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Introduction 

    Recently, (Renyi) entanglement entropy 
((R)EE) has a center of wide interest in a broad 
array of theoretical physics. 

• It is useful to study the distinctive features of 
various quantum state in condensed matter 
physics. (Quantum Order Parameter) 

• (Renyi) entanglement entropy is expected to 
be an important quantity which may shed 
light on the mechanism behind the AdS/CFT 
correspond .(Gravity ↔ Entanglement) 
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     It is important to study the properties 

of (Renyi) entanglement entropy.  



Introduction 

    Recently, (Renyi) entanglement entropy 
((R)EE) has a center of wide interest in a broad 
array of theoretical physics. 

• In the lattice gauge theory, it is expected that 
entanglement entropy is a new order 
parameter which helps us study QCD more.  

- But entanglement entropy in the gauge theory is ill-defined. 

                               -      
 In this work, we investigate the time dependent  

property of (Renyi) entanglement entropy. 



• Definition of Entanglement Entropy  

We divide the total Hilbert space into A and B:                                        .          

The reduced density matrix         is defined by                                 . 

This means the D O F in B are traced out.     

The entanglement entropy is defined by von Neumann entropy       . 

on a certain time slice 

A 

B 

∂A 

The Definition of (Renyi) Entanglement Entropy 

(Renyi)  Entanglement Entropy (REE)  

n→1 

 Entanglement Entropy (EE)  



For a product state: 

⇒Reduced density matrix : 

⇒Entanglement entropy :  

 

For an entangled state: 

⇒Reduced density matrix :  

⇒Entanglement Entropy :  

 

Example 



Example 

For a product state: 

⇒Reduced density matrix : 

⇒Entanglement entropy :  

 

For an entangled state: 

⇒Reduced density matrix :  

⇒Entanglement Entropy :  

 

Entangled state (not-product state) has the entanglement entropy. 

       measures the quantum entanglement. 

 

 

In general , 



• For a pure state, entanglement entropy satisfies  

 

 

• For a mixed state (thermal state etc.),  

     entanglement entropy satisfies  

 

 

• Strong Subadditivity   

     Entanglement entropy necessarily satisfies   

Properties 1 

A 

B C 

. 

A 

B 

∂A 



Entanglement Entropy in QFT 

In general, (Renyi) entanglement entropies has 
UV divergence.  

                           -> We introduce lattice spacing ε. 



Area law div. 

A 

B 
l 

Entanglement Entropy in QFT 
In d dimensional CFT,   

l: characteristic size of a subsystem 

Most strongly entangled 



Area law div. 
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Entanglement Entropy in QFT 
In d dimensional CFT,   

l: characteristic size of a subsystem 

Universal quantities  

(do not depend on cutoff) 



Area law div. 

A 

B 
l 

Entanglement Entropy in QFT 
In d dimensional CFT,   

l: characteristic size of a subsystem 

c is related to central charge  



Our Computation and Result 
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 New excited states: 
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A new class of excited state 

Quantum Quench: Prepare the ground state        for  
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We can investigate the time evolution of (R)EE. 

(change parameter) 
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A new class of excited state 

Quantum Quench: Prepare the ground state        for  

 

  

                                    is not the ground state  for 

A new class of excited state: 

 

 Excitation is milder than that in Quantum Quench.  

                                    
            is finite even for the size of subsystem is infinite. 

(change parameter) 



A new class of excited state 
For example,  

In Quantum Quench 
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                for massive theory                                 for massless theory 
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State: 

 

 

 At late time,  l → ∞            (R)EE approaches some constant. 

 

l 

Excitation is milder than that in Quantum Quench. 



Motivation 
    Previously, we studied the property of EE for the subsystem whose 

size (l) is very small in d+1 CFT. 

                 

                     l  << (The Excitation Energy) , 

 

  

 

 

- d 

This temperature is universal. 
z l 



We study the property of (R)EE for 

          1. The size of subsystem is infinite. 

        A half of the total system: 
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We study the property of (R)EE for 

          1. The size of subsystem is infinite. 

        A half of the total system: 

            

          

            2. A state is defined by acting a local operator  

                                                               on the ground state:     

Motivation 

At late time 

          Some  

       Constants  

Unique Behavior 
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Results 

We compute             for a new class of excited states. 

 

for 

At late time 

(Renyi) Entanglement Entropies of Local Operators 

They measure the D.O.F of operators and characterize the 
operators from the viewpoint of quantum entanglement. 

                                                                   (not conformal dim.) 



Setup 

We consider d+1 dim. QFT. 

We prepare a locally excited state: 
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Setup 

We consider d+1 dim. QFT. 

We prepare a locally excited state: 

 

We investigate the time evolution of  

(Renyi) entanglement entropies. 

 

We choose a half space (          ) as  

subsystem A. 

 

 

We will compute                         . 

x 1 

t 

x  = - l 1 

t=-t 

01 x

A B 

Replica Method !!  

The reduced density matrix 



How to compute 

1. We compute                                            by path-integral: 

 

 

 

 

  

 

2.  After that, we perform an analytic continuation  to real time. 

   



In d+1 dim. Euclidean space, the reduced density matrix is given by 

                                                                                           . 

 

We would like to focus on the time evolution of the (R)EE. 

 

We define             the excess of the (R)EE:  

 

 

 

          : (R)EE for         

 

           : (R)EE for the ground state       

Replica Method 



Replica Method 
In d+1 dim. Euclidean space, the reduced density matrix is given by 

 

 

 

 

 

 

                                                                                          

                                                                                          . 

 

 

 

 

x 
1 

B 



Configuration on B 

Configuration on A 
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Replica Method 
In d+1 dim. Euclidean space, the reduced density matrix is given by 
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

x 
1 

B 



e e T



Replica Method 
In d+1 dim. Euclidean space, the reduced density matrix is given by 

 

 

 

 

 

 

Introduce a lattice spacing 
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Replica Method 

In d+1 dim. Euclidean space, the reduced density matrix is given by 

                                                                                                     . 

In the path-integral formalism,  

 

 

 

 

   : a lattice spacing. 

  
x 
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B 







x 
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B 
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B 
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Identify 



x 
1 

B 



x 
1 

B 
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x 
1 

B 



x 
1 

B 



4 local operators are  

inserted on 2-sheeted geometry 



Replica Method 

In d+1 dim. Euclidean space, the reduced density matrix is given by 

                                                                                                     . 

In the path-integral formalism,  

 

 

 

 

    

     : a lattice spacing. 

  


Periodicity along  θ : 2π→2nπ 
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: The partition function on  

Flat Space 

: The partition function on  
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X 1 

: The partition function on  

Flat Space 

: The partition function on  
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τ 

X 1 
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τ 

X 1 

Replica Method 
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τ 

X 1 

A 

τ 

X 1 
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X 1 2n-Point Function 

               on 

Replica Method 



A 

τ 

X 1 

A 

τ 

X 1 

A 
τ 

X 1 2n-Point Function 

               on 
2-Point Function 

              on 

Replica Method 



A 

τ 

X 1 

A 

τ 

X 1 

A 
τ 

X 1 

Replica Method 

This formula holds for any local operators 

                in general QFT in any dimensions. 



Comment on Analytic Continuation 

Analytic continuation: 



Comment on Analytic Continuation 

Analytic continuation: 

Suppress high energy mode! 



Comment on Analytic Continuation 

Analytic continuation: 

Suppress high energy mode! 

For example :2d CFT,      =a primary operator subsystem= finite interval   

Internal energy in A 



Comment on Analytic Continuation 

Analytic continuation: 

Suppress high energy mode! 

For example :2d CFT,      =a primary operator subsystem= finite interval   

Internal energy in A 

Conformal dim. 



We study the properties of REE  

          for locally excited state  

                    when the size of subsystem is infinite. 

Motivation 

            Researches:     

            1. The time dependence of REE                     

            2. The late time value of REE  



Example 

We consider free massless scalar field theory in d+1 dim.  

Especially, we focus on that in 4 dim. 

 

We act a local operator        on the ground state: 

                                        . 

 

 

We measure the (Renyi)  

entanglement entropies at t=0. 

 

x 1 

t 

x  = - l 1 

t=-t 

A B 

Time evolution!! 



Example 

Let’s compute              for 

in  4-dimensional free massless scalar field theory.  

 

Green function:  



Example 

Green function:  

We compute  

by using Green function. 

After that, we perform 

analytic continuation to  

real time. 



Example 

Green function:  

We compute  

by using Green function. 

After that, we perform 

analytic continuation to  

real time. 



Time Evolution of 
S A

)2(

t 
                l 



Time Evolution of 
S A

)2(

t 
                

An entangled pair appears. 

Each of pair is included in  

the region B. 

l 



Time Evolution of 
S A

)2(

t 
                

In this region, two quanta  

is included in A and B  

respectively .   

l 



Time Evolution of 
S A

)2(

t 
                

In this region, two quanta  

is included in A and B  

respectively .   

Entanglement between quanta can contribute to           . 

l 



Time Evolution of 
S A

)2(

t 
                

Subsystem  

  = a half of the 

        total space 

 

       approaches 

       Constant!! 

 
l 



Time Evolution of 
S A

)2(

t 
                l 

          for                                        approaches constants! ! 
                                                                                           (log2) 
We call them the (Renyi) entanglement entropies of   
                                                                                   operators. 
 



Entangled Pair Interpretation 

We derive               for                                                     from             

the entangled pair interpretation. 

 
We decompose        into the left moving mode and  

the right moving mode, 

 

 

 

In two dimensional CFT, we decompose      into the left moving 

 mode  and right moving mode, 

Generalize 
A B 



Entangled Pair Interpretation 

We derive               for                                                     from             

the entangled pair interpretation. 

 
We decompose        into the left moving mode and  

the right moving mode, 

 

 

 

At late time, the d o f in the region B can be identified with  

the d o f of left moving mode.  

A B 
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Entangled Pair Interpretation 

Under this decomposition:  

Tracing out  

the d.o.f in B They agree with the results which we obtain by the  

Replica trick (See My paper!!). 



Comments on Result 

We defined the (Renyi) entanglement entropies of operators by  

the late time values of            . 

The (Renyi) entanglement entropies of            is given by 
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We defined the (Renyi) entanglement entropies of operators by  

the late time values of            . 

The (Renyi) entanglement entropies of  specific operators (             )  

which are composed of single species operator are given by 

 

 

 

 

 

 

          They characterize the local operators from the viewpoint of  

quantum entanglement!! 

for any dimension. 
 
 
 
 
 
 
     



Generalize Results 

We defined the (Renyi) entanglement entropies of operators by  

the late time values of            . 

The (Renyi) entanglement entropies of  specific operators (             )  

which are composed of single species operator are given by 

 

 

 

 

 

 for any dimension. 
 
 
 
 
 
 
     Large k, 

 
 
 
 
 
 



Other type operators 

An excited state is defined by acting a local operator                 on  

the ground state. 

                is constructed of multispecies operators      and           . 

 

The second (Renyi) entanglement entropy of                 is given by 

 

 

 

 



Other type operators 

An excited state is defined by acting a local operator                 on  

the ground state. 

                is constructed of multispecies operators      and           . 

 

The second (Renyi) entanglement entropy of                 is given by 

 

 

 

 

                      depends on spacetime dimension. 

               Another  formula for                 ?              



Sum rule 

We acts various local operators on the ground state. 

 

A locally excited state is given by                                             . 

 

   

The late time of             is given by 

 

 

 

 

 

     

Time ordering Op. 

They are given by the sum of the REE for the state defined by acting  

each operators                   on the ground state.  

t 

x 1 

Local operators 



Comment on propagators 

• After performing analytic continuation, we take ε →0 limit. 

     Only two diagrams can contribute to            . 

 

One diagram ⇔ product of red lines 

One diagram ⇔ product of blue lines 



Comment on propagators 

• After performing analytic continuation, we take ε →0 limit. 

     We also take late time limit (t>>l). 

 

 

 

 

 

 

Red wavy lines and Blue wavy lines are called Dominant  Propagators 

                                                                                                                      . 

 



Summary (Up To Here)  

                                    Field Theory Side 

• We defined the (Renyi) entanglement entropies of local 
operators.  

    -They characterize local operators from the viewpoint of 
quantum entanglement.  

• These entropies of the operators (constructed of single-
species operator) are given by the those of binomial 
distribution. 

    -The results we obtain in terms of entangled pair agree with 
the results we obtain by replica method. 

• They obey the sum rule. 
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• AdS/CFT Correspondence 

 
1. Motivation (from now on) 
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3.   Holographic computation  

 

4.   The Result and Possibility in Gravity 

 3. Based on arXiv:1405.5946 [hep-th]  

 



How REE for locally excited state behave 

      in large N strongly coupled theories ? 

Motivation 



Field Theory Side 

We consider large N free U(N) gauge theory. 
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Field Theory Side 

We consider large N free U(N) gauge theory. 

 

We act                                                        on the ground state. 

 

N

1n

Finite!! 

 

 ,2J

N 1n : Incorrect Limit 

N1n : Correct limit 



Comment on AdS/CFT correspondence 

Field theory 

Geodesics 
x 

y 

Gravity 

Entanglement Entropy 
                                                       (Wilson loop)  A 

B Minimal Surface 



n-th (Renyi)  

Entanglement Entropies in CFT  
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:

,1

N
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Finite 

We compute.                      for                                        .   

Nontrivial Background 





N

n ,1

Topological Black Hole  

                          in AdS d+1 

Gravity 




N

n ,1



Gravity Side 

We compute  

 

on topological black hole by using geodesic approximation in d+1 dim. 

 

 

 

Boundary of topological black hole  

Periodicity: Replica number: n  



Asymptotic region  

Topological Black Hole 
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Map: 
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Large N limit 

can contribute to correlation function. 

At leading order 

We only need to compute two point function!! 



At Late time 
At late time (t>>l>>ε), 

 operators are inserted symmetrically:  

n=2 

π 



At Late time 
At late time (t>>l>>ε), 

 operators are inserted symmetrically:  

n=2 

Only two diagrams  

can contribute to correlation  function !!. 
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Gravity Side 

We compute  

 

on topological black hole by using geodesic approximation in d+1 dim. 

 

 

At the late time, 
Conformal dim. of inserted operator 

Large N limit, 

     can not approach 

                           constant.  
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Entanglement Entropy 

z 
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- l 

A 

Back ground : Falling particle in AdS 

 

 

 

We compute holographic  

          entanglement entropy. 

 

At late time, Large N limit, 

     can not approach 

 constant even if n=1.  

 



Entanglement Entropy 

z 

x 

ε 

1 
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A 

Back ground : Falling particle in AdS 

 

 

 

We compute holographic  

          entanglement entropy. 

 

At late time, Large N limit, 

     can not approach 

 constant even if n=1.  

 

In large N expansion, we are not able to study 
whether it approach some constant at late time.  



Possibility  

If          approaches some constant, it is expected  

                              that          is  given by 
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Possibility  

If          approaches some constant, it is expected  

                              that          is  given by 

 

                                                                                  . 

 

 

The constant value is expected to come from the non-perturbative 
effect: 

                                                                    

                                                                     .                  

:Parameters are dependent of n. To find whether           approaches constant or diverge, 

we need the information beyond the large N limit. 



Summary  

                                    Field Theory Side 

• We defined the (Renyi) entanglement entropies of local 
operators.  

    -They characterize local operators from the viewpoint of 
quantum entanglement.  

• These entropies of the operators (constructed of single-
species operator) are given by the those of binomial 
distribution. 

    -The results we obtain in terms of entangled pair agree with 
the results we obtain by replica method. 

• They obey the sum rule. 



Summary  

                                    AdS/CFT correspondence 
• To take n → 1 limit does not commute with taking N → ∞ limit. 

        - After taking large N limit, we can not take n → 1 (EE for excited state diverge.). 

         

 

 

• In AdS/CFT correspondence,              does not approach some constants. 

       - In large N limit, we are not able to study  

                   whether it can approach some constant or it diverges. 

       - In large N expansion, the leading contribution of                is proportional to  

         the conformal dim. of operators which are acted on the ground state.    

 

 



Future Problems 

• The formula for the operators constructed of multi-species 
operators:                    (generally depend on the spacetime 
dimension). 

 

• The (Renyi) entanglement entropies of operators in the interacting 
field theory . (also massive and charged Renyi.) 

 

• Beyond large N, we investigate        . 

                                                     - approach constant? 

                                                     - diverge?   

 

 

 


