Non-perturbative properties of large-scale structure formation and their implications to cosmology

Takahiro Nishimichi

(Institut d'Astrophysique de Paris; JSPS Fellow)

Seminar @Kavli IPMU Nov. 28 2014

Scale of interest and growth of structure

small scales

- are ongoing/upcoming

- to these scales

Entering into nonlinear stage from

Giga parsec-class big observations

Accurate measurement of Baryon Acoustic Oscillations is a key goal

The relevant scale is in the transition regime from linear to nonlinear

Redshift-space distortions are cosmologically important/tractable up

Nonlinear growth: mode coupling btwn different scales

- independent
- +gravitational law)?

Iarger fluctuation -> larger nonlinearity modes at different k are no longer

fluctuations on small scales are subject to non gravitational physics (ex. cooling, feedback,...)

Q: Is observation of large scale modes a faithful tracer of the cosmological model (Initial condition+Energy budget

Mode coupling: perturba

Continuity+Euler+Poisson equations

$$\begin{split} \frac{\partial \delta}{\partial t} &+ \frac{1}{a} \nabla \cdot \left[(1+\delta) \boldsymbol{v} \right] = 0, \\ \frac{\partial \boldsymbol{v}}{\partial t} &+ H \boldsymbol{v} + \frac{1}{a} (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\frac{1}{a} \nabla \phi, \\ \nabla^2 \phi &= 4\pi \mathcal{G} \bar{\rho} a^2 \delta. \end{split}$$

$$\theta(\mathbf{x}) = \nabla \cdot \mathbf{v}(\mathbf{x})$$

(velocity divergence)

(for Einstein-de Sitter universe; $\Omega_m = 1, \Omega_{\Lambda} = 0$)

$$\begin{aligned} a\frac{\partial\delta(\mathbf{k},a)}{\partial a} + \theta(\mathbf{k},a) &= -\frac{1}{(2\pi)^{3/2}} \int \mathrm{d}^{3}\mathbf{k}_{1} \mathrm{d}^{3}\mathbf{k}_{2} \,\delta_{D}(\mathbf{k} - \mathbf{k}_{12}) \\ &\times \quad \alpha(\mathbf{k}_{1},\mathbf{k}_{2})\theta(\mathbf{k}_{1},a)\delta(\mathbf{k}_{2},a) \\ a\frac{\partial\theta(\mathbf{k},a)}{\partial a} + \frac{1}{2}\theta(\mathbf{k},a) + \frac{3}{2}\delta(\mathbf{k},a) &= -\frac{1}{(2\pi)^{3/2}} \int \mathrm{d}^{3}\mathbf{k}_{1} \mathrm{d}^{3}\mathbf{k}_{2} \,\delta_{D}(\mathbf{k} - \mathbf{k}_{12}) \\ &\times \quad \beta(\mathbf{k}_{1},\mathbf{k}_{2})\theta(\mathbf{k}_{1},a)\theta(\mathbf{k}_{2},a), \end{aligned}$$

$$\begin{aligned} \text{tive approach} \\ \text{density fluctuations} \quad & \delta(\mathbf{x}) = \rho(\mathbf{x})/\bar{\rho} - 1 \\ \text{peculiar velocity} \quad & \mathbf{v}(\mathbf{x}) \quad (\text{single flow}) \end{aligned} \\ \end{aligned} \\ \begin{aligned} \mathbf{Perturbative solution is known} \\ & \overline{\delta}(\mathbf{k}, \tau) = \sum_{n=1}^{\infty} a^n(\tau) \delta_n(\mathbf{k}), \quad \tilde{\theta}(\mathbf{k}, \tau) = -\mathcal{H}(\tau) \sum_{n=1}^{\infty} a^n(\tau) \theta_n(\mathbf{k}) \end{aligned} \\ \\ \hline \delta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) F_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1...n}) G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ \hline \theta_n(\mathbf{k}) = \int d^3 \mathbf{q}_1 \dots \int d^3 \mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_1) \left[\partial (\mathbf{k} - \mathbf{k}_1, \mathbf{k}_2) F_{n-m}(\mathbf{q}_{m+1}, \dots, \mathbf{q}_m) \right], \end{aligned}$$

$$+2\beta(\mathbf{k}_{1})$$

$$\begin{aligned} \text{tive approach} \\ \text{density fluctuations} \quad & \delta(\mathbf{x}) = \rho(\mathbf{x})/\bar{\rho} - 1 \\ \text{peculiar velocity} \quad & \mathbf{v}(\mathbf{x}) \quad (\text{single flow}) \end{aligned}$$
$$\begin{aligned} & \textbf{Perturbative solution is known} \\ & \delta(\mathbf{k}, \tau) = \sum_{n=1}^{\infty} a^n(\tau)\delta_n(\mathbf{k}), \quad \tilde{\theta}(\mathbf{k}, \tau) = -\mathcal{H}(\tau)\sum_{n=1}^{\infty} a^n(\tau)\theta_n(\mathbf{k}) \end{aligned}$$
$$\begin{aligned} & \delta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})F_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})F_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{q}_1 \dots \int d^3\mathbf{q}_n \, \delta_D(\mathbf{k} - \mathbf{q}_{1\dots n})G_n(\mathbf{q}_1, \dots, \mathbf{q}_n) \delta_1(\mathbf{q}_1) \dots \delta_1(\mathbf{q}_n), \\ & \theta_n(\mathbf{k}) = \int d^3\mathbf{k}_1 \dots \int d^3\mathbf{k}_1 \, \delta_D(\mathbf{k} - \mathbf{k}_1) \int d^3\mathbf{k}_1 \, \delta_D($$

Goroff+'86

Approximate symmetry of the gravitational dynamics

Continuity+Euler+Poisson equations

$$\begin{aligned} \frac{\partial \delta}{\partial t} &+ \frac{1}{a} \nabla \cdot \left[(1+\delta) \boldsymbol{v} \right] = \boldsymbol{0}, \\ \frac{\partial \boldsymbol{v}}{\partial t} &+ H \boldsymbol{v} + \frac{1}{a} (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\frac{1}{a} \nabla \phi, \\ \nabla^2 \phi &= 4\pi \mathcal{G} \bar{\rho} a^2 \delta. \end{aligned}$$

Change of variables

$$\eta = \ln D_+, \quad \mathbf{v} = \dot{a}f\mathbf{u}, \quad \phi = (\dot{a}f)^2\varphi$$
$$\frac{\partial\delta}{\partial\eta} + \nabla \cdot \left[(1+\delta)\mathbf{u}\right] = 0,$$
$$\frac{\partial\mathbf{u}}{\partial\eta} + \left(\frac{3\Omega_{\rm m}}{2f^2} - 1\right)\mathbf{u} + (\mathbf{u}\cdot\nabla)\mathbf{u} = -\nabla\varphi,$$
$$\nabla^2\varphi = \frac{3\Omega_{\rm m}}{2f^2}\,\delta.$$

1.125 1.1 G^{E1.075} 1.05 1.025

Explicit cosmology dependence EdS solutions for F_n, G_n are good approximations lost when **Existing PT calculations are all within this approximation**

New development in PTs

Crocce, Scoccimarro'06, Taruya, Hiramatsu'07, Matsubara'08,...

 "renormalization" techniques: group infinite diagrams and sum them up

power spectrum $P = P^{(11)} + P^{(22)} + P^{(31)} + P^{(13)} + P^{(13)}$

based on Crocce&Scoccimarro06

)(k,ŋ)

 $g(\eta) \phi(k)$

 $\Psi^{(1)}(k,n)$

$\Psi^{(3)}(k,\eta)$

 $\Psi^{(4)}(k,\eta)$

$\delta = \delta^{(1)} + \delta^{(2)} + \delta^{(3)} + \delta^{(4)} + \dots$ $\theta = \theta^{(1)} + \theta^{(2)} + \theta^{(3)} + \theta^{(4)} + \dots$

ex. Gamma expansion Bernardeau + '09

Accuracy/reliability

Comparison with N-body simulations

- for a given cosmological model
- as a function of wavenumber k and redshift z

TN+'09

extension to redshift space

Taruya, TN, Bernardeau'13

Sato, Matsubara'11

Mode coupling structure from PT

effective 2-scale kernel function at the level of 2-point propagator How sensitive is a wave mode k in the final state to a wave mode q? higher loops dominant @ high q

- PT expansion converges?

Solution > 2-loop over all scales!?

Bernardeau, Taruya, TN '14

Difficulties beyond 2-loops?

renormalized PTs so far based on 1- or 2-loop calculations

Standard PT up to the 3-loop was done recently, but...

Need some regularization for higher loop diagrams?

Give up PT calculations at low z?

Blas, Garny & Konstandin '14

Direct measurement of the kernel function from N-body

Want to see at the full order, not order

cles	start- z	bins	runs	total
2^3	31	15	4	120
$\mathbf{\hat{j}}^3$	15	13	4	104
\mathbf{p}^3	31	15	1	30

TN, Bernardeau, Taruya '14

Measurement of the kernel function

 $K(k,q;z) = q \frac{\delta P^{\mathrm{nl}}(k;z)}{\delta P^{\mathrm{lin}}(q;z)}$

- - broader on lower z
 - dominant

name	box	particles	start- z	bins	runs	total
L9-N9	512	512^{3}	31	15	4	120
L9-N8	512	256^{3}	15	13	4	104
L10-N9	1024	512^{3}	31	15	1	30

TN, Bernardeau, Taruya '14

Converged result against simulation volume and number of particles

contribution from larger scales (q<k)

Comparison with PT

■ @ q < k z-dependence hardly seen 1-loop PT works excellently ■ @ q ~ K 2-loop surely improves the agreement • @ q > k approaches to 0 as decreasing z 1-loop not good、 2-loop worse!

TN, Bernardeau, Taruya '14

$T(k,q) = [K(k,q) - K^{\rm lin}(k,q)]/[qP^{\rm lin}(k)]$

Damping of coupling to short modes

$$T(k,q) = [K(k,q)]$$

Simple Lorentzian fur
 $T^{\text{eff.}}(k,q) = [T^{1-\text{loop}}(k,q)]$

 $K(k,q;z) = q \frac{\delta P^{\mathrm{nl}}(z)}{\delta P^{\mathrm{lin}}(z)}$ (k;z) $[-K^{\text{lin}}(k,q)]/[qP^{\text{lin}}(k)]$ ction fits the data very well $(q) + T^{2-\text{loop}}(k,q) \frac{\mathbf{1}}{1 + (q/q_0)^2}$ $q_0(z) = 0.3D_+^{-2}(z)h/Mpc$ k-independent damping (consistent with PT) Some mechanism suppresses the impact of small-scale physics to large scale fluctuations? shell crossing? → Effective Field Theory approach?

can be explained within the single stream dynamics?

TN, Bernardeau, Taruya '14

Symmetry of the dynamics and consistency relations Gaussian initial condition is supported both theoretically and observationally

- - $P_{ini}=P_L, B_{ini}=0, T_{ini}=0, ...$
- Higher-order polyspectra are generated exactly by the same mechanism as that causes nonlinear correction to the power spectrum

$$P_{1-\text{loop}}(k) \ni 2 \int \frac{\mathrm{d}^3 q}{(2\pi)^3} [F_2(\mathbf{k} - \mathbf{q}, \mathbf{q})]^2 P_L(|\mathbf{k} - \mathbf{q}|) P_L(q) \qquad B(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = 2F_2^s(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = 2F_2$$

- There might exist some relations between different spectra at the full order
- Their violation immediately means either
 - non-Gaussian initial condition
 - departure from GR

Higher-order spectra can be analytically computed using low-order spectra

$(\mathbf{k}_1, \mathbf{k}_2) P_L(k_1) P_L(k_2) + (\text{cyc.}),$

Testing angular-averaged equal-time consistency relations *TN, Valageas '14* The lowest order version of the relation: $\overline{B(k';k)} \equiv \langle \overline{\delta_{k'}} \delta_{k-k'/2} \delta_{-k-k'/2} \rangle'$

Confirmed the relation numerically

- 60 realization of (2Gpc/ h)^3 simulations with 1024^3 particles
- relation holds within ~% accuracy at z=1
- at z=0.35, a sign of the breakdown of the relation is found at high k at ~7% level

16

Fill up cosmological parameter space with N-body simulations

• $\mathcal{O}(1000)$ simulations for the base ΛCDM

• $\mathcal{O}(100)$ non-standard models (wCDM, non-Gaussianity, modified gravity, etc...)

cosmological dependencies

Release basic data to the community Light cone out put of halos/subhalos

weak-lensing convergence maps

Application of the kernel : RegPTfast Taruya, Bernardeau, TN, Codis'12

1D integrals. ~a few seconds

Pre-computed kernels for 3 cosmological models

Reconstruction of the nonlinear power spectrum using by interpolation using the kernel requires only

Use of the kernel calibrated by N-body simulations

- Calibration of the kernel function with the Cosmo Library data RegPTfast-like reconstruction of the nonlinear power spectrum for other cosmological models The idea itself can be used not only for the power spectrum, but also for any statistical quantities higher-order statistics halo mass function

 - halo/subhalo bias

Testing modified gravity: toward model independent analysis

- "linear" growth parameter: f(z)=dlnD(z)/dlna
 - useful for constraining modified gravity scenarios
 - One of the most important goal together with measurement of DE EOS
- variety of gravitational law characterized by 1 parameter?
- Do we really measure "linear" thing?
- Needs for new index

independent analysis Taken from FastSound proposal

Testing modified gravity: toward model independent analysis

- "linear" growth parameter: f(z)=dlnD(z)/dlna
 - useful for constraining modified gravity scenarios
 - One of the most important goal together with measurement of DE EOS
- variety of gravitational law characterized by 1 parameter?
- Do we really measure "linear" thing?
- Needs for new index

Testing modified gravity: toward model independent analysis Blake +'11, WiggleZ, ~15k galaxies

- "linear" growth parameter: f(z)=dlnD(z)/dlna
 - useful for constraining modified gravity scenarios
 - One of the most important goal together with measurement of DE EOS
- variety of gravitational law characterized by 1 parameter?
- Do we really measure "linear" thing?
- Needs for new index

Trying various models for nonlinearity including ours, but...

Testing modified gravity: toward model independent analysis

- "linear" growth parameter: f(z)=dlnD(z)/dlna
 - useful for constraining modified gravity scenarios
 - One of the most important goal together with measurement of DE EOS
- variety of gravitational law characterized by 1 parameter?
- Do we really measure "linear" thing?
- Needs for new index

Observation

multi-pt statistics

Construct model independent indices from observables

How to characterize galaxy bias?

- peaks or (sub)halos in sims or analytical models
 - the most trivial parameter: peak height or halo mass
 - Halo Occupation Distribution
- Other parameters within the halo picture
 - halo assembly bias (in a wider sense)
 - nonlinear generalization?
 - velocity structure inside a halo
- Faithful cosmological test possible under such complexities of galaxy bias?
- Test these issues with Cosmo Library

peak height

Ioward more realistic mock catalogs

- N-body simulations
 - at most (sub)halos
- Galaxy formation
 - semi analytic model
 - hydrodynamical simulations
- Construction of large-scale mock data by combining different simulations
 - Existing method: local mapping of density based on a probabilistic approach
 - Nonlocal extension, environmental dependence taken into account
- Are statistical methods constructed based on halos still useful for "galaxies"?

Extension of Sousbie+'08

N-body simulations over ~Gpc scale

> Calibration with a small N-body simulation and Generate mock a hydrodynamical galaxies statistically simulation

Mock Local Universe Survey Constructor 2

25

Summary

- Direct measurement of the modecoupling structure using $\mathcal{O}(100)$ Nbody simulations
 - Is large-scale fluctuations around the BAO wiggles protected from small scale uncertainties?
 - generalize the discussion in 1D (k) to 2D (k, q)
 - q<k: PT is fine</p>
 - q>k: Simulation data decays rapidly
 - Needs for an appropriate regularization scheme!

- Numerical confirmation of the power and bispectra with 60 simulations
 - relation is confirmed within % accuracy at z=1
 - violation is found at z=0.35
- Planing even bigger simulations N-body simulations

consistency relation between the

small but statistically significant

for SuMIRe HSC/PFS with O(1000)