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But in interesting QFTs like QCD, cn ~ n! for large n Dyson 
1952

That’s strange. If perturbative expansions are 
divergent, then why do they work so well?

Historically, this caused a lot of confusion…

Perturbation theory yields divergent series!
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ask an 
undergrad
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student

postdoc, 
faculty computers?

But in interesting QFTs like QCD, cn ~ n! for large n Dyson 
1952

N. H. Abel, 1802-1829
Doh!
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Traditional view on asymptotic series

Can argue that `mistake’ made is order e-1/l

Exponentially small - so is it uninteresting?
e-1/l  is precisely scale of non-perturbative effects in e.g.  QCD

In asymptotically-free theories, at least, non-perturbative 
effects drive the most interesting part of the physics!

A more systematic approach is called for…

Stay away -
 here be dragons!

1êl n
p1êll1êl

pnln

Poincare 
1886



Resurgence theory in a toy example

0d prototype for a QFT partition function.  Two saddle-points: x = 0, x= π/2

If λ is small, approximate Z(λ) by perturbation expansion around x=0

With order of expansion fixed, and |λ| tiny, 
subsequent terms become smaller and smaller.

Might naively expect perturbation theory to 
be good for small |λ|, for any arg(λ)

If λ is not small, series will (obviously) not approximate Z(λ).



Two failures of perturbation theory
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Two failures of perturbation theory

Failure for large λ Failure for |λ|<< 1, arg λ > 0

May naively seem like two different issues…
But they actually have the same origin, and the same cure - 

proper inclusion of NP saddle contributions via resurgence theory
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The reason for the problems
The integral has two saddle-points; we ignored the non-perturbative one!

Both series above are divergent asymptotic series.

Traditional perspective would be that result still 
has irreducible error of order exp[-1/(2λ)]

Resurgence theory: P and NP series are correlated, and errors cancel.

Origin of ‘resurgence’ term: exact data on low-order behavior 
of NP saddle encoded in large-order  behavior of P saddle



O =
1X

n=1

pn�
n, pn ⇠ n!

`Borel 
transform’

BO(t) defines function analytic within 
finite radius around t=0

Borel sum

SO(l) has same power expansion as O(l)

But the integral — and hence sum — doesn’t always exist!

B[O](t) ⌘
1X

n=1

pn
(n� 1)!

tn�1

original formal 
series

Should think about SO(l) as a useful representation
         of data in formal series with        

Borel summation: a language for resurgence



Borel sum:

E(�) =
1X

n=0

(�1)n n!�n+1 ) B[E(�)] =
1

1+t
Working 

case:

No pole on R+ contour, Borel integral exists, resummation unambiguous

Failing 
case:

singularity 
on R+ !

Singularity on R+ contour, Borel sum does not exist.

Typical situation in series coming from QFT, and 0d toy example

Borel summation: a language for resurgence



Can deform contour, above or below real axis.     

Imaginary non-perturbative (NP) ambiguity in 
resummation, depending on direction of continuation

Form of ambiguity points to the guilty party:

Amounts to analytic continuation of path integral

t t

Ambiguities in non-Borel summable series

Contribution from NP saddle with action Dingle, Berry, 
Howls…



Ambiguity of perturbative series in toy example

Ambiguity in sum of perturbative series weighed by action 
of NP saddle x = π/2, times series around NP saddle

Note the power of the equation: all data about fluctuations 
around NP saddle encoded in P fluctuations, and vice versa.

Perturbative fluctuations 
around P and NP saddle-points



Resurgence theory in toy example
Motivates transseries as an exact, unambiguous representation of Z(λ):

Sign flip of NP part is a Stokes phenomenon; related to 
choices of integration contours in complexified ‘path integral’ 

Note that result is not just a naive sum of saddle 
point contributions, due to ‘+/-’ factor above.

Berry, 
Howls 
1991;
Witten 
2010; 

…

Ecalle 
1980s,

…

Now we can explore whether this helps deal 
with the two failures of perturbation theory.



The payoff from resurgence theory, 1

Resurgence theory yields arbitrarily accurate 
results at arbitrary arg λ and e.g. small |λ|

AC, Koroteev, 
Unsal, 2014
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The payoff from resurgence theory, 2

Resurgence theory allows arbitrarily accurate strong-
coupling predictions from small-g perturbative data

AC, Koroteev, 
Unsal, 2014



Summary of Part 1
`Resurgence’ is the statement that perturbation expansions 
around any one saddle-point of QFT-type integrals contains 

quantitative data about expansions around the other saddle points

In short:  P = NP, and resurgence theory decodes the ‘=’ !

As a result, naively ambiguous asymptotic series can be assembled 
into unambiguous transseries representations of observables. 

Many interesting subtleties and lessons appear when these ideas 
are applied to quantum mechanics and quantum field theory.

To hear more about them, you are welcome to stay for Part 2!

End of Part 1
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Perturbation theory as a semiclassical expansion

For small l tempting to use saddle-point approximation 

Usually all of these series are sick, suffer from divergences! 

Traditional view is that semiclassical expansions have an 
inherent and irreducible ‘vagueness’ of order e-1/l

regularized 
path integral

Modern approach, based on resurgence theory:

‘transseries’ expansions are faithful and unambiguous 
(but subtle) representations of observables.



If above `transseries’ is to encode well-defined smooth function 
of λ, need intricate relations connecting pc,n for different saddles

Resurgence theory is the detailed implementation of this idea

relations between perturbative and 
non-perturbative physics)

Ecalle: 1980s Argyres, Dunne, Unsal… QFTDingle, Berry 1960+...

Vainshtein, 1964; 
Bender+Wu 1969; 

Lipatov 1977

Perturbation theory as a semiclassical expansion
regularized 

path integral

Aniceto, Marino, Schiappa… strings

For small l tempting to use saddle-point approximation 

Usually all of these series are sick, suffer from divergences! 



What happens in quantum field theory?
The approach in part 1 generalizes to multi-dimensional integrals.

Then perturbative and non-perturbative 
effects should be correlated in QFT!

But once we consider quantum field theory more 
carefully, there are some important challenges…

Hence might expect resurgence theory to apply to 
QFTs, at least when they are regularized.

(1) What do we even mean by λ in QFT?  Couplings run!

(2) Is it actually plausible that ambiguities are 
controlled by finite-action saddles?



Resurgence theory in asymptotically-free QFT

Indeed, in asymptotically-free QFTs like QCD, pn~ n! for large n
This results in ambiguities in 

resummations of perturbation theory
Could they be due to NP saddle point contributions?

Many (but not all) asymptotically-free QFTs have instantons, 
which would be associated to ambiguities of order

If so, reasonable to expect resurgence theory technology to apply.

But physically, leading ambiguities must be ~ strong scale Λ

To deal with (1), might try to introduce large momentum 
Q into problem, and define λ = λ(Q/Λ) << 1

λ=g2N 

Mismatch?



(2) Renormalon singularities

‘t Hooft,
1979

Re t

Im t

(1) Combinatorial singularities

so renormalon ambiguity >> ‘instanton’ ambiguity

related to the number of diagrams 
at order n growing as n! 

related to `single’ planar diagrams 
with n running couplings, scale as n! 

Renormalons arise in pQCD calculations relevant for e.g. collider physics
effect parametrized by introducing phenomenological ‘power corrections’

Borel plane singularities in QCD

Not just a formal problem!



In quantum mechanics, perturbation theory is also asymptotic. 
But instanton-anti-instanton contributions are ambiguous, too!

Instanton ambiguities precisely cancels against 
perturbative ambiguities, at least in QM.

Bogomolny; 
Zinn-Justin 
early 1980s

Borel singularities for QCD and its relatives

’t Hooft’s dream: QFT renormalons associated to some 
kind of fractional instantons, related to confinement

No such configurations known on in QCD on 
R4, or in other asymptotically-free theories

Moreover, many asymptotically-free theories don’t have 
instantons at all, let alone `fractional instantons’!

Argyres, 
Dunne,
Unsal  

2012-13

 Key idea: find smooth compactification which preserves 
confinement, while driving theory to weak coupling. 

Desired fractional instantons emerge, allow application of 
resurgence theory, yield systematic ambiguity cancellations.



SU(N) Principal Chiral Model

Why is it interesting?
Asymptotically free, like QCD

Dynamically generated mass gap, like QCD
Matrix-like large N limit, like QCD

Large N confinement-deconfinement transition, like QCD
Perturbation theory suffers from combinatorial and 

renormalon ambiguities, just like QCD
Integrable, M = R2 S-matrix known, so easier than QCD

Almost a nice toy model for QCD

But p2[SU(N)] = 0, so no instantons, unlike QCD!

Fateev, 
Kazakov, 

Wiegmann

Focus for the rest of the talk:

Lack of known NP saddles seems like big difference from QCD.



Resurgence theory for the PCM

To justify semiclassics in asymptotically-free theory, 
first task is to find adiabatic weakly-coupled limit.

Results reinforce lesson that naive topological classification 
of saddle points in path integrals is insufficient.

Guided by resurgence, we find ‘fracton’ NP saddles in PCM 

Resurgence demands finite-action field configurations 
exist - whether or not topology seems to allow it!

 Cancellation of renormalon ambiguities driven by fractons

Renormalons are indeed tied to the mass gap, as guessed by ’t Hooft!

Will see that structure of perturbative series is 
inconsistent with lack of NP saddles.



Dealing with strong coupling
‘Coupling is small’ assumption for saddle-point 
expansion doesn’t make sense in PCM: b<0

For small enough L, weak coupling guaranteed by asymptotic freedom
Our approach is to put the theory on M = Rtime x S1(L)

Need a weakly coupled limit, while keeping mass gap etc, 
with physics adiabatically connected to original theory

But with periodic boundary conditions, looks like a thermal circle!

small L large L
F/N2 ~ 1 F/N2 ~ 0

In PCM, large N phase transition, finite N cross-over
Resembles confinement/deconfinement transition in 4D YM!



Twisted boundary conditions
PCM has an SU(N)LxSU(N)R symmetry

But at small L, dialing HL, HR parametrizes 
a wide family of distinct theories

Wide variety of sensible spatial boundary conditions:

Claim: unique choice of HL, HR such that physics 
appears to be adiabatically connected to large L limit

Working with a gapped theory - when L >> L-1,  
choice of BCs doesn’t matter

small L large L



Twisted boundary conditions
Convenient to trade fields with twisted BCs for background 

gauge fields + fields with periodic BCs

Ũ is 
periodic

Essentially ‘chemical potentials’ for spatial SU(N)L,R currents 

2HV,A = HL ±HR

JL
µ =i U†@µU, JR

µ = i @µU U†

Z ! Z(L;HV , HA)

Partition function now depends on HV,A

What are the desirable ‘adiabaticity conditions’ in terms of Z?

(A)  A free energy scaling as F/N2 ~ 0 at large N
(B) Insensitivity of theory to changes in BCs



Adiabaticity conditions
At small L, completely insensitivity to BCs is not 

possible. Closest we can come is to demand

@
⇥
V�1

logZ(L)
⇤

@HV
= hJV

x iHV ,HA = 0

@
⇥
V�1

logZ(L)
⇤

@HA
= hJA

x iHV ,HA = 0

Our task:  compute F(L; HA, HV) at small L, where theory is 
weakly coupled, and look at large N scaling of extrema

Picks out BCs which extremize the free energy F

1

2
Make sure we stay in ‘confining’ phase



Small L Free Energy

Vclassical =V(HA) > 0, so 1-loop correction to V(HA) is negligible.  
Vclassical(HA) only has HA=0 extremum, so HA=0

First contribution to V1-loop=V(HV) comes from one-loop level

V
1�loop

(⌦) =
�1

⇡L2

1X

n=1

1

n2

(|Tr ⌦n|2 � 1)

Same form as Coleman-Weinberg potential for dynamical gauge field 
Wilson loop in YM theory on R3xS1, but different interpretation!

T

V logZ = V = V
classical

+ V
1�loop

+ . . .



Small L Free Energy

One extremum corresponds to HV=0

Thermal BCs! broken ZN symmetry⌦ = ⌦T ⌘ 1N

Clearly not what we want…

F = � ⇡

6L2
(N2 � 1) = O(N2)

This is a deconfined small L limit.



Small L Free Energy

V
1�loop

(⌦) =
�1

⇡L2

1X

n=1

1

n2

(|Tr ⌦n|2 � 1)

The only other (non-degenerate, ZN preserving) extremum:

⌦ = ⌦S ⌘ ei
⇡
N ⌫

0

BBB@

1
ei

2⇡
N

. . .

ei
2⇡(N�1)

N

1

CCCA
v = 0,1 for 

N odd, even

logZ =

�1

⇡L2
⇥ ⇡2

6

= O(N0
)

ZN-symmetric BCs give desired adiabatic small-volume limit.
Unsal, Yaffe; 

Shifman, Unsal; ...
Related construction of an adiabatic 

small L limit known for 4D YM theories

‘Confinement’ even at small L



Flow of coupling constant in ZN-twisted PCM 

Flow for NLL ` 1

Flow for NLL p 1

L HN LL-1 Q

g2 H1êNLL

1
g2

Scale NL appears due to ZN-symmetric form of HV

We focus on NLL << 1 to get a weakly-coupled theory
Physics remains very rich - mass gap, renormalons still remain!

large N 
volume 

independence

Semiclassically 
calculable 

regime



Perturbation theory at small L
For small L, 2D PCM describable via to 1D EFT: quantum 
mechanics with a ZN-symmetric background gauge field

Are renormalons still present?
In PCM, |β| = N. Renormalon means an 
ambiguity in perturbation theory of order

On R2, integrability calculations of Kazakov, Fateev, Wiegmann give:

If small-L limit is adiabatic, expect size of renormalon ambiguity 
to move by order-1 amount as L goes from large to small.

But result should still involve #/g2N



SU(2) Example
Hopf 

parametrization

S =

1

g

2

Z

R⇥S

1

dt dx

⇥
(@

µ

✓)

2
+ cos

2
✓(@

µ

�1)
2

+sin

2
✓(@

µ

�2 + ⇠�

µ,x

)

2
⇤

Imprint of ZN-sym. twist x=2p/(NL)=p/L
KK reduction

S =

L

g2

Z
dt

h
˙✓2 + cos

2 ✓ ˙�2
1 + sin

2 ✓ ˙�2
2 + ⇠2sin2✓

i

Perturbation theory at small L

E(g2) = E⇠�1 =
1X

n=0

pn(g
2)n

Compute e.g. series for ground state energy:



SU(2) Example
Perturbation theory at small L

H =

g2

4L
P 2
✓ +

L⇠2

g2
sin

2 ✓ +
g2

4L sin

2 ✓
P 2
�1

+

g2

4L cos

2 ✓
P 2
�2

To get high-order small L behavior, easiest to 
work in Hamiltonian formalism

Will see that mass gap is L-1e-1/l, while f1, f2 quanta cost L-1

Means we can treat H in Born-Oppenheimer approximation, freezing f1, f2.

Now ground state energy found from 
solution of Schrodinger equation



Large order structure of perturbation theory
Large-order behavior can be shown to be

Factorially growing and non-alternating series!

Not Borel 
summable!

Stone, Reeve 
1978

4 6 8 10 12 n

0.5

1.0

1.5

2.0
pnHexactLêpnHAsymptoticL



Non-perturbative ambiguity
Borel transform of leading n! piece is

Singularity on C=R+ at t = 16p/N, Borel sum does not exist!

SE(g2) =
Z 1

0
dte�t/g2

BE(t)



Non-perturbative ambiguity

What to make of red term?
(1) System is stable, ground state energy must be real!

(2) E must be well-defined - no sign-ambiguous bits allowed!

If E is a `resurgent function’, perturbation ambiguities must cancel 
against ambiguities of some non-perturbative saddle F

plus more intricate relations between P and NP physics  at higher orders

Im

⇥S±E(g2) + [F ¯F ]±
⇤
= 0, up to O �

e�4SF
�

S±E(�) =
Z

C±

dte�t/g2

BE(t)

= ReSE(�)⌥i
32⇡

�
e�16⇡/�

But what are the relevant saddle points in the PCM?

l = g2Nrenormalon!

Recall p2[SU(N)] = 0…



Non-topological saddle points
Finite-action `uniton’ solutions of PCM EoMs are known

Based on observation that CPN-1 is a geodesic submanifold of SU(N)
CPN-1 instantons lift to uniton solutions in SU(N) PCM

U(z, z̄) = ei⇡/N (1� 2P) P =
v · v†

v† · v
v(z), z = x1+i x2 is the CPN-1 instanton in homogeneous coordinates

Stable solutions within CPN-1 submanifold, but not in the full SU(N) manifold!

Uhlenbeck 1985...



Fractons
Uniton appearance with ZN-twisted BCs depends on size modulus

SU(2)

SU(3)

Unitons fractionalize into N `fracton’ constituents on small S1

AC, Dorigoni, Dunne, Unsalsee also Smilga, Shifman in 
Schwinger model, 1994



Fractons

✓(t; t0) = 2 arcCot

h
e�⇠(t�t0)

i

¯✓(t; t0) = ⇡ � 2 arcCot

h
e�⇠(t�t0)

i f1=const
f2=const

Explicit solutions:

S =

L

g2

Z
dt

h
˙✓2 + cos

2 ✓ ˙�2
1 + sin

2 ✓ ˙�2
2 + ⇠2sin2✓

i

N types of minimal-action fractons in SU(N)

N-1 fractons associated to N-1 simple roots of su(N)
The other - called KK fracton -  associated to `affine root’

SU(2) Example, small L



KK Fractons
KK fractons in PCM appear same way as KK monopoles in 

compactified  YM theories with non-trivial Wilson lines

Do KK reduction with n units of winding in compact scalar f2

= x2 when x is at center-
symmetric value and n=-1

S =

L

g2

Z
dt
h
˙✓2 + cos

2 ✓ ˙�2
1 + sin

2 ✓ ˙�2
2 +

✓
2⇡ n

L
+ ⇠

◆2

sin

2 ✓
i

Example: take N=2, then x=p/L. Then 2p(-1)/L + p/L = -p/L

Lee+Yi; 
Kraan+van Baal



SU(2) Uniton = fracton + KK fracton

Unitons, Fractons, and KK fractons in SU(2)

S3



The sum over finite-action configurations

Small-L theory weakly coupled, dilute fracton gas approximation is valid

hO(�)i =
1X

n=0

p0,n�
n +

X

c

e�Sc/�
1X

k=0

pc,n�
n

How can NP saddles give ambiguous contributions to path integral?

(1)  Arbitrarily widely separated ‘fundamental’ fracton events

(2) Correlated multi-fracton events

Contributions entering NP sum:

Within small-L EFT, individual fractons are just instantons, and 
are stable - 1-fracton events have unambiguous amplitudes

Fluctuation sum includes zero modes, perturbative modes, 
and quasi-zero modes such as constituent separation

Gives rise to `correlated’ events



Action

Emergent Charge

@0D
@F1D @F1D

@F2D @F1F 1D @F 2D
@F3D @F2F 1D @F1F 2D @F 3D

@F4D @F3F 1D @F2F 2D @F1F 3D @F 4D
ª

-4 -3 -2 -1 0 1 2 3 4

0

SF

2SF

3SF

4SF

Resurgence Triangle



Contribution from fracton-anti-fracton events

Three types of fluctuations for multi-fracton configurations

(1) Zero modes
(2) Quasi-zero modes like fracton separation
(3) Gaussian modes + perturbative corrections

(2) is the subtle part - gives rise to notion of correlated events

Turns out: the interesting events are correlated ones.

Typical fracton separation ~ 
Fracton size ~ 

Quasi-zero mode integration reveals another scale!

Correlated fluctuation size ~



Correlated multi-fracton events
Correlated fracton-fracton events are unambiguous

t* =
l Log@32 pêlD

32 „ p

t

I*

IHtL

separation

quasi-zero mode 
integral gets localized

amplitude:



Correlated multi-fracton events
Correlated fracton-anti-fracton events are ambiguous

The anti-fracton-fracton interaction is `attractive’!

Since dilute gas approximation means all fractons must 
be widely separated, we should expect subtleties….

Fracton-anti-fractons `want’ to get close to annihilate



Making sense of fracton-anti-fracton events
Quasi-zero-mode integrals dominated by 
t=0 region, do not make sense as written



Making sense of fracton-anti-fracton events
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Making sense of fracton-anti-fracton events
Quasi-zero-mode integrals dominated by 
t=0 region, do not make sense as written

This is a feature, not a bug.



Making sense of fracton-anti-fracton events
Quasi-zero-mode integrals dominated by 
t=0 region, do not make sense as written

 Analytically continue 

Away from Im[g2]=0, integral dominated by well-separated fractons

g2 ! g2(1± i✏)

Analytic continuation back to positive g2 is ambiguous!

This is a feature, not a bug.
Bogomolny,
Zinn-Justin

Remember, we had to this for perturbation theory too!



Cancellation of ambiguities
Contribution from P saddle is ambiguous.  So are some from NP saddles.

Im

⇥S±E(g2) + [F ¯F ]±
⇤
= 0, up to O �

e�4SF
�

Neither is directly physical, only sum is. Resurgence predicts:

Preceding result implies that this works in PCM

Systematic demonstration that leading renormalon ambiguities of 
perturbation theory cancel against ambiguities in saddle-point sum

Illustrates that exact information about NP physics is 
present in perturbation theory, albeit in coded form!

At higher order resurgence implies more intricate relations:



Mass gap at small L

The mass gap ~ one-fracton amplitude

Gap between ground state and first excited state in

Same relation in all small-L cases checked so far: PCM, CPN, YM

Relation also holds when massless fermions are added



Resurgent trans-series to all orders
Changed perspective:  semiclassical expansions 

may be exact representations of QFT observables

All series divergent, ambiguous sum if cn,k,q were random

Demanding O(g2) be well-defined implies relations between cn,k,q

Resurgence theory gives technology to find the relations

Perturbative and non-perturbative contributions intimately related

We’ve only just begun exploring the implications...

Resurgence means relations, not just cancellations - `ambiguities’ at 
one order give unambiguous contribution at the next order.



What we learned so far…

In semiclassical domain, renormalon ambiguities systematically 
cancel against contributions of non-BPS NP saddles

Even when there’s no topology, resurgence predicts existence of 
NP saddle points with specific properties, which can then be found.

All results so far fit conjecture of resurgent nature of QFTs 

Renormalons closely related to mass gap, as ’t Hooft dreamt



Now exploring relations to analytic continuation of path integrals

There are likely to be many practical implications!

Better understanding of QFTs with complex actions?

Lefshetz thimble decomposition of integration 
cycles appears to geometrize resurgence

Witten 2010

Lots left to do!

Resurgence theory and Lefshetz thimble 
technology play vital role in seeing how instantons 

appear in real-time Feynman path integrals.
AC, Unsal 

2014

Improved understanding of connections 
between strong and weak coupling regimes?

AC, 
Koroteev, 

Unsal 2014

Resurgence in SUSY QFTs? Aniceto, Russo, 
Schiappa, 2014 

AC, Dorigoni, 
Unsal 2014

End of Part 2


