q_kz ij 10gk0j-

J=0

They agree with the results which we obtain by the
Replica trick (See My paper!!).



Comments on Result

We defined the (Renyi) entanglement entropies of operators by

the late time values of AS'".

The (Renyi) entanglement entropies of : ¢" : is given by

1

ASYT = —

1




Generalize Results

We defined the (Renyi) entanglement entropies of operators by
the late time values of AS'" .

The (Renyi) entanglement entropies of specific operators (: (0"¢)" : )
which are composed of single species operator are given by
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We defined the (Renyi) entanglement entropies of operators by
the late time values of AS." .

The (Renyi) entanglement entropies of specific operators (: (0"¢)" : )
which are composed of single species operator are given by

1
1—n

ASYT =

for any dimension.

» They characterize the local operators from the viewpoint of
guantum entanglement!!



Generalize Results

We defined the (Renyi) entanglement entropies of operators by
the late time values of AS." .

The (Renyi) entanglement entropies of specific operators (: (0"¢)" : )
which are composed of single species operator are given by

for any dimension.

O
Largek, AS." ~ 5 log £



Other type operators

An excited state is defined by acting a local operator: ¢0r® : on
the ground state.
. 00, ¢ : is constructed of multispecies operators ¢ and O0,-¢ .

The second (Renyi) entanglement entropy of : ©0,-® :is given by

Dimension of Spacetime | Entanglement of Operators

[100]

4 1og :W:

Second Rényi Entropy 6 log _%_
8 log |55




Other type operators

An excited state is defined by acting a local operator: 0, @ : on
the ground state.
: 0, : is constructed of multispecies operators ¢ and 0, ¢ .

The second (Renyi) entanglement entropy of : ©0,-® :is given by

Dimension of Spacetime | Entanglement of Operators
4 log %
Second Rényi Entropy 6 log %
8 log %

B : ¢0.¢ : depends on spacetime dimension.
®» Another formula for: @0, ¢ :?



Sum rule

We acts various local operators on the ground state.

k
A locally excited state is given by [¢) = N'T JJ O'(#,2") |0).
Time ordering Op.

The late time of ASX") is given by

Local operators

They are given by the sum of the REE for the state defined by acting

each operators O'(¢',z"*) on the ground state.




Comment on propagators

e After performing analytic continuation, we take € -0 limit.
Only two diagrams can contribute to ASI(AF).

One diagram < product of red lines

One diagram < product of blue lines



Comment on propagators

* After performing analytic continuation, we take € -0 limit.

We also take late time limit (t>>1).
(r2,02)

A — 4 2

Red wavy lines and Blue wavy lines are called Dominant Propagators

D™

D) the number of sheets n

1
DM the number of propagators on the circle om 2




Summary (Up To Here)

Field Theory Side

 We defined the (Renyi) entanglement entropies of local
operators.

-They characterize local operators from the viewpoint of
guantum entanglement.

* These entropies of the operators (constructed of single-
species operator) are given by the those of binomial
distribution.

-The results we obtain in terms of entangled pair agree with
the results we obtain by replica method.

* They obey the sum rule.



Contents

* AdS/CFT Correspondence

1. Motivation (from now on)
2. Large N limitin Field Theory Side
3. Holographic computation

4. The Result and Possibility in Gravity

3. Based on arXiv:1405.5946 [hep-th]



Motivation

How REE for locally excited state behave
in large N strongly coupled theories ?



Field Theory Side
We consider large N free U(N) gauge theory.
Weact Tr(Z7) = Tr(¢1 +i¢ps)” onthe ground state.

J=2, AsSW = % log (21—2'“ P ) .

—n an N2(n—1)



Field Theory Side

We consider large N free U(N) gauge theory.

Weact Tr(Z7) = Tr(¢; +ips)” onthe ground state.

_ (n) _ 1—2n 1
1=2, AP =g (2 " QRNZ(H_D) .




Field Theory Side
We consider large N free U(N) gauge theory.
Weact Tr(Z7) = Tr(¢; +ips)” onthe ground state.

1 1-2n 1
[ 08 (2 i 2nN2(n—1>> '

‘n—>1

ASY =log (2v2N) EE)  Finite!!

J=2, AsW=




Field Theory Side

We consider large N free U(N) gauge theory.

Weact Tr(Z7) = Tr(¢; +ips)” onthe ground state.

N—>co m) n—>1 :lncorrect Limit

n—1 # N — o0 :Correct limit

ASY =log (2v2N) EE)  Finite!!



Comment on AdS/CFT correspondence

Field theory Gravity
_—
X
<O(:U)O(y)> - ><— Geodesics
y
—

Minimal Surface
Entanglement Entropy \| <

(Wilson loop)




Comment on the Result In AdS/CFT

We compute.s) = 8P4 for ) — N‘lo(t,xi)\o).‘

1—n

Field Theory

n-th (Renyi)
Entanglement Entropies in CF'I(;

n—1,
‘ N :Finite

Entanglement Entropies in CFT,




Comment on the Result In AdS/CFT

We compute.s( — el o

1—n

W) = NLO(t, ) \0).‘

Field Theory

n-th (Renyi)
Entanglement Entropies in CF'I(;

n—1,
‘ e n_)]-;
N :Finite

N — o0

Entanglement Entropies in CFT, j‘>

Nontrivial Background




Comment on the Result In AdS/CFT

We compute.s( — el o

1—n

W) = NLO(t, ) \0).‘

Field Theory

n-th (Renyi)
Entanglement Entropies in CF'I(;

n—1,
‘ N :Finite

Entanglement Entropies in CFT,

n=1,
N — oo

=

n—1,
N — o0

=)

Gravity

Topological Black Hole
in AdS ,,

Nontrivial Background




Gravity Side

We compute

ASI(JL) — 1 i o <10g <OT(T2,€2’n)O(T1, 01771) s OT(T’Q,92’1)O(T1,9171)>2n — TLlOg <OT(7"Q, 92’1)0(7"1, 61)>21) .
on topological black hole by using geodesic approximation in d+1 dim.
9 2
ds* = f(r)dr* + ;igr) + r2d¢? + rle 0 da? flr)y=-1-— Td% + %

Periodicity: 3 = 2mn R <4mmmmm) Replica number: n

Boundary of topological black hole “ Zn



Topological Black Hole

2 ,
ds* = f(r)dr* + ;,i(;r ) + r2dd?* + T2672©d.’£$
f(r

2

1 r
r)=—1-— +
f( ) ?,.d—Q R2
T — OO

Asymptotic region

— +7r2do* + T26_2¢d$§



Topological Black Hole

dZ? +dT? +dY* + dx;

2
ds? = 2 g2 —|—R2d——|—r2dgb + r2e 20 da? » ds® = R*

r2 ZZ
AT
r
F=ef /4
T B A >Y
o=
R




Topological Black Hole

2 2 dZ? + dT? + dY? + dz?
ds® = %dTQ + R2% + r2dp? + rle P dx? » ds* = R? + ;—2 + T
AT
r
F=e? /4
~ ~ >
) - 0 ~0+2r—=>0~0+2nm . oy
R T~T+2TR=>7T ~T7T+2nmR




Topological Black Hole

5 2 2 2 2
ds2:f—de2+R2%+T2d¢2+r2€_2¢dmf » dszszdZ +dr ;—ZdY + da]
I::: / 22 L I
T~T4+2nTR
AT -
r
F=e? 21 2 /4
) . 0 ~60+27r—>0~0+2nm . A )Y
R T~TH+2TR=>T ~ 174+ 2n7R




Large N limit

+ + -

=~

j
T

can contribute to correlation function.



Large N limit

At leading order

can contribute to correlation function.



Large N limit

At leading order

can contribute to correlation function.



At Late time

At late time (t>>1>>€),

operators are inserted symmetrically:

n=2

SR



At Late time

At late time (t>>|>>¢),

operators are inserted symmetrically:

n=2

_|_

j j
T T
Only two diagrams

can contribute to correlation function !!.



Gravity Side

We compute

ASI(L;L) — 1 i 0 (10g <OT(T2,€2’n)O(T1,017n) o .OT(T2’9271)0(T1’9171)>En — TLlOg <OT(7"2,92’1)0(T1,91)>21) .
on topological black hole by using geodesic approximation in d+1 dim.
9 2
ds* = f(r)dr* + ;igr) + r2d¢? + rle 0 da? f(ry=-1- Td% + %

Periodicity: 3 = 2mn R <4mmmmm) Replica number:n
At the late time,

An A\
d(n—1)

AS%’) ~ logt.




Gravity Side

We compute

(1og (O1(ry, 03,)0(r1, 01,) - O (12, 051)O(r1, 011))y. — mlog (O (ra, 03,1)O(r, 91)>21) .

n n

1
ASY = —

on topological black hole by using geodesic approximation in d+1 dim.

Conformal dim. of inserted operator

At the late time,

4
d(n—1)

\ 4

We can not take n = 1 limit.

ASXL) ~ logt.




We compute

1
ASY = —

n

Gravity Side

n

(10g <OT(T’2, 62,71)(’)(7*1, 01771) cee OT(TQ, 9271)0(7"1, 9171)>E — nlog <OT(T2, 92’1)0(7'1, 91)>21) .

on topological black hole by using geodesic approximation in d+1 dim.

At the late time,

Conformal dim. of inserted operator

AST ~

4

d(n—1)

logt.

» Large N limit,

ASXL) can not approach
constant.



Comment on the Result In AdS/CFT

We compute.s) = 8P4 for ) — N‘lo(t,xi)\o).‘

1—n

n=1,

Field Theory Gravity
N — o0
n-th (Renyi) Topological Black Hole
Entanglement Entropies in CFT, - in AdS ,,

n—o1, . n—1,
n ,
‘ N :Finite - * N — o

N — o0

Entanglement Entropies in CFT, j‘> Nontrivial Background




Entanglement Entropy

Back ground : Falling particle in AdS X1
A
> Z
We compute holographic -1 T ‘:::::::::_;
entanglement entropy. l_
At late time, Large N limit,

AS™ can not approach
1 ¢ t c A A
ASy = 6 logg + 6 log c » constant even if n=1.



Entanglement Entropy

In large N expansion, we are not able to study
whether it approach some constant at late time.

At late time, Large N limit,

AS™ can not approach
1 ¢ t ¢ A A
ASy" ~ 6 logg + 6 log c » constant even if n=1.



Possibility

If ASY approaches some constant, it is expected
that AsY”is given by

n 1 1 JANEE
A8 = tog | -+ ()

Hp s Apy bn :Parameters are dependent of n.

The constant value is expected to come from the non-perturbative
effect:

Dn m ebn .Nan'




If ASY approaches some constant, it is expected

]

Possibility

that AsY”is given by

ASI(:’) ~

1
1—n

lo L—I—
g D, Hn,

(

p

t

Thel We need the information beyond the large N limit.

To find whether As(”approaches constant or diverge,

effect:

D, ~

ebn .N(Ln.

ative



Summary

Field Theory Side

 We defined the (Renyi) entanglement entropies of local
operators.

-They characterize local operators from the viewpoint of
guantum entanglement.

* These entropies of the operators (constructed of single-
species operator) are given by the those of binomial
distribution.

-The results we obtain in terms of entangled pair agree with
the results we obtain by replica method.

* They obey the sum rule.



Summary

AdS/CFT correspondence

* Totake n = 1 limit does not commute with taking N = o< |imit.
- After taking large N limit, we can not take n - 1 (EE for excited state diverge.).

* In AdS/CFT correspondence, ASXL) does not approach some constants.
- In large N limit, we are not able to study
whether it can approach some constant or it diverges.
- In large N expansion, the leading contribution of ASXL) is proportional to
the conformal dim. of operators which are acted on the ground state.



Future Problems

The formula for the operators constructed of multi-species
operators:: (9"¢)" ¢' : (generally depend on the spacetime
dimension).

The (Renyi) entanglement entropies of operators in the interacting
field theory . (also massive and charged Renyi.)

Beyond large N, we investigate ASY".
- approach constant?
- diverge?



