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Introduction 

    Recently, (Renyi) entanglement entropy 
((R)EE) has a center of wide interest in a broad 
array of theoretical physics. 

ÅIt is useful to study the distinctive features of 
various quantum state in condensed matter 
physics. (Quantum Order Parameter) 

Å(Renyi) entanglement entropy is expected to 
be an important quantity which may shed 
light on the mechanism behind the AdS/CFT 
correspond .(Gravity ҭ  Entanglement) 
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of (Renyi) entanglement entropy.  
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 In this work, we investigate the time dependent  

property of (Renyi) entanglement entropy. 



ÅDefinition of Entanglement Entropy  

We divide the total Hilbert space into A and B:                                        .          

The reduced density matrix         is defined by                                 . 

This means the D O F in B are traced out.     

The entanglement entropy is defined by von Neumann entropy       . 

on a certain time slice 

A 

B 

ҜA 

The Definition of (Renyi) Entanglement Entropy 

(Renyi)  Entanglement Entropy (REE)  

nҦ1 

 Entanglement Entropy (EE)  



For a product state: 

ҜReduced density matrix : 

ҜEntanglement entropy :  

 

For an entangled state: 

ҜReduced density matrix :  

ҜEntanglement Entropy :  
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Example 

For a product state: 

ҜReduced density matrix : 

ҜEntanglement entropy :  

 

For an entangled state: 

ҜReduced density matrix :  

ҜEntanglement Entropy :  

 

Entangled state (not-product state) has the entanglement entropy. 

       measures the quantum entanglement. 

 

 

In general , 



ÅFor a pure state, entanglement entropy satisfies  

 

 

ÅFor a mixed state (thermal state etc.),  

     entanglement entropy satisfies  

 

 

ÅStrong Subadditivity   

     Entanglement entropy necessarily satisfies   

Properties 1 

A 

B C 

. 

A 

B 

ҜA 



Entanglement Entropy in QFT 

In general, (Renyi) entanglement entropies has 
UV divergence.  

                           -> We introduce lattice spacing ʁ. 



Area law div. 

A 

B 
l 

Entanglement Entropy in QFT 
In d dimensional CFT,   

l: characteristic size of a subsystem 

Most strongly entangled 
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Entanglement Entropy in QFT 
In d dimensional CFT,   

l: characteristic size of a subsystem 

Universal quantities  

(do not depend on cutoff) 



Area law div. 
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Entanglement Entropy in QFT 
In d dimensional CFT,   

l: characteristic size of a subsystem 

c is related to central charge  



Our Computation and Result 
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A new class of excited state 

Quantum Quench: Prepare the ground state        for  
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We can investigate the time evolution of (R)EE. 

(change parameter) 
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A new class of excited state 

Quantum Quench: Prepare the ground state        for  

 

  

                                    is not the ground state  for 

A new class of excited state: 

 

 Excitation is milder than that in Quantum Quench.  

                                    
            is finite even for the size of subsystem is infinite. 

(change parameter) 



A new class of excited state 
For example,  

In Quantum Quench 

       

              : Hamiltonian                                 :Hamiltonian  

                for massive theory                                 for massless theory 
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Excitation is milder than that in Quantum Quench. 



Motivation 
    Previously, we studied the property of EE for the subsystem whose 

size (l) is very small in d+1 CFT. 

                 

                     l  << (The Excitation Energy) , 

 

  

 

 

- d 

This temperature is universal. 
z l 



We study the property of (R)EE for 

          1. The size of subsystem is infinite. 

        A half of the total system: 
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We study the property of (R)EE for 

          1. The size of subsystem is infinite. 

        A half of the total system: 

            

          

            2. A state is defined by acting a local operator  

                                                               on the ground state:     

Motivation 

At late time 

          Some  

       Constants  

Unique Behavior 
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Results 

We compute             for a new class of excited states. 

 

for 

At late time 

(Renyi) Entanglement Entropies of Local Operators 

They measure the D.O.F of operators and characterize the 
operators from the viewpoint of quantum entanglement. 

                                                                   (not conformal dim.) 



Setup 
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We prepare a locally excited state: 
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subsystem A. 

 

 

We will compute                         . 

x 1 

t 

x  = - l 1 

t=-t 

01²x

A B 

Replica Method !!  

The reduced density matrix 



How to compute 

1. We compute                                            by path-integral: 

 

 

 

 

  

 

2.  After that, we perform an analytic continuation  to real time. 

   



In d+1 dim. Euclidean space, the reduced density matrix is given by 

                                                                                           . 

 

We would like to focus on the time evolution of the (R)EE. 

 

We define             the excess of the (R)EE:  

 

 

 

          : (R)EE for         

 

           : (R)EE for the ground state       

Replica Method 



Replica Method 
In d+1 dim. Euclidean space, the reduced density matrix is given by 
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Replica Method 

In d+1 dim. Euclidean space, the reduced density matrix is given by 

                                                                                                     . 

In the path-integral formalism,  

 

 

 

 

   : a lattice spacing. 
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