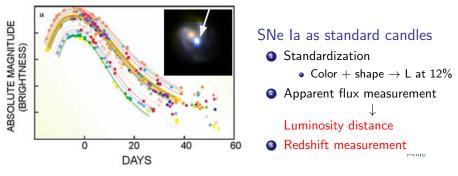
Cosmic distance measurements with SN-Ia SNLS+SDSS JLA Hubble Diagram

 $\mathsf{Marc}\ \mathsf{Betoule}$


LPNHE

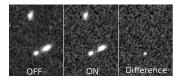
IPMU, October 22th 2014

Mapping the distance-redshift relation with SNe-Ia

Probe of the expansion history at late time

$$d_{L}(z) = (1+z)c \int \frac{dz}{H(z)}$$

= $(1+z)\frac{c}{H_{0}} \int dz \left(\Omega_{m}(1+z)^{3} + \Omega_{x}(1+z)^{3(1+w)}\right)^{-1/2}$ with: $w = \frac{p_{x}}{\rho_{x}}$



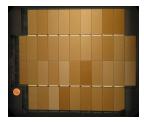
We need to be able to:

- Find SNe Ia
- e Measure their redshift
- Measure their apparent flux
- Stimate their (relative) intrinsic flux

Detecting SNe

Take images of the same sky region at different epochs

• Transient pops out in the difference



Finding SNe Ia efficiently: A key technology

The rise of the rolling-search approach...

20 21 22 23 24 25 26 <u>May</u> Jul Sep Nov Jan 2005

with large CCD matrices

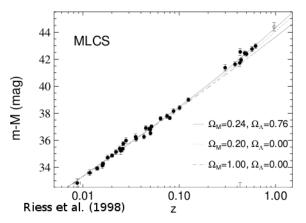
Requirements

- Discovery in images subtraction
- Ilux evolution measurement
- I Host galactic flux model
- Spectroscopic follow-up: identification and redshift measurement

Multiplex step 1-3 for several SNe-Ia in the same image

- Repeated imaging of the same sky portion
- Implemented in 3 major survey
- Classical spectroscopic follow-up

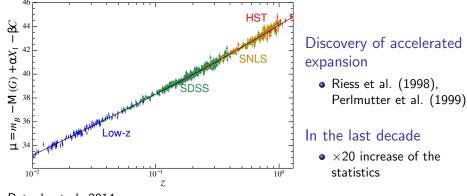
Supernovae Legacy Survey (Astier of al. 2006)


 1 square degree MegaCam camera
1500 h on the CFHT 3.6m
Spectroscopic follow-up: ~1500h on 8m VLT-Keck-Gemini
500 spectroscopically confirmed She-la

CANADA-FRANCE-HAWAII TELESCOPE

SNLS5 and beyond 0000000

From acceleration discovery to Dark Energy characterization


Discovery of accelerated expansion

 Riess et al. (1998), Perlmutter et al. (1999)

SNLS5 and beyond 0000000

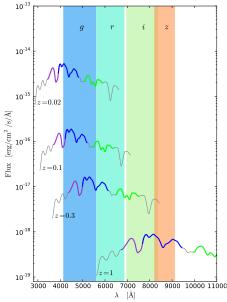
From acceleration discovery to Dark Energy characterization

Betoule et al. 2014

Redshift measurements

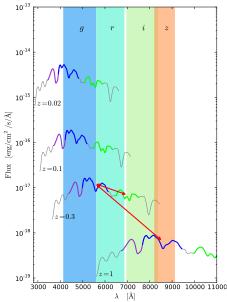
Spectroscopic measurements

- Host galaxy lines $ightarrow \delta z \sim 0.001$
- Supernova spectrum $ightarrow \delta z \sim 0.005$


Large observation time investment

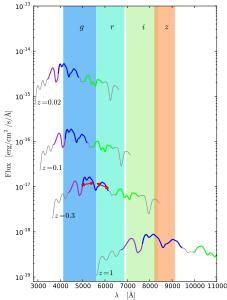
IE

SNLS5 and beyond


Flux measurements

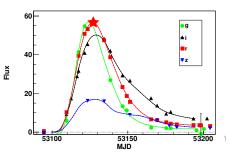
Required ingredients

Flux measurements

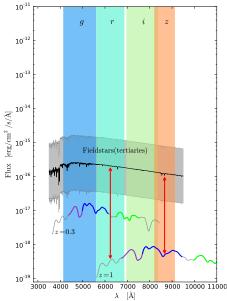


Required ingredients

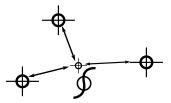
 Measure flux ratios in different observer-frame band → inter-calibration



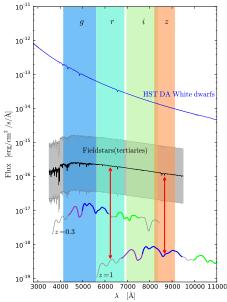
Flux measurements


Required ingredients

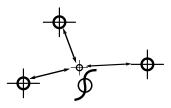
- Measure flux ratios in different observer-frame band → inter-calibration
- Interpolate in time and wavelength \rightarrow Light-curve model


SNLS5 and beyond

Flux measurements

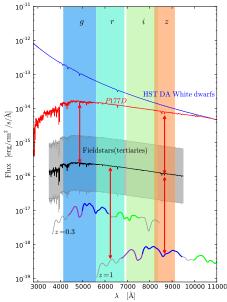

I) Characterization of the instrument response

• Enable measurement of **flux ratios** in a single image

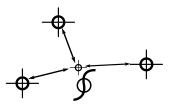


Flux measurements

I) Characterization of the instrument response


• Enable measurement of **flux ratios** in a single image

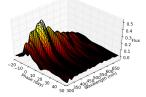
II) Calibration transfer


- HST standard stars as primary calibration source
- Enable comparison of flux in different bands/instruments

Flux measurements

I) Characterization of the instrument response

• Enable measurement of **flux ratios** in a single image

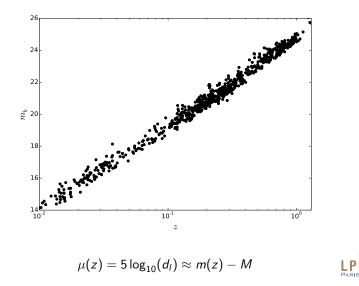


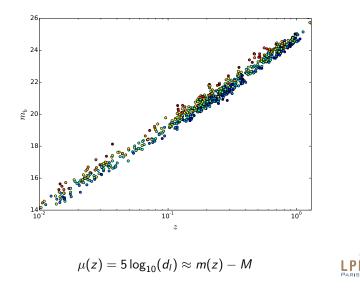
II) Calibration transfer

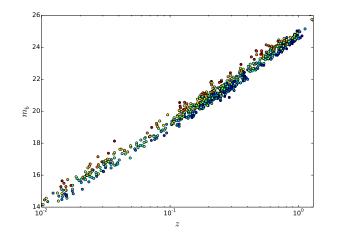
- HST standard stars as primary calibration source
- Enable comparison of flux in different bands/instruments

Example SN model: SALT2

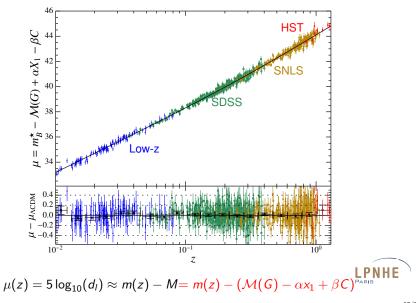
Description of the evolution of SN spectrum with time




- Fitted on spectroscopic and photometric data: "training sample"
- The surface shape is parameterized by m_b , C and X_1
- m_b , C, X_1 fitted for each SN


Purely empirical description (basically a PCA)

basically a PCA of the available spectro and photometric data



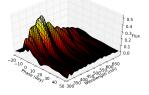
 $\mu(z) = 5 \log_{10}(d_l) \approx m(z) - M = m(z) - (\mathcal{M}(G) - \alpha x_1 + \beta C) \underset{\text{Paris}}{\mathsf{Paris}}$

Outline

- 2 The joint light-curve analysis
- SNLS5 and beyond

SNLS5 and beyond 0000000

Recent dev: The SNLS/SDSS JLA working group


Formed to address the issue of measurement systematics

- Transverse WG joining the two main SNe-Ia surveys
- Started in June 2010
- Share data, code and expertise

2 main outcomes:

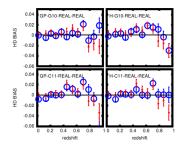
- SNe light curve model: Kessler et al. (2013), Mosher et al. (2014) \rightarrow Validation of the SALT2 model
- Joint photometric calibration analysis: Betoule et al. (2013) \rightarrow Recalibration of the SNLS and SDSS

Quantify systematics associated with the SALT2 SN model Description of the evolution of SN spectrum with time

- Fitted on spectroscopic and photometric data: "training sample"
- The surface shape is parameterized by m_b , C and X_1
- m_b , C, X_1 fitted for each SN

Purely empirical description (basically a PCA) but:

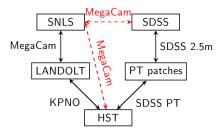
Incomplete: dispersion remains around the model. What if:


- part of the remaining dispersion correlates with intrinsic luminosity ?
- or color ?
- \rightarrow Quantify the effect on simulations.

Several other points to check

- Do we propagate noise correctly
- interplay with selection bias, etc...

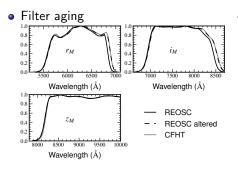
End-to-end test of the SALT2 method (Mosher et al. 2014.)


- Various SN models in input
- Extensive MC simulations
- Propagation through the whole chain
- Test the bias on reconstructed distances
- With the currently available "training" sample: $\Delta \mu < 0.03$

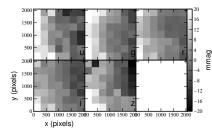
Well below the level of calibration uncertainties

New calibration data

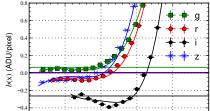
Short and redundant paths for calibration transfer

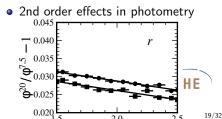


- Direct observation of HST stars
- Direct SNLS/SDSS cross-calibration



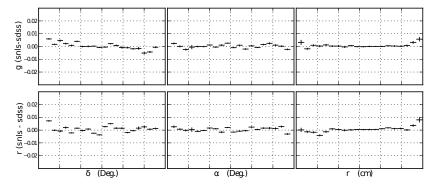
SNLS5 and beyond 0000000


Enabled the correction of several instrumental effects



SDSS PT flat-fielding error

• Background subtraction



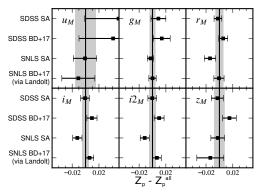
SNLS5 and beyond 0000000

Result I: "Flat-fielding" 2 wide-field camera at 0.3%

Comparison of SDSS/SNLS photometry



- SNLS and SDSS flat-fields obtained independently
- Achievement of wider interest (e.g. Photo-z)


Result II: \sim 0.5% (?) accuracy in absolute calibration

Short and redundant paths for calibration transfer

New data

- Direct observation of HST stars
- Direct SNLS/SDSS cross-calibration

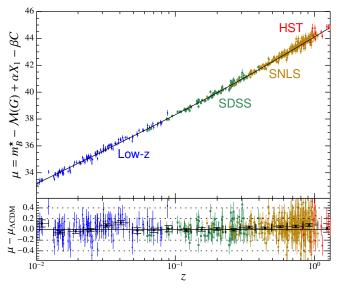
Final uncertainty dominated by HST calibration

Enable:

- Comparison of several paths
- 0.3% accuracy in gri

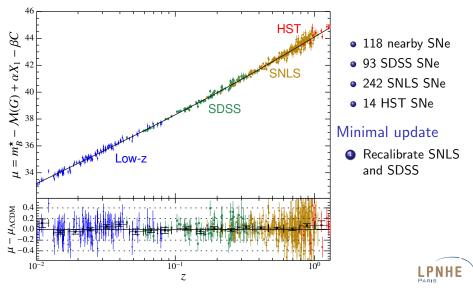
In Summary

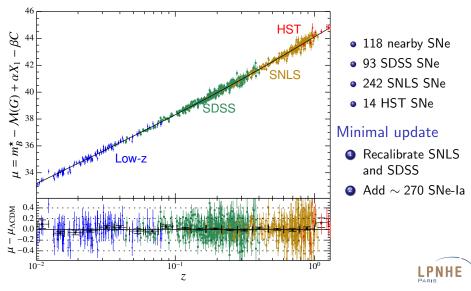
New SNLS and SDSS calibration (Blind wrt cosmology)

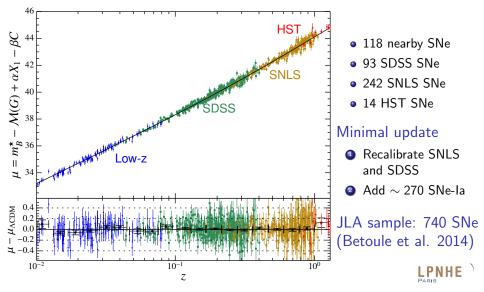

- More robust
- More accurate

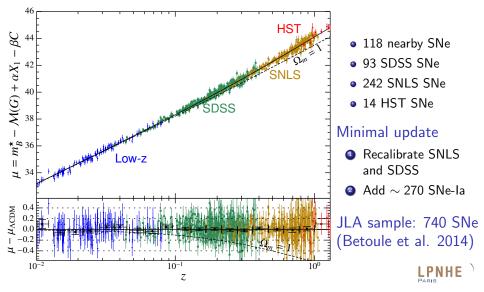
Changes at the percent level wrt SNLS3 calibration

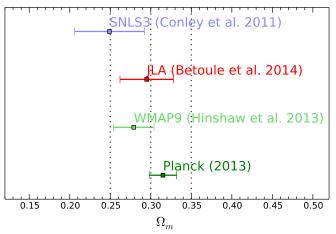
band	g	r	i	Ζ
ΔZ_{SNLS} (mmag)	-12.9	-0.9	1.3	-17.9
ΔZ_{SDSS} (mmag)	-4.0	0.0	0.0	-6.0


Sets a milestone for next generation surveys

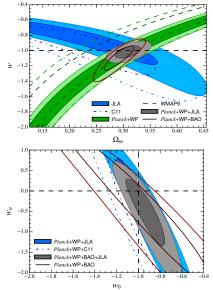

- Lessons to be learn
- Likely to improve in future survey
 - Better sensitivity in the infrared
 - Better characterization of the instruments
 - Better photometric standards (Lab-made calibration sources ?)




- 118 nearby SNe
- 93 SDSS SNe
- 242 SNLS SNe
- 14 HST SNe



JLA compatible with CMB ACDM parameters



Ω_m measurement independent of CMB

- Recalibration shift SN measurement by 1σ
- Improve the uncertainty by 30%

IE

Impact on Dark Energy constraints

Large improvement of SN constraints

- Stat: additionnal SDSS data
- Sys: joint calibration analysis

Best measurement of w

- Planck + SN: $w = -1.018 \pm 0.057$
- Planck + BAO: $w = -1.01 \pm 0.08$

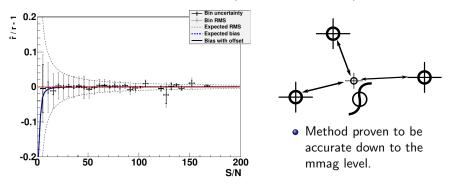
Half of the improvement in the "figure of merite"

- 2012: FoM= 15 (WMAP+SDSS+SNLS)
- 2014: FoM= 30 (Planck+BOSS+JLA)

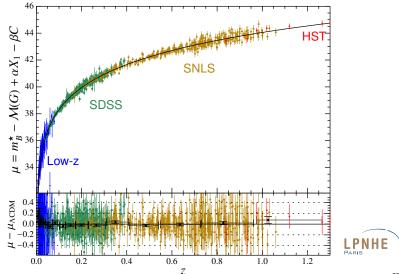
PARIS

Outline

D Measurement principle


2 The joint light-curve analysis

SNLS5 and beyond

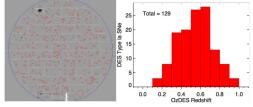

Work on methods continue

Differential photometry method (Astier et al. 2013)

200 more SNe Ia in the last 2 years of SNe Ia data (Elhage et al. in prep.)

Going further

- More and better low redshift SNe
- e Higher z SNe
- Calibration
- Evolution



SNLS5 and beyond 0000000

Higher and lower redshift SNe before LSST (2020)

The ongoing big SNe experiment is DES

• Cover about the same redshift range as SDSS+SNLS

Peter Melchior (Moriond 2014)

At low redshift: Pan-Starrs/SkyMapper

Only one instrument able to measure a significant number of higher redshift SNe: Subaru/HSC

30/32

SNLS5 and beyond 0000000

Work on calibration continue

Replace stellar references with laboratory references

Thanks to SNDICE

(Nicolas Regnault seminar)

Conclusion

- SNe Ia are still the most sensitive probe for dark energy
- No hard limit identified yet
- Provided that measurement are carefully conducted
- One pending issue: Evolution

