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Scale of interest and growth of structure
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WMAP 7yrs

Typical size of 
recent/future 

surveys

宇宙の脱結合期: 揺らぎ~10^-5small scalelarge scale

Baryon acoustic oscillations

linear theory

Entering into nonlinear stage from 
small scales 

Giga parsec-class big observations 
are ongoing/upcoming 

Accurate measurement of Baryon 
Acoustic Oscillations is a key goal 

The relevant scale is in the transition 
regime from linear to nonlinear 

Redshift-space distortions are 
cosmologically important/tractable up 
to these scales



Nonlinear growth: mode coupling btwn different scales
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WMAP 7yrs
宇宙の脱結合期: 揺らぎ~10^-5

larger fluctuation → larger nonlinearity 

modes at different k are no longer 
independent 

fluctuations on small scales are 
subject to non gravitational physics 
(ex. cooling, feedback,…） 

Q: Is observation of large scale modes 
a faithful tracer of the cosmological 
model (Initial condition+Energy budget
+gravitational law)?

linear theory

simulation result

Valageas,TN, Taruya ‘13

dangeroussafe?



Mode coupling: perturbative approach
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Continuity+Euler+Poisson equations �(x) = ⇥(x)/⇥̄� 1density fluctuations

peculiar velocity v(x) (single flow)

(velocity divergence)
(for Einstein-de Sitter universe; Ωm=1,ΩΛ=0)

Perturbative solution is known

Goroff+’86

✔️

✔️

✔️

�(x) = � · v(x)



Approximate symmetry of the gravitational dynamics
Continuity+Euler+Poisson equations

Change of variables

Ωm=0.279, ΩΛ=0.721

Explicit cosmology dependence 
lost when

EdS solutions for Fn, Gn are good approximations
Existing PT calculations are all within this approximation



New development in PTs

“renormalization” techniques: group 
infinite diagrams and sum them up

ex. Gamma expansion 
1st × 1st 2nd × 2nd 3rd × 1st

based on Crocce&Scoccimarro06

」 」
2nd × 4th

5th × 1st

3rd × 3rd 2nd × 4th 3rd × 3rd

� = �(1) + �(2) + �(3) + �(4) + . . .

� = �(1) + �(2) + �(3) + �(4) + . . .

Bernardeau + ’09

Crocce,Scoccimarro’06, Taruya,Hiramatsu’07, Matsubara’08,…

power spectrum P = P (11) + P (22) + P (31) + P (13) + · · ·
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Accuracy/reliability
Comparison with N-body simulations 

for a given cosmological model 
as a function of wavenumber k and redshift z

7TN+’09

extension to redshift space

Taruya, TN,  
Bernardeau’13

take account of halo bias 

Sato,  
Matsubara’11



Mode coupling structure from PT
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Note that the kernel functions depend themselves a priori
on the initial power spectrum: K1−loop

aþ ðk; qÞ is a tree-order
object,K2-loop

aþ ðk; qÞ a one-loop order object (and therefore a
linear function of P0ðqÞ), etc. These functions give, for
each order, the impact of a linear mode q on the amplitude
of the late-time mode k we are interested in. In particular it
tells how the small-scale modes affect the large-scale
modes under consideration. In the following we will focus
our interest in understanding the high-q behavior of the ker-
nel functions Kðk; qÞ.
In Fig. 11 we show the shape of the kernel functions at

one, two-loop and three-loop order for k ¼ 0.1 h=Mpc.
The dashed line corresponds to the one-loop expression.
As can be seen it is rather peaked at q ≈ k and we have

K1-loop
1þ ðk; qÞP0ðqÞ ¼

464π
315

q3P0ðqÞ for q ≪ k (79)

K1-loop
1þ ðk; qÞP0ðqÞ ¼

176π
315

k2qPðqÞ for q ≫ k (80)

At two-loop order, the behaviors are qualitatively different.
The function peaks rather for q ¼ 0.5 h=Mpc, irrespective
of the value for k (when k < 0.5 h=Mpc). We note that

K2-loop
1þ ðk; qÞP0ðqÞ ∼ k2q2P0ðqÞ for q ≫ k (81)

so that the convergence is obtained for a spectral index
smaller than −2. This corresponds to the result mentioned
in the beginning of Sec. III D. These trends are amplified
for the three-loop results shown with a dot-dashed line for
which an even lower power law index is required for con-
vergence. In general the convergence properties of the mul-
tiloop kernel are determined by the properties of the
functions FnðqiÞ and GnðqiÞ and how they behave when
one of their argument is, in norm, much larger than the
sum of the wave modes. As mentioned in [36] it is to
be noted that the Galilean invariance of the motion equation
implies that

Fnðq1;…;qnÞ ∼
j
P

jqjj2

q2i
when qi ≫

####
X

j

qj

####; (82)

whenever one of the qi is much larger than the sum. This
can be seen at an elementary level on the properties of
the vertex function αðk1;k2Þ and βðk1;k2Þ: they both van-
ish when the sum of the argument goes to 0. The property
(82) has direct consequences on the properties of the loop
corrections. As a result, the p-loop correction takes indeed
the form

FIG. 10 (color online). Regular parts of the density propagator
RegGp−loop

1þ ðkÞ at one-, two-, and three-loop order with, respec-
tively, solid, dashed, and dotted lines. The calculations are done
for z ¼ 0.5. Note that each of this contribution scales with the
redshift like DþðzÞ2p where p is the number of loops. The light
yellow regions show the parameter space where the induced cor-
rections to the power spectrum are less than 1 percent.

FIG. 11 (color online). The shape of the kernel functions
P0ðqÞK1-loopðk; qÞ (blue solid line), P0ðqÞK2-loopðk; qÞ (green
dashed line) for k ¼ 0.1 h=Mpc and P0ðqÞK3-loopðk; qÞ (red dot-
ted line) as a function of q for z ¼ 0.5.

COSMIC PROPAGATORS AT TWO-LOOP ORDER PHYSICAL REVIEW D 89, 023502 (2014)

023502-15

RegGp−loop
aþ ðkÞ ¼

Z
dq
q
Kp−loop

aþ ðk; qÞP0ðqÞ: (76)

We then have, for instance,

K1-loop
1þ ðk; qÞ ¼ 4πq3

!
fðq; kÞ þ 1

6

k2

q2

"
; (77)

K2−loop
1þ ðk;qÞ ¼−ð4πÞ2q3

Z
dq1

q21k
2

q21þq2
αf

!
q1
k
;
q
k

"
P0ðq1Þ:

(78)

Note that the kernel functions depend themselves a priori
on the initial power spectrum: K1−loop

aþ ðk; qÞ is a tree-order
object,K2-loop

aþ ðk; qÞ a one-loop order object (and therefore a
linear function of P0ðqÞ), etc. These functions give, for
each order, the impact of a linear mode q on the amplitude
of the late-time mode k we are interested in. In particular it
tells how the small-scale modes affect the large-scale
modes under consideration. In the following we will focus
our interest in understanding the high-q behavior of the ker-
nel functions Kðk; qÞ.
In Fig. 11 we show the shape of the kernel functions at

one, two-loop and three-loop order for k ¼ 0.1 h=Mpc.
The dashed line corresponds to the one-loop expression.
As can be seen it is rather peaked at q ≈ k and we have

K1-loop
1þ ðk; qÞP0ðqÞ ¼

464π
315

q3P0ðqÞ for q ≪ k (79)

K1-loop
1þ ðk; qÞP0ðqÞ ¼

176π
315

k2qPðqÞ for q ≫ k (80)

At two-loop order, the behaviors are qualitatively different.
The function peaks rather for q ¼ 0.5 h=Mpc, irrespective
of the value for k (when k < 0.5 h=Mpc). We note that

K2-loop
1þ ðk; qÞP0ðqÞ ∼ k2q2P0ðqÞ for q ≫ k (81)

so that the convergence is obtained for a spectral index
smaller than −2. This corresponds to the result mentioned
in the beginning of Sec. III D. These trends are amplified
for the three-loop results shown with a dot-dashed line for
which an even lower power law index is required for con-
vergence. In general the convergence properties of the mul-
tiloop kernel are determined by the properties of the
functions FnðqiÞ and GnðqiÞ and how they behave when
one of their argument is, in norm, much larger than the
sum of the wave modes. As mentioned in [36] it is to
be noted that the Galilean invariance of the motion equation
implies that

Fnðq1;…;qnÞ ∼
j
P

jqjj2

q2i
when qi ≫

####
X

j

qj

####; (82)

whenever one of the qi is much larger than the sum. This
can be seen at an elementary level on the properties of
the vertex function αðk1;k2Þ and βðk1;k2Þ: they both van-
ish when the sum of the argument goes to 0. The property
(82) has direct consequences on the properties of the loop
corrections. As a result, the p-loop correction takes indeed
the form

FIG. 10 (color online). Regular parts of the density propagator
RegGp−loop

1þ ðkÞ at one-, two-, and three-loop order with, respec-
tively, solid, dashed, and dotted lines. The calculations are done
for z ¼ 0.5. Note that each of this contribution scales with the
redshift like DþðzÞ2p where p is the number of loops. The light
yellow regions show the parameter space where the induced cor-
rections to the power spectrum are less than 1 percent.

FIG. 11 (color online). The shape of the kernel functions
P0ðqÞK1-loopðk; qÞ (blue solid line), P0ðqÞK2-loopðk; qÞ (green
dashed line) for k ¼ 0.1 h=Mpc and P0ðqÞK3-loopðk; qÞ (red dot-
ted line) as a function of q for z ¼ 0.5.

COSMIC PROPAGATORS AT TWO-LOOP ORDER PHYSICAL REVIEW D 89, 023502 (2014)

023502-15

z=0.5 effective 2-scale kernel function at 
the level of 2-point propagator 
How sensitive is a wave mode k in the 
final state to a wave mode q? 

higher loops dominant @ high q 

3-loop > 2-loop over all scales!?  

PT expansion converges?

Bernardeau, Taruya, TN ’14



Difficulties beyond 2-loops?

renormalized PTs so far based on 
1- or 2-loop calculations 

Standard PT up to the 3-loop was 
done recently, but… 

Need some regularization for higher 
loop diagrams? 

Give up PT calculations at low z? 

PT crisis!?

1-loop

2-loop

3-loop

Blas, Garny & Konstandin ‘14

1-loop

2-loop

3-loop

1-loop

2-loop

3-loop

1-loop
2-loop

3-loop

N-bodyN-body

N-body

N-body



Direct measurement of the kernel function from N-body
2

linear power spectrum over a finite interval of wavenum-
ber q, evolve them to a late time, and take the difference
between the power spectra measured from the two. That
is

K̂i,jP
lin
j ≡

P nl
i [P lin

+,j ] − P nl
i [P lin

−,j ]
∆ ln P lin∆ ln q

, (3)

where the two perturbed linear spectra are given by

ln

[
P lin
±,j(q)

ln P lin(q)

]
=

{
±1

2
∆ ln P lin if q ∈ [qj , qj+1),

0 otherwise,
(4)

In the above, the index j runs over the wavenumber bins
for the linear power spectrum and we set a log-equal bin-
ning, ln qj+1 − ln qj = ∆ ln q. The other index i is used
for the wavenumber bin of the nonlinear power spectrum,
which we set identically to that of the linear counter-
part. It is straightforward to show that the estimator K̂
approaches to the kernel function K defined in Eq. (1)
when the bin width and the variation in the input linear
spectra are small. The definition (1) is advantageous in
that it allows the measurement in this way at the fully
nonlinear level [16].

Numerical analysis: We adopt a flat-ΛCDM cosmol-
ogy consistent with the 5yr observation by the WMAP
satellite [6] with parameters (Ωm, Ωb/Ωm, h, As, ns) =
(0.279, 0.165, 0.701, 2.49× 10−9, 0.96), which are the cur-
rent matter density parameter, baryon fraction, the Hub-
ble constant in units of 100km/s/Mpc, the scalar am-
plitude normalized at k0 = 0.002Mpc−1 and its index,
respectively. The matter transfer function is computed
with these parameters using the CAMB code [7].

We run three sets of simulations with different volume
and number of particles as listed in Table I. They are in-
tended to confirm the convergence of the measurements
of the kernel function. Initial conditions are created using
a parallel code developed in [8, 9] based on the second-
order Lagrangian PT (e.g., [10, 11]). The starting red-
shifts shown in the table are determined to minimize the
sum of the transient effect caused by the imperfect ini-
tial condition and the error in the tree-force calculation,
which is problematic when particles are very close to the
pre-initial grid points [12]. We follow the time evolu-
tion of the matter distribution using Gadget2 [13] with
the tree-PM calculation. We finally measure the power
spectrum by fast Fourier transform of the Cloud-in-Cell
(CIC) density estimates on 10243 grid points. We reduce
the smoothing effect by simply dividing the density field
by the CIC kernel in Fourier space.

For each set of simulations, we prepare multiple ini-
tial conditions with linear power spectra perturbed by
±1% (i.e., ∆ ln P lin = ln(1.01) − ln(0.99) ≃ 0.02) over
qj ≤ q < qj+1. The q-bin starts at q1 = 0.006h Mpc−1

(0.012h Mpc−1) for L10-N9 (L9-N9 and L9-N8) and we
set the bin width as ∆ ln q = ln(

√
2). We consider 15 or

13 bins depending on the simulation set as listed in“bins”
column of Table I. We run four random realizations for

the L9-N9 and L9-N8 to estimate the statistical scatter,
and the initial conditions with perturbed spectra at dif-
ferent bins are created with exactly the same random
phases for every realization of every set. The total num-
bers of runs used in this analysis are also shown in Ta-
ble I.

TABLE I: Simulation parameters. Box sizes are in unit of
h−1Mpc.

name box particles start-z bins runs total

L9-N9 512 5123 31 15 4 120

L9-N8 512 2563 15 13 4 104

L10-N9 1024 5123 31 15 1 30

Shape of the kernel function and comparison with PT
results.— We are now in position to present the kernel
function measured from N -body simulations. The com-
bination K(k, q)P lin(q) is plotted at three fixed k as a
function of q in Fig. 1. This combination is such that it
contributes with uniform weights per decade in integral
(2). We show by vertical arrows the position of the k-
bin (the bin center in log) for the kernel presented in each
panel. We show the three simulation results by filled sym-
bols (L9-N9), lines (L9-N8) and open symbols (L10-N9).
Positive (negative) values of K(k, q) are shown by upper
triangles or solid lines (lower triangles or dashed lines).
The vertical error bars of filled triangles depict the sta-
tistical error estimated from the scatter among different
realizations. The heavy overlap among three simulations
ensures that the result is converged against the resolution
and volume of the simulations. We hereafter discuss the
results of L9-N9, which has the best spatial resolution.

FIG. 1: Kernel function measured from simulations. We plot
|K(k, q)|Plin(q) as a function of initial wavenumber q for a
fixed value of final wavenumber k indicated by the vertical
arrow in the panels. Filled (open) symbols show the measure-
ment from L9-N9 (L10-N9), while lines depict L9-N8. Positive
values are shown by upper triangle or solid line, while lower
triangles and dashed line show negative contribution.

At low redshift, we can see a strong peak at k = q aris-
ing from the trivial linear calculation. Nonlinear coupling
then gradually grows with time and the peak feature gets

Gravitational screening of short-wave modes in cosmological fluids

Takahiro Nishimichi,1 Francis Bernardeau,1 and Atsushi Taruya2

1Institut d’Astrophysique de Paris
2Yukawa Institute for Theoretical Physics

We present the first measurement of the mode coupling structure of the cosmological large-scale
structure of the standard cosmological model at the level of the nonlinear power spectrum. More
specifically, we measure the response of the nonlinear matter power spectrum at wavenumber k
with respect to weakly perturbed linear power spectra at wavenumber q employing a large set of
cosmological N -body simulations. While the overall structure of the mode coupling can be accounted
for with standard perturbation theory results, our results show that the short wave modes are
strongly screened out as soon as q > k and contribute only weakly to the growth of the long-wave
modes. This is the first time such an effect is measured. Its origin is yet unclear but it is of crucial
importance for the use of large-scale cosmological data to infer fundamental cosmological of physical
parameters.

PACS numbers:
Keywords:

Wide field galaxy surveys are widely considered for un-
veiling the detailed geometrical properties or energy con-
tent of the universe [1]. Large-scale projects, such as the
EUCLID mission[14], are planned in the coming decade,
aiming at the determination of these properties with an
unprecedented accuracy. Such measurements rely to a
large extent on the use of the statistical properties of the
large-scale cosmic structures up to scales entering the
weakly non-linear regime, that is to scales where the sole
linear theory cannot be used. But such a scientific pro-
gram could then only be achieved if the properties of the
large-scale cosmological structure can be safely predicted
either from numerical simulations or from analytical in-
vestigations for any given cosmological model. In partic-
ular it is important such observables are shielded from
the details of small scale astrophysics and gas physics at
galactic or sub-galactic scales.

One way to reformulate this question is to quantify
how small scale structures can impact the growth of large
scale structure as soon as modes are entering the nonlin-
ear regime. Perturbation theory (PT) of the structure
formation is a powerful framework to precisely predict
the nonlinear gravitational dynamics of the cosmic fluid
from the first principle at least when gravity only is at
play. The importance of such methods has been height-
ened after the detection of the baryon acoustic oscilla-
tions (BAOs) in the clustering of galaxies at late times
(e.g., [2]), making precise predictions of the nonlinear
matter power spectrum crucially important.

PT calculations show precisely that mode couplings be-
tween different scales is unavoidable. It makes PT results
in general difficult to develop in a controlled manner. We
propose here to quantify such couplings with the use of
a two-variable kernel function[15], defined as the linear
response at wave-mode k with respect to initial pertur-
bation of the linear power spectrum at wave-mode q. In
the context of PT calculations Ref. [3] showed progres-
sive broadening of the kernel function as increasing the
PT order, and speculated that a regularization scheme

in the UV domain is required to give a realistic estimate
of the high-order perturbative contributions. The recent
paper by [4] also pointed out the unsuccessful conver-
gence of PT series at late times and proposed a simple
ansatz based on the Padé approximation to suppress the
strong UV sensitivity seen in the standard PT (SPT).

If the broadness of the kernel at late times suggested
from PT calculations is true, physics at very small scale
can influence significantly the matter distribution on
large scales where the acoustic feature is prominent. It
also poses a question to the reliability of simulations, with
which we can follow the evolution of Fourier modes only
in finite dynamic range. We here present a first direct
measurement of the kernel structure from cosmological
N -body simulations. We show that this allows a di-
rect test of regularization schemes employed in analytical
models.

Definition and methodology.— What is the response
of the nonlinear power spectrum at wavenumber k to
the linear power spectrum at wavenumber q? At linear
level, it is simply a Dirac-delta function since each Fourier
mode evolves independently in standard cosmological
scenarios. Here we wish to introduce a well-defined kernel
function and investigate it at fully nonlinear level. We
consider the nonlinear power spectrum as a functional
of the linear power spectrum, i.e., P nl = P nl[P lin], and
define the kernel function as its functional derivative:

K(k, q; z) = q
δP nl(k; z)
δP lin(q; z)

. (1)

We omit the explicit dependence on z from the arguments
in what follows. The normalization for K is chosen such
that a small variation in P nl is related to that of P lin as

δP nl(k) =
∫

d ln q K(k, q)δP lin(q). (2)

This relation provides us a simple way to measure the ker-
nel function from simulations. In order to do so, we pre-
pare two initial conditions with small modulations in the

q [h/Mpc]

Plin
(q

) [
h/

M
pc

]

k [h/Mpc]

Pnl (k
) [

h/
M

pc
]

2

linear power spectrum over a finite interval of wavenum-
ber q, evolve them to a late time, and take the difference
between the power spectra measured from the two. That
is

K̂i,jP
lin
j ≡

P nl
i [P lin

+,j ] − P nl
i [P lin

−,j ]
∆ ln P lin∆ ln q

, (3)

where the two perturbed linear spectra are given by

ln

[
P lin
±,j(q)

ln P lin(q)

]
=

{
±1

2
∆ ln P lin if q ∈ [qj , qj+1),

0 otherwise,
(4)

In the above, the index j runs over the wavenumber bins
for the linear power spectrum and we set a log-equal bin-
ning, ln qj+1 − ln qj = ∆ ln q. The other index i is used
for the wavenumber bin of the nonlinear power spectrum,
which we set identically to that of the linear counter-
part. It is straightforward to show that the estimator K̂
approaches to the kernel function K defined in Eq. (1)
when the bin width and the variation in the input linear
spectra are small. The definition (1) is advantageous in
that it allows the measurement in this way at the fully
nonlinear level [16].

Numerical analysis: We adopt a flat-ΛCDM cosmol-
ogy consistent with the 5yr observation by the WMAP
satellite [6] with parameters (Ωm, Ωb/Ωm, h, As, ns) =
(0.279, 0.165, 0.701, 2.49× 10−9, 0.96), which are the cur-
rent matter density parameter, baryon fraction, the Hub-
ble constant in units of 100km/s/Mpc, the scalar am-
plitude normalized at k0 = 0.002Mpc−1 and its index,
respectively. The matter transfer function is computed
with these parameters using the CAMB code [7].

We run three sets of simulations with different volume
and number of particles as listed in Table I. They are in-
tended to confirm the convergence of the measurements
of the kernel function. Initial conditions are created using
a parallel code developed in [8, 9] based on the second-
order Lagrangian PT (e.g., [10, 11]). The starting red-
shifts shown in the table are determined to minimize the
sum of the transient effect caused by the imperfect ini-
tial condition and the error in the tree-force calculation,
which is problematic when particles are very close to the
pre-initial grid points [12]. We follow the time evolu-
tion of the matter distribution using Gadget2 [13] with
the tree-PM calculation. We finally measure the power
spectrum by fast Fourier transform of the Cloud-in-Cell
(CIC) density estimates on 10243 grid points. We reduce
the smoothing effect by simply dividing the density field
by the CIC kernel in Fourier space.

For each set of simulations, we prepare multiple ini-
tial conditions with linear power spectra perturbed by
±1% (i.e., ∆ ln P lin = ln(1.01) − ln(0.99) ≃ 0.02) over
qj ≤ q < qj+1. The q-bin starts at q1 = 0.006h Mpc−1

(0.012h Mpc−1) for L10-N9 (L9-N9 and L9-N8) and we
set the bin width as ∆ ln q = ln(

√
2). We consider 15 or

13 bins depending on the simulation set as listed in“bins”
column of Table I. We run four random realizations for

the L9-N9 and L9-N8 to estimate the statistical scatter,
and the initial conditions with perturbed spectra at dif-
ferent bins are created with exactly the same random
phases for every realization of every set. The total num-
bers of runs used in this analysis are also shown in Ta-
ble I.

TABLE I: Simulation parameters. Box sizes are in unit of
h−1Mpc.

name box particles start-z bins runs total

L9-N9 512 5123 31 15 4 120

L9-N8 512 2563 15 13 4 104

L10-N9 1024 5123 31 15 1 30

Shape of the kernel function and comparison with PT
results.— We are now in position to present the kernel
function measured from N -body simulations. The com-
bination K(k, q)P lin(q) is plotted at three fixed k as a
function of q in Fig. 1. This combination is such that it
contributes with uniform weights per decade in integral
(2). We show by vertical arrows the position of the k-
bin (the bin center in log) for the kernel presented in each
panel. We show the three simulation results by filled sym-
bols (L9-N9), lines (L9-N8) and open symbols (L10-N9).
Positive (negative) values of K(k, q) are shown by upper
triangles or solid lines (lower triangles or dashed lines).
The vertical error bars of filled triangles depict the sta-
tistical error estimated from the scatter among different
realizations. The heavy overlap among three simulations
ensures that the result is converged against the resolution
and volume of the simulations. We hereafter discuss the
results of L9-N9, which has the best spatial resolution.

FIG. 1: Kernel function measured from simulations. We plot
|K(k, q)|Plin(q) as a function of initial wavenumber q for a
fixed value of final wavenumber k indicated by the vertical
arrow in the panels. Filled (open) symbols show the measure-
ment from L9-N9 (L10-N9), while lines depict L9-N8. Positive
values are shown by upper triangle or solid line, while lower
triangles and dashed line show negative contribution.

At low redshift, we can see a strong peak at k = q aris-
ing from the trivial linear calculation. Nonlinear coupling
then gradually grows with time and the peak feature gets

TN, Bernardeau, Taruya ‘14

Want to see at the full order, not order 
by order



Measurement of the kernel function

2

linear power spectrum over a finite interval of wavenum-
ber q, evolve them to a late time, and take the difference
between the power spectra measured from the two. That
is

K̂i,jP
lin
j ≡

P nl
i [P lin

+,j ] − P nl
i [P lin

−,j ]
∆ ln P lin∆ ln q

, (3)

where the two perturbed linear spectra are given by

ln

[
P lin
±,j(q)

ln P lin(q)

]
=

{
±1

2
∆ ln P lin if q ∈ [qj , qj+1),

0 otherwise,
(4)

In the above, the index j runs over the wavenumber bins
for the linear power spectrum and we set a log-equal bin-
ning, ln qj+1 − ln qj = ∆ ln q. The other index i is used
for the wavenumber bin of the nonlinear power spectrum,
which we set identically to that of the linear counter-
part. It is straightforward to show that the estimator K̂
approaches to the kernel function K defined in Eq. (1)
when the bin width and the variation in the input linear
spectra are small. The definition (1) is advantageous in
that it allows the measurement in this way at the fully
nonlinear level [16].

Numerical analysis: We adopt a flat-ΛCDM cosmol-
ogy consistent with the 5yr observation by the WMAP
satellite [6] with parameters (Ωm, Ωb/Ωm, h, As, ns) =
(0.279, 0.165, 0.701, 2.49× 10−9, 0.96), which are the cur-
rent matter density parameter, baryon fraction, the Hub-
ble constant in units of 100km/s/Mpc, the scalar am-
plitude normalized at k0 = 0.002Mpc−1 and its index,
respectively. The matter transfer function is computed
with these parameters using the CAMB code [7].

We run three sets of simulations with different volume
and number of particles as listed in Table I. They are in-
tended to confirm the convergence of the measurements
of the kernel function. Initial conditions are created using
a parallel code developed in [8, 9] based on the second-
order Lagrangian PT (e.g., [10, 11]). The starting red-
shifts shown in the table are determined to minimize the
sum of the transient effect caused by the imperfect ini-
tial condition and the error in the tree-force calculation,
which is problematic when particles are very close to the
pre-initial grid points [12]. We follow the time evolu-
tion of the matter distribution using Gadget2 [13] with
the tree-PM calculation. We finally measure the power
spectrum by fast Fourier transform of the Cloud-in-Cell
(CIC) density estimates on 10243 grid points. We reduce
the smoothing effect by simply dividing the density field
by the CIC kernel in Fourier space.

For each set of simulations, we prepare multiple ini-
tial conditions with linear power spectra perturbed by
±1% (i.e., ∆ ln P lin = ln(1.01) − ln(0.99) ≃ 0.02) over
qj ≤ q < qj+1. The q-bin starts at q1 = 0.006h Mpc−1

(0.012h Mpc−1) for L10-N9 (L9-N9 and L9-N8) and we
set the bin width as ∆ ln q = ln(

√
2). We consider 15 or

13 bins depending on the simulation set as listed in“bins”
column of Table I. We run four random realizations for

the L9-N9 and L9-N8 to estimate the statistical scatter,
and the initial conditions with perturbed spectra at dif-
ferent bins are created with exactly the same random
phases for every realization of every set. The total num-
bers of runs used in this analysis are also shown in Ta-
ble I.

TABLE I: Simulation parameters. Box sizes are in unit of
h−1Mpc.

name box particles start-z bins runs total

L9-N9 512 5123 31 15 4 120

L9-N8 512 2563 15 13 4 104

L10-N9 1024 5123 31 15 1 30

Shape of the kernel function and comparison with PT
results.— We are now in position to present the kernel
function measured from N -body simulations. The com-
bination K(k, q)P lin(q) is plotted at three fixed k as a
function of q in Fig. 1. This combination is such that it
contributes with uniform weights per decade in integral
(2). We show by vertical arrows the position of the k-
bin (the bin center in log) for the kernel presented in each
panel. We show the three simulation results by filled sym-
bols (L9-N9), lines (L9-N8) and open symbols (L10-N9).
Positive (negative) values of K(k, q) are shown by upper
triangles or solid lines (lower triangles or dashed lines).
The vertical error bars of filled triangles depict the sta-
tistical error estimated from the scatter among different
realizations. The heavy overlap among three simulations
ensures that the result is converged against the resolution
and volume of the simulations. We hereafter discuss the
results of L9-N9, which has the best spatial resolution.

FIG. 1: Kernel function measured from simulations. We plot
|K(k, q)|Plin(q) as a function of initial wavenumber q for a
fixed value of final wavenumber k indicated by the vertical
arrow in the panels. Filled (open) symbols show the measure-
ment from L9-N9 (L10-N9), while lines depict L9-N8. Positive
values are shown by upper triangle or solid line, while lower
triangles and dashed line show negative contribution.

At low redshift, we can see a strong peak at k = q aris-
ing from the trivial linear calculation. Nonlinear coupling
then gradually grows with time and the peak feature gets

2
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Wide field galaxy surveys are widely considered for un-
veiling the detailed geometrical properties or energy con-
tent of the universe [1]. Large-scale projects, such as the
EUCLID mission[14], are planned in the coming decade,
aiming at the determination of these properties with an
unprecedented accuracy. Such measurements rely to a
large extent on the use of the statistical properties of the
large-scale cosmic structures up to scales entering the
weakly non-linear regime, that is to scales where the sole
linear theory cannot be used. But such a scientific pro-
gram could then only be achieved if the properties of the
large-scale cosmological structure can be safely predicted
either from numerical simulations or from analytical in-
vestigations for any given cosmological model. In partic-
ular it is important such observables are shielded from
the details of small scale astrophysics and gas physics at
galactic or sub-galactic scales.

One way to reformulate this question is to quantify
how small scale structures can impact the growth of large
scale structure as soon as modes are entering the nonlin-
ear regime. Perturbation theory (PT) of the structure
formation is a powerful framework to precisely predict
the nonlinear gravitational dynamics of the cosmic fluid
from the first principle at least when gravity only is at
play. The importance of such methods has been height-
ened after the detection of the baryon acoustic oscilla-
tions (BAOs) in the clustering of galaxies at late times
(e.g., [2]), making precise predictions of the nonlinear
matter power spectrum crucially important.

PT calculations show precisely that mode couplings be-
tween different scales is unavoidable. It makes PT results
in general difficult to develop in a controlled manner. We
propose here to quantify such couplings with the use of
a two-variable kernel function[15], defined as the linear
response at wave-mode k with respect to initial pertur-
bation of the linear power spectrum at wave-mode q. In
the context of PT calculations Ref. [3] showed progres-
sive broadening of the kernel function as increasing the
PT order, and speculated that a regularization scheme

in the UV domain is required to give a realistic estimate
of the high-order perturbative contributions. The recent
paper by [4] also pointed out the unsuccessful conver-
gence of PT series at late times and proposed a simple
ansatz based on the Padé approximation to suppress the
strong UV sensitivity seen in the standard PT (SPT).

If the broadness of the kernel at late times suggested
from PT calculations is true, physics at very small scale
can influence significantly the matter distribution on
large scales where the acoustic feature is prominent. It
also poses a question to the reliability of simulations, with
which we can follow the evolution of Fourier modes only
in finite dynamic range. We here present a first direct
measurement of the kernel structure from cosmological
N -body simulations. We show that this allows a di-
rect test of regularization schemes employed in analytical
models.

Definition and methodology.— What is the response
of the nonlinear power spectrum at wavenumber k to
the linear power spectrum at wavenumber q? At linear
level, it is simply a Dirac-delta function since each Fourier
mode evolves independently in standard cosmological
scenarios. Here we wish to introduce a well-defined kernel
function and investigate it at fully nonlinear level. We
consider the nonlinear power spectrum as a functional
of the linear power spectrum, i.e., P nl = P nl[P lin], and
define the kernel function as its functional derivative:

K(k, q; z) = q
δP nl(k; z)
δP lin(q; z)

. (1)

We omit the explicit dependence on z from the arguments
in what follows. The normalization for K is chosen such
that a small variation in P nl is related to that of P lin as

δP nl(k) =
∫

d ln q K(k, q)δP lin(q). (2)

This relation provides us a simple way to measure the ker-
nel function from simulations. In order to do so, we pre-
pare two initial conditions with small modulations in the
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less significant. One of the key features that can be ob-
served in Fig. 1 is that the largest contributions come
from the small wave numbers (q < k) suggesting that
the growth of structure is dominated by mode flows from
the large-scale to the small scales. Nor surprisingly, the
formation of structure is more effectively amplified when
it is part of a larger structure than when it contains small
scale features.

Such findings are fully in line with expectations from
perturbation theory calculations. We show the analyt-
ical calculation in Fig. 2 up to the two loop level. We
present the contribution from Pij(k) ∝ ⟨δ(i)δ(j)⟩, where
δ(i) is the ith-order term in the perturbative expansion
of the density contrast. At each loop level, terms cancel
at leading order at the IR domain (q < k) due to the
extended galilean invariance of the motion equations as
shown and analyzed in recent papers ???. On the other
hand, the UV domain is entirely dominated by the P13(k)
(at one-loop) or P15(k) (at two-loop) contribution. Such
terms can be alternatively described as due to correction
to the density field propagators. They have been shown
to dominate the behavior of the UV domain at any fixed
order in SPT.

FIG. 2: Kernel function as predicted by PT calculations up to
one- (thin solid) and two-loop (thick solid) order computed
for k = 0.2h/Mpc at z = 1. Dashed (dotted) lines show
each of the one- (two-)loop contributions with the legend (ij)
showing the perturbative order of the calculation. The legend
has a negative sign when the kernel is negative. Note that we
ignore terms proportional to the Dirac delta at k = q, which
is meaningful only when we take a certain binning scheme.

We rescale the N -body measurements at various red-
shifts as T (k, q) = K(k, q)/P lin(k) and plot them in
Fig. 3 after removing the trivial linear contribution. This
is compared with the one-loop PT calculation shown in
histograms, which is now independent of time. The time
dependence of the simulation data is indeed mostly sup-
pressed at q ! k in agreement with the one loop calcula-
tion. The shape of the kernel function is well described
by the one-loop PT at this domain, which extends to
larger q at high redshift. In particular we observe the
change of sign one expects between the IR and the UV
(q > k) domain. At low redshift however the couplings

between the small scale modes and the large-scale modes
is observed to be damped compared to the one-loop ex-
pectations. As clear from Fig. 2, the two-loop calculation
does not help us to reproduce this damping. The even
broader kernel structure at three-loop order (see e.g., [3])
suggests that the SPT breaks down at UV domain at any
finite order.

FIG. 3: One-loop standard perturbation theory vs. N -
body simulations. We plot the absolute value of T (k, q) ≡
K(k, q)/P lin(k), which is redshift-independent at one-loop
level. Filled (open) histograms show positive (negative) val-
ues based on the one-loop perturbation theory. We plot the
simulation measurements L9-N9 (symbols) at various redshifts
as indicated in the figure legend. Note that we subtract the
linear contribution both from model and simulations to focus
on nonlinear part. Note also that the sign of the kernel from
simulations, which we do not show here explicitly, is consis-
tent with the analytical calculation.

We show in Fig. 4 that this damping can be accounted
for with a Lorentzian shape,

T eff.(k, q) =
[
T 1−loop(k, q) + T 2−loop(k, q)

] 1
1 + (q/q0)2

(5)
characterized by a time-dependent critical wave mode,
q0(z) = 0.3D−2

+ (z)h/ Mpc, where D+ is the linear growth
rate of the fluctuations. Note that q0 is independent of
k so that the k dependence of the UV part of the kernel
function is preserved (and is k2). The simulation data
from three different ks indeed show the independence of
the damping function on k.

What is the origin of this damping? This is not clear
yet. In particular it is not clear if it is associated with
shell crossing effects. It might be related to the fun-
damental problem in the perturbative series expansion
of the density contrast, since the condition |δ| ≪ 1 in-
evitably breaks down at some small scale.

Demonstration—. With a simple formula for the ker-
nel function at hand, we can compute the response of the
nonlinear power spectrum to the cosmological model. We
consider two cosmological model wmap5 and planck, and
demonstrate the impact of the UV damping of the ker-
nel when we compute the change in the nonlinear power
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has a negative sign when the kernel is negative. Note that we
ignore terms proportional to the Dirac delta at k = q, which
is meaningful only when we take a certain binning scheme.

We rescale the N -body measurements at various red-
shifts as T (k, q) = K(k, q)/P lin(k) and plot them in
Fig. 3 after removing the trivial linear contribution. This
is compared with the one-loop PT calculation shown in
histograms, which is now independent of time. The time
dependence of the simulation data is indeed mostly sup-
pressed at q ! k in agreement with the one loop calcula-
tion. The shape of the kernel function is well described
by the one-loop PT at this domain, which extends to
larger q at high redshift. In particular we observe the
change of sign one expects between the IR and the UV
(q > k) domain. At low redshift however the couplings

between the small scale modes and the large-scale modes
is observed to be damped compared to the one-loop ex-
pectations. As clear from Fig. 2, the two-loop calculation
does not help us to reproduce this damping. The even
broader kernel structure at three-loop order (see e.g., [3])
suggests that the SPT breaks down at UV domain at any
finite order.

FIG. 3: One-loop standard perturbation theory vs. N -
body simulations. We plot the absolute value of T (k, q) ≡
K(k, q)/P lin(k), which is redshift-independent at one-loop
level. Filled (open) histograms show positive (negative) val-
ues based on the one-loop perturbation theory. We plot the
simulation measurements L9-N9 (symbols) at various redshifts
as indicated in the figure legend. Note that we subtract the
linear contribution both from model and simulations to focus
on nonlinear part. Note also that the sign of the kernel from
simulations, which we do not show here explicitly, is consis-
tent with the analytical calculation.

We show in Fig. 4 that this damping can be accounted
for with a Lorentzian shape,

T eff.(k, q) =
[
T 1−loop(k, q) + T 2−loop(k, q)

] 1
1 + (q/q0)2

(5)
characterized by a time-dependent critical wave mode,
q0(z) = 0.3D−2

+ (z)h/ Mpc, where D+ is the linear growth
rate of the fluctuations. Note that q0 is independent of
k so that the k dependence of the UV part of the kernel
function is preserved (and is k2). The simulation data
from three different ks indeed show the independence of
the damping function on k.

What is the origin of this damping? This is not clear
yet. In particular it is not clear if it is associated with
shell crossing effects. It might be related to the fun-
damental problem in the perturbative series expansion
of the density contrast, since the condition |δ| ≪ 1 in-
evitably breaks down at some small scale.

Demonstration—. With a simple formula for the ker-
nel function at hand, we can compute the response of the
nonlinear power spectrum to the cosmological model. We
consider two cosmological model wmap5 and planck, and
demonstrate the impact of the UV damping of the ker-
nel when we compute the change in the nonlinear power

Simple Lorentzian function fits the data very well 

k-independent damping (consistent with PT) 

Some mechanism suppresses the impact of 
small-scale physics to large scale fluctuations? 

shell crossing? → Effective Field Theory approach? 
can be explained within the single stream dynamics?

4

FIG. 4: Kernel function divided by the 2-loop SPT result at
the three wave numbers shown in the legend. We plot data
points only at q ≥ 2k for definiteness. A simple empirical
form (5) is overplotted by the solid lines.
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FIG. 5: Taka: Temporary figure. To be replaced with 2-loop
predictions w/ or w/o damping after Taruya-san’s calcula-
tion. Difference in the nonlinear power spectrum in different
cosmological models based on the kernel function.

cosmology with the same simulation parameters as well
as the random number seeds in creating the initial con-
ditions. We follow the prescription in Ref. [12] and find
the output redshift for the planck simulations at which
the difference in the linear power spectrum in the two
cosmologies δP lin(q) is the small (that is z = 0.394) [22].
We use Eq. (2) to compute the difference in the nonlinear
power spectra with different models for K(k, q). This is
compared with the simulation results in Fig. 5. Taka:
Results are to come very soon!

Summary—. We have presented the first direct mea-
surement of the kernel function that governs the effective
mode transfer in terms of the nonlinear power spectrum
in the course of cosmic structure formation using a large
ensemble of N -body simulations. We find a strong damp-
ing of the function at the UV domain, which cannot be
explained in the SPT at any order. Our finding is the
first direct evidence for the necessity to introduce a reg-
ularization scheme of the PT expansion to suppress the
strong UV sensitivity. The insensitivity of the nonlinear
power spectrum to the small scale physics then supports
the use of PT calculations to the gravitational dynamics
in weekly nonlinear regime, once a proper UV regular-
ization is taken account. The kernel function serves as a
test for analytical models beyond the accuracy check of
the power spectrum itself.
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q ≧ 2k are shown

TN, Bernardeau, Taruya ‘14

T (k, q) = [K(k, q)�K lin(k, q)]/[qP lin(k)]



Symmetry of the dynamics and consistency relations

14

Gaussian initial condition is supported both theoretically and observationally 
Pini=PL, Bini=0, Tini=0, … 

Higher-order polyspectra are generated exactly by the same mechanism 
as that causes nonlinear correction to the power spectrum 

There might exist some relations between different spectra at the full order 

Their violation immediately means either 
non-Gaussian initial condition 

departure from GR 

Higher-order spectra can be analytically computed using low-order spectra

P1�loop(k) � 2
�

d3q

(2�)3
[F2(k� q,q)]2PL(|k� q|)PL(q)



Angular-averaged equal-time consistency relations

15soft modes hard modes

Valageas ’142 views for the same system 

linear order calculation for ε
(l+n)-pt function n-pt function

Response of a hard mode k  
to a soft mode ε

add a uniform density

x

δk

ε

compensate by a  
negative fluctuation



Testing angular-averaged equal-time consistency relations

16

TN, Valageas ’14

LH
S 

/ R
HS

The lowest order version of the relation:

Confirmed the 
relation numerically  
60 realization of (2Gpc/
h)^3 simulations with 
1024^3 particles 

relation holds within ~% 
accuracy at z=1 

at z=0.35, a sign of the 
breakdown of the relation 
is found at high k at ~7% 
level



Cosmo Library (tentative title): mock simulation suits for SuMIRe

p1
p2

p3

cosmological 
parameter 

space

p4 p5 p6 Fill up cosmological parameter 
space with N-body simulations  

O(1000) simulations for the base ΛCDM 
parameters 

O(100) non-standard models (wCDM, 
non-Gaussianity, modified gravity, etc…) 

Study data convergence and 
cosmological dependencies 

Release basic data to the community 
Light cone out put of halos/subhalos 

Their merger history 

weak-lensing convergence maps



Application of the kernel：RegPTfast
cosmological 

parameter 
space

Taruya, Bernardeau, TN, Codis‘12

Pre-computed kernels for 3 cosmological models 

Reconstruction of the nonlinear power spectrum 
using by interpolation using the kernel requires only 
1D integrals. ~a few seconds



Use of the kernel calibrated by N-body simulations

Calibration of the kernel function with the 
Cosmo Library data 
RegPTfast-like reconstruction of the 
nonlinear power spectrum for other 
cosmological models 
The idea itself can be used not only for 
the power spectrum, but also for any 
statistical quantities 

higher-order statistics 
halo mass function 
halo/subhalo bias

Preliminary



Testing modified gravity: toward model independent analysis

20

“linear” growth parameter: f(z)=dlnD(z)/dlna 

useful for constraining modified gravity scenarios 

One of the most important goal together with 
measurement of DE EOS 

variety of gravitational law characterized by 1 
parameter? 

Do we really measure “linear” thing? 

Needs for new index

Taken from FastSound proposal
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Testing modified gravity: toward model independent analysis

“linear” growth parameter: f(z)=dlnD(z)/dlna 

useful for constraining modified gravity scenarios 

One of the most important goal together with 
measurement of DE EOS 

variety of gravitational law characterized by 1 
parameter? 

Do we really measure “linear” thing? 

Needs for new index



22Trying various models for nonlinearity including ours, but…

Blake +’11, WiggleZ, ~15k galaxies

structure “linear” growth parameter

Testing modified gravity: toward model independent analysis

“linear” growth parameter: f(z)=dlnD(z)/dlna 

useful for constraining modified gravity scenarios 

One of the most important goal together with 
measurement of DE EOS 

variety of gravitational law characterized by 1 
parameter? 

Do we really measure “linear” thing? 

Needs for new index
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2-pt statistics

linear growth parameter

model fitting

multi-pt statistics

Construct model 
independent 
indices from 
observables

Observation

Testing modified gravity: toward model independent analysis

“linear” growth parameter: f(z)=dlnD(z)/dlna 

useful for constraining modified gravity scenarios 

One of the most important goal together with 
measurement of DE EOS 

variety of gravitational law characterized by 1 
parameter? 

Do we really measure “linear” thing? 

Needs for new index



How to characterize galaxy bias?

24

peaks or (sub)halos in sims or analytical models 
the most trivial parameter: peak height or halo mass 

Halo Occupation Distribution 

Other parameters within the halo picture 
halo assembly bias (in a wider sense) 

nonlinear generalization? 

velocity structure inside a halo 

Faithful cosmological test possible under such 
complexities of galaxy bias? 

Test these issues with Cosmo Library
peak height

lin
ea

r b
ias

Faltenbacher, White ‘10



Toward more realistic mock catalogs

25

N-body simulations 
at most (sub)halos 

Galaxy formation 
semi analytic model 
hydrodynamical simulations 

Construction of large-scale mock data by 
combining different simulations 

Existing method: local mapping of density based 
on a probabilistic approach 
Nonlocal extension, environmental dependence 
taken into account 

Are statistical methods constructed based on 
halos still useful for “galaxies”?

N-body simulations 
over ~Gpc scale

Calibration with a small  
N-body simulation and  

a hydrodynamical 
simulation 

Generate mock 
galaxies statistically

Mock Local Universe Survey Constructor 2
Extension of Sousbie+’08



Summary
Direct measurement of the mode-
coupling structure using O(100) N-
body simulations


Is large-scale fluctuations around the 
BAO wiggles protected from small 
scale uncertainties?


generalize the discussion in 1D (k) to 
2D (k, q)


q<k: PT is fine


q>k: Simulation data decays rapidly


Needs for an appropriate 
regularization scheme!

26

Numerical confirmation of the 
consistency relation between the 
power and bispectra with 60 
simulations


relation is confirmed within % 
accuracy at z=1


small but statistically significant 
violation is found at z=0.35


Planing even bigger simulations 
for SuMIRe HSC/PFS with O(1000) 
N-body simulations


