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Abstract

This is a set of introductory lectures on non-equilibrium Quantum Field Theory and its applications in Cos-
mology. I will focus on describing how the interactions between a system and its environment lead to dissipative
effects and associated fluctuations, which are fully encoded in a generic Langevin-like equation. First, I will discuss
how this arises in the context of a simple quantum mechanical model and then move on to give a full description
of these effects in Quantum Field Theory, using the real-time Schwinger-Keldysh formalism. I will give simple
examples of dissipation coefficients for scalar interactions and use them to discuss how the effects of dissipation
and fluctuations modify the dynamics of cosmological scalar fields, focusing on the framework of warm inflation.
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1 Introduction

This is an introductory mini-course, aimed at graduate students and researchers, on the description of non-equilibrium
systems in Quantum Field Theory (QFT), with a particular focus on aspects that are relevant for applications in
Cosmology. Knowledge of basic tools in quantum mechanics and QFT is assumed and some basic knowledge of
equilibrium thermal field theory is helpful, although I will try to make the course as much self-contained as possible.
This is not meant to be a review, although I will give a selected bibliography for those interested in pursuing some of
the topics presented. Non-equilibrium QFT is a broad subject with several different applications and methodologies,
and here I will concentrate on the main tools that I use in my own research and that are particularly useful in exploring
the cosmological impact of non-equilibrium dynamics. This is thus necessarily a somewhat biased discussion, but I
hope to give a sufficiently broad view of the subject and methods that can be applied in different physical settings.

In many physical problems we are interested in studying the dynamical evolution of a given system that is
coupled to a more or less complex environment. The focus is typically on the average properties of the system, which
can often be described in terms of a few simple dynamical variables and the properties of the environment, but in
many cases we are also interested in the behaviour of fluctuations about this average evolution. Non-equilibrium
QFT is a very useful and powerful formalism to explore a plethora of different systems, corresponding to one or more
fundamental (or composite) fields that evolve in a given environment.

Non-equilibrium dynamics is in general quite complicated to describe, but there are particular systems where a
simple description is possible. This is, for example, the case of an environment that is in a state close to (thermal)
equilibrium and which is only weakly perturbed by the system that we are interested in. The problem also simplifies
considerably when there is a clear separation of time scales between the system and the environment, for example
if the system evolves slowly compared to the typical response time of the environment to local disturbances. In
these cases we may generically take the environment to be always in a local equilibrium state, described by a simple
set of macroscopic variables (namely its temperature), and use this to compute its backreaction on the dynamics
of the system. As we will see, this leads on average to dissipation of the system’s energy into the environment,
which adiabatically perturbs the latter so that it quickly returns to a (new) equilibrium state. In addition, random
fluctuations in the thermal environment will also lead to random fluctuations in the system, whose amplitude is
intrinsically related to the strength of the dissipative effects. This is generically known as the fluctuation-dissipation
theorem, which takes a simple form in the adiabatic and quasi-equilibrium conditions given above but also extends
to more general non-equilibrium scenarios.

Although these conditions may seem quite constraining, they are satisfied by a large number of physical sys-
tems, particularly in Cosmology. Firstly, there is now plenty observational evidence (e.g. the Cosmic Microwave
Background) for the universe to have attained a state of local thermal equilibrium very early in its history, with
the different particle species scattering off each other (and also decaying) much faster than the Universe’s expansion
rate. This yields an environment in local thermal equilibrium at a temperature T (t), which decays in time due to
Hubble expansion in the absence of entropy production processes.

The paramount example of a slowly evolving system that may interact with this environment is the inflaton
field, whose vacuum energy is postulated to drive a period of accelerated expansion in the early universe in the
“slow-roll” regime. As first proposed by Arjun Berera [1], interactions between this field and the environment will
lead to dissipative effects, in the adiabatic regime described above, which damp the inflaton’s motion, making it easier
to sustain an almost constant vacuum energy for sufficiently long to explain the observed flatness and homogeneity
of the present universe. Dissipation also transfers the inflaton’s energy into the cosmic environment, resulting
in entropy production that prevents the universe from supercooling due to the exponentially fast expansion. This
generic scenario is thus known as the warm inflation paradigm and in many cases this entropy production is sufficient
to smoothly end inflation, avoiding the need for a separate reheating period. Moreover, the fluctuations that, as
explained above, are inherently related to the average dissipative effects will also modify the spectrum of inflaton
perturbations and consequently the distribution of CMB anisotropies, thus modifying the observational predictions
of standard inflationary models.

Many of the cosmological applications of non-equilibrium QFT have been done in the context of warm inflation,
where for example dissipation has also been shown to lead to a cosmological baryon asymmetry [2] or even an
asymmetry in the dark matter sector [3] for particular types of interaction. Non-equilibrium effects have, however,
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a much wider range of applicability and several studies have already been conducted e.g. in the context of reheating
after inflation [4–8], curvaton models [9] or cosmological phase transitions driven by a Higgs-like scalar field [10]. The
fact that dissipation tends to slow down the evolution of these fields also implies in many cases that an adiabatic
description can be used to describe at least part of the non-equilibrium evolution. Another example where non-
equilibrium dynamics arises is in the description of the properties of the quark-gluon plasma (see e.g. [11, 12]).

This mini-course is organized as follows. As a warm up exercise, where the main features of the fluctuation-
dissipation relations can be easily understood, we will explore a simple example of dissipation in (non-relativistic)
quantum mechanics widely known as the Caldeira-Leggett model. I will then introduce the basic tools of the real
time Closed Timed Path (CTP) or Schwinger-Keldysh formalism to study non-equilibrium effects in QFT in the
path integral approach. I will focus on scalar fields, not only since this is the simplest example to study but also
because the systems of interest for the cosmological applications described above naturally involve scalar fields. I
will describe how dissipation and related fluctuations arise in this context, leading to a Langevin-like equation for
the evolution of a generic scalar field, and give some simple (but useful!) examples of local dissipation coefficients
in scalar models. I will finish by discussing cosmological applications in the context of warm inflation, which is the
best-known scenario but where many of the tools employed can be applied in other cosmological problems.

At the end of these notes I also give a selected list of references that may help you go further in understanding the
quantum field theory methods used to describe non-equilibrium systems and their different applications in Cosmology.

2 Dissipation in Quantum Mechanics: the Caldeira-Leggett model

We begin our discussion by considering a simple quantum mechanical system corresponding to a heavy particle of
mass M , moving in one spatial dimension described by a coordinate q and its conjugate momentum p. For a generic
potential V (q), the Hamiltonian for our system is thus:

HS =
p2

2M
+ V (q) , (1)

which is of course written in terms of the corresponding quantum mechanical hermitian operators. Let us now assume
that this particle is moving in a bath of other particles, described by a set of N harmonic oscillators that form the
environment:

HB =

N∑
i=1

(
p2
i

2mi
+

1

2
miω

2
i x

2
i

)
. (2)

System and environment are then coupled through bilinear interactions of the form:

HSB = −q
N∑
i=1

gixi + q2
N∑
i=1

g2
i

2miω2
i

. (3)

The second term is a counter-term required to ensure that V (q) is the bare potential where the particle moves. For
example, it is easy to convince yourself that for V (q) = 0 and choosing gi = miω

2
i , the full Hamiltonian can be

written as:

H =
p2

2M
+
∑
i

(
p̃2
i

2mi
+

1

2
miω

2
i x̃

2
i

)
, (4)

where x̃i = xi − q and the system is invariant under translations, as must be the case if the particle truly moves in
a vanishing potential.

The full Hamiltonian H = HS +HB +HSB is known as the Caldeira-Leggett Hamiltonian, since these authors
were the first to describe dissipation and fluctuations in this context [13].

In the Heisenberg picture, the operators (q, p) and (xi, pi) evolve in time according to the Heisenberg equation
of motion, generically written as:

dA

dt
=
i

~
[H,A] . (5)
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It is then easy to show using the canonical commutation relations that p = Mdq/dt, pi = midxi/dt and:

dp

dt
= −V ′(q) +

∑
i

gixi − q
∑
i

g2
i

miω2
i

, (6)

dpi
dt

= −miω
2
i xi + giq , (7)

giving the equations of motion

q̈ +
1

M

(
V ′(q) + q

∑
i

g2
i

miω2
i

)
=

1

M

∑
i

gixi , (8)

and

ẍi + ω2
i xi =

gi
mi

q . (9)

We are interested in determining the effects of the bath of harmonic oscillators on the evolution of the heavy
particle, i.e. we would like to integrate out the coordinates xi. To do this, we can easily check that Eq. (9) has, for
a given q(t), a formal solution of the form:

xi = xi(0) cos(ωit) +
pi(0)

miωi
sin(ωit) +

gi
miωi

∫ t

0

dt′ sin (ωi(t− t′)) q(t′) , (10)

where the first two terms give the homogeneous harmonic oscillator solution and it is easy to verify that the last term
gives a particular solution of the full (inhomogeneous) equation. If we replace this solution into the right-hand side
of Eq. (8) and integrate the inhomogeneous term by parts, we obtain the Langevin equation for the heavy particle:

Mq̈ + V ′(q) +

∫ t

0

dt′γ(t− t′)q̇(t′) = ξ(t) , (11)

where we have defined the dissipation kernel:

γ(t) =
∑
i

g2
i

miω2
i

cos(ωit) (12)

and the noise term:

ξ(t) =
∑
i

gi

[(
xi(0)− gi

miω2
i

q(0)

)
cos(ωit) +

pi(0)

miωi
sin(ωit)

]
. (13)

Note that the dissipation kernel depends only on the couplings and properties of the oscillators in the bath, while
the noise term also depends on the initial conditions, which introduces a degree of randomness in the motion of the
heavy particle.

A set of harmonic oscillators is often a good description of an environment, giving in particular the typical
frequencies (i.e. time-scales) involved in its microscopic details. It is also typical for an environment to have many
degrees of freedom, so that it is useful to take the limit N →∞ in the above expressions, replacing sums by integrals.
It is common and convenient to introduce a spectral density of modes in the bath:

J(ω) = π
∑
i

g2
i

2miωi
δ(ω − ωi) , (14)

which encodes the relative fraction of modes with a given frequency present in the bath (per logarithmic scale). The
dissipation kernel can then be written, in the large N limit, as

γ(t) =
2

π

∫ ∞
0

dω

ω
J(ω) cos(ωt) . (15)
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The simplest case is when J(ω) = γω, where γ is a constant, which can be seen as the leading term in the Taylor
expansion of the spectral function for small frequencies (large time-scales), assuming that J(0) = 0 for a “well-
behaved” environment. In this case, the dissipation kernel becomes:

γ(t) =
2γ

π

∫ ∞
0

dω cos(ωt) = 2γδ(t) (16)

and the equation of motion for the heavy particle takes the simple form:

Mq̈ + V ′(q) + γq̇ = ξ . (17)

We thus see that the dissipation kernel yields the standard friction term proportional to the particle’s velocity, which
will damp the motion of the particle. This is called the Ohmic dissipation kernel since the local dissipation term γq̇
appears in RLC electric circuits. For general power laws J(ω) = ωα, the spectral function is conventionally said to
be super-Ohmic for α > 1 and sub-Ohmic for α < 1.

One must note that the linear spectral function diverges in the ultra-violet and, hence, cannot give a fully
physical model. One often introduces a cut-off regularization, as with the Drude model:

J(ω) = γω
ω2
D

ω2 + ω2
D

, (18)

which yields a dissipation kernel:

γ(t) = γωDe
−ωDt , (19)

such that: ∫ t

0

dt′γ(t− t′)q̇(t′) = γωD

∫ t

0

dt′e−ωD(t−t′)q̇(t′) . (20)

On time scales t � ω−1
D , the integral above is dominated by the contribution from t′ ∼ t and we again obtain

the local Ohmic dissipation term:∫ t

0

dt′γ(t− t′)q̇(t′) ' γωD q̇(t)
∫ t

0

dt′e−ωD(t−t′) ' γq̇(t) . (21)

On the other hand, for shorter time scales this term is fully non-local, i.e. the dissipative effect has a memory of
the previous interactions between the system and the environment. Thus, ωD gives the typical time scale describing
the microphysical processes in the bath, such that if the evolution of the system is slow compared to this, i.e. if
we are only interested in the evolution of the system on time scales t � ω−1

D , dissipative effects become local and
independent of this cut-off. This is the first example of an adiabatic regime leading to a local velocity-dependent
dissipation/friction term.

One of the first systems where the Langevin equation (17) was employed to the describe the dynamical evolution
is the case of a Brownian particle moving in a medium (e.g. a molecular gas), where random collisions with the
molecules in the medium give rise both to the friction and the noise terms in the Langevin equation. These collisions
make the particle’s position and velocity fluctuate randomly and, on average, end up damping the particle’s motion.
If there are many such collisions on the typical time scale set by the particle’s average velocity, the system effectively
loses the memory of earlier collisions and each collision occurs, on average, independently of the previous ones.

In this example, the noise term on the right-hand side of the Langevin equation represents the randomness
introduced in the evolution of the system by these random collisions and without it the description would not be
complete. To see this, let us consider the case V (q) = 0, where we can write the Langevin equation in the adiabatic
(Ohmic) form in terms of the velocity v ≡ dq/dt as

v̇(t) = − γ

M
v(t) +

ξ(t)

M
. (22)
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In the absence of the random noise term, ξ = 0, the particle’s velocity would decay exponentially,

v(t) = v0e
−t/τ , (23)

on a time scale τ = M/γ. The average velocity in an equilibrium distribution should effectively vanish, 〈v〉eq = 0, so
that this is consistent with the noise term being a random function with a Gaussian distribution of zero average:

〈ξ(t)〉eq = 0 . (24)

However, in equilibrium equipartition of energy requires non-zero variance for the velocity fluctuations,

〈v2〉eq =
kBT

M
. (25)

such that we must have for a generic system in or close to equilibrium

〈ξ(t1)ξ(t2)〉eq = ξ̄2δ(t1 − t2) , (26)

where we have further assumed that random interactions between the system and the environment are Markovian,
which holds for the Brownian motion example where, for a large number of collisions, each collision with the molecules
in the medium happens independently of the previous ones. This will also generically be the case for systems in the
adiabatic regime. To determine the variance of the noise term, we may proceed as before and note that the Langevin
equation has a formal solution given by:

v(t) = v0e
−t/τ +

1

M

∫ t

0

dt′e−(t−t′)/τξ(t′) . (27)

This yields for the velocity correlation function:

〈[v(t2)− 〈v(t2)〉] [v(t1)− 〈v(t1)〉] =
1

M2

∫ t2

0

ds2

∫ t1

0

ds1e
−(t1−s1)/τe−(t2−s2)/τ 〈ξ(s1)ξ(s2)〉

=
ξ̄2

M2

∫ t2

0

ds2

∫ t1

0

ds1e
−(t1+t2−s1−s2)/τδ(s1 − s2)

=
ξ̄2

2γM

[
e−|t1−t2|/τ − e−(t1+t2)/τ

]
. (28)

From this it is easy to obtain the equal time velocity correlator:

〈v2(t)〉 =

(
〈v2

0〉 −
ξ̄2

2Mγ

)
e−2t/τ +

ξ̄2

2Mγ
. (29)

Since in equilibrium this must be time-independent and satisfy the equipartition result (25), we thus find that:

〈ξ(t1)ξ(t2)〉eq = 2γkBTδ(t1 − t2) . (30)

This is known as the fluctuation-dissipation relation in equilibrium, which follows from a more general principle
that we will find in the QFT description. It states that the noise term, i.e. the random fluctuations induced by
the environment on the system’s evolution, has an amplitude that is determined by the strength of the average
dissipation effect.

This is a very powerful result, which states that both the average dissipation and the random fluctuations
can be determined from a single dissipation coefficient γ, which can in principle be computed from the properties
of the environment and its microphysical interactions with the system. The dissipation and noise terms are thus
complementary effects, the former tending to damp the system’s motion and bring it away from equilibrium, while the
noise term keeps the system’s fluctuations sufficiently large to overcome this and maintain the equilibrium properties.
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3 The Schwinger-Keldysh formalism for non-equilibrium QFT

Having derived the Langevin equation in a simple quantum mechanical model, we will now describe how dissipation
and associated fluctuations arise in the more general framework of (relativistic) QFT, for which it is useful to employ
the so-called real-time formalism, in particular in the form first introduced by Schwinger and Keldysh [14].

Let us start by considering a quantum many-body system governed by a Hamiltonian Ĥ(t), which may in
general be time-dependent. Probabilities in the corresponding many-body Hilbert space are given in terms of a
density matrix, which in the distant past, t = −∞, takes some form ρ̂(−∞). The density matrix evolves according
to the Liouville-von-Neumann equation:

∂ρ̂

∂t
= −i[Ĥ, ρ̂] , (31)

where we consider natural units where ~ = c = kB = 1. This has the well-known formal solution:

ρ̂(t) = Û(t,−∞)ρ̂(−∞)Û†(t,−∞) = Û(t,−∞)ρ̂(−∞)Û(−∞, t) , (32)

where the time-evolution operator is given by the time-ordered expression:

Û(t, t′) = T exp

(
−i
∫ t

t′
Ĥ(τ)dτ

)
. (33)

In the study of non-equilibrium quantum systems, we are generically interested in computing the expectation
value of some observable, described by an operator Ô, at a given time t:

〈Ô(t)〉 =
Tr[Ôρ̂(t)]

Tr[ρ̂(t)]
=

Tr[Û(−∞, t)ÔÛ(t,−∞)ρ̂(−∞)]

Tr[ρ̂(−∞)]
, (34)

where the trace is taken over the many-body Hilbert space and we used the cyclic property of the trace, which in
particular yields the conservation of the total probability Tr[ρ̂(t)] = Tr[ρ̂(−∞)]. We thus see that the trace in the
numerator of Eq. (34) describes the evolution of the system:

1. from t = −∞, where the initial density matrix is specified, to the time t where the observable is computed;

2. from t back to t = −∞.

It is common and convenient to introduce the factor Û(t,+∞)Û(+∞, t) = I, such that;

〈Ô(t)〉 =
Tr[Û(−∞,+∞)Û(+∞, t)ÔÛ(t,−∞)ρ̂(−∞)]

Tr[ρ̂(−∞]
. (35)

Hence, the evolution takes place along a closed time path (CTP), from t = −∞ to t = +∞ and back, with the
operator evaluated in the backwards branch in this case (the opposite being also possible). Since only the initial
state of the system is specified, this is also known as the “in-in” formalism, as opposed to the “in-out” formalism
conventionally used in scattering problems, where one is interested in both the initial and final state of the system.

Instead of evaluating a single quantum field (or generic operator) on the CTP contour, one can introduce two
copies of the same field φ(x), where:

1. φ1 is evaluated in the forward branch (from −∞ to +∞);

2. φ2 is evaluated in the backwards branch (from +∞ to −∞).

In the path integral formulation of QFT, this yields the following generating functional:

Z[J1, J2] =

∫
D[φ1]D[φ2]ρ[φ1(−∞), φ2(−∞)] eiS[φ1]+i

∫
d4xJ1φ1−iS[φ2]−i

∫
d4xJ2φ2 , (36)

7



where we note that the two fields must have the same value at t = ±∞ in order to describe the same field in the
CTP, so that the corresponding functional integration measures are not independent and the path integral is not
factorizable. Also note that the CTP contour is well defined in the complex time plane (see e.g. [15]).

Correlation functions and operator expectation values in general can be obtained from this generating functional
in the conventional way and Feynman diagrams are similar to ordinary QFT ones, except that vertices and prop-
agators now carry a label a = 1, 2, with minus signs introduced for each label 2. One may actually get rid of the
troublesome minus signs in the source terms by defining J1 = J1 and J2 = −J2, or equivalently by introducing a
metric in field space cab = diag(1,−1) 1. Physical quantities may then be obtained by setting φ1 = φ2 at the end of
the calculation.

3.1 Propagators

The propagator for a non-interacting field becomes a 2× 2 matrix in the CTP formalism:

Gab(x, x
′) = −i δ logZ

δJa(x)Jb(x′)
=

(
〈Tφ̂(x)φ̂(x′)〉C 〈φ̂(x′)φ̂(x)〉C
〈φ̂(x)φ̂(x′)〉C 〈T∗φ̂(x)φ̂(x′)〉C

)
, (37)

where C denotes the CTP contour and T∗ denotes anti-time ordering. We recognize the component G11 as the
standard Feynman propagator, whereas for a system in thermal equilibrium, in which we are mostly interested in,
G22 is the thermal Dyson function and G21 is the thermal Wightman function.

From these we may define:

1. the spectral function:

ρ(x, x′) = i〈[φ̂(x), φ̂(x′)]〉C (38)

2. the anti-commutator function:

F (x, x′) =
1

2
〈{φ̂(x), φ̂(x′)}〉C (39)

These give the imaginary and real parts of the Wightman function and we may write the propagator matrix in
the form:

Gab(x, x
′) =

(
F (x, x′)− i

2σ(x, x′) F (x, x′) + i
2ρ(x, x′)

F (x, x′)− i
2ρ(x, x′) F (x, x′) + i

2σ(x, x′)

)
, (40)

where σ(x, x′) = ρ(x, x′)sgn(t− t′) is the Feynman-Wheeler propagator.
In thermal equilibrium, propagators are invariant under spatial and time translations, Gab(x, x

′) = Gab(x− x′).
A system in thermal equilibrium at temperature T = β−1 may also be described in terms of an imaginary periodic
time coordinate, τ = −it, with 0 ≤ τ ≤ β. Any operator must then obey the imaginary time periodicity relation:

Ô(t+ iβ) = e−βĤÔ(t)eβĤ . (41)

Applying this to the Wightman function, we have:

〈φ̂(t)φ̂(t′)〉 =
1

Z
Tr
[
e−βĤ φ̂(t)φ̂(t′)

]
=

1

Z
Tr
[
e−βĤ φ̂(t)eβĤe−βĤ φ̂(t′)

]
=

=
1

Z
Tr
[
φ̂(t+ iβ)e−βĤ φ̂(t′)

]
= 〈φ̂(t′)φ̂(t+ iβ)〉 , (42)

1We follow the conventions and notation used in [16].
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where we used the cyclic property of the trace. This implies that G21(t − t′) = G12(t − t′ + iβ), which gives the
Kubo-Martin-Schwinger (KMS) relation. In Fourier space, this can be written as:

G21(p, ω) = eβωG12(p, ω) , (43)

which then yields the following relation between the anti-commutator and spectral functions:

F (p, ω) = − i
2

[1 + 2n(ω)] ρ(p, ω) , (44)

where the Bose-Einstein distribution is given by:

n(ω) =
1

eβω − 1
. (45)

Note that for fermions we obtain an analogous relation involving the Femi-Dirac distribution instead. This relation
implies that the propagator matrix is completely specified by the spectral function in thermal equilibrium.

Propagators for interacting field theories satisfy the Schwinger-Dyson equation:

(ω2 − p2 −m2)Gab − Σ c
a Gcb = icab , (46)

where Σab is the self-energy matrix, which accounts for loop corrections to the free 2-point correlation function.
As for the propagator, the self-energy can also be specified in terms of two functions:

iΣρ = i(Σ21 − Σ12) , iΣF =
1

2
(Σ21 + Σ12) . (47)

These satisfy the equilibrium KMS relation:

ΣF (p, ω) = − i
2

[1 + 2n(ω)] Σρ(p, ω) . (48)

As we will see below, this KMS relation will lead to the fluctuation-dissipation relation that we have obtained earlier
in the context of quantum mechanics. Additionally, the imaginary part of the self-energy yields, in particular, the
decay width of the field, as a consequence of the (generalized) optical theorem:

Γ(p, ω) =
iΣρ(p, ω)

4ωp
, (49)

where ωp =
√

p2 +m2 is the energy of an on-shell particle. Note that Γ includes information about both decays (‘d’)
and inverse decays (‘i’), with Γ = Γd − Γi (for bosons) setting the time scale τd = Γ−1 of approach to equilibrium.
A general non-equilibrium distribution f(ω, t) satisfies (see e.g. [17]):

df

dt
= −fΓd + (1 + f)Γi , (50)

such that

f(ω, t) =
Γi

Γd − Γi
+A(ω)e−(Γd−Γi)t . (51)

Since in equilibrium Γd = eβωΓi, we see that f(ω, t)→ n(ω) independently of the initial distribution for t� Γ−1.
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3.2 Keldysh representation

For analyzing non-equilibrium effects using the real-time formalism, it is useful to introduce an alternative field
representation known as the Keldysh representation:

φc =
1

2
(φ1 + φ2) , φ∆ = φ1 − φ2 . (52)

It is easy to see that in this basis the propagator matrix can be written as:

Ga′b′(x, x
′) =

(
F (x, x′) GR(x, x′)
GA(x, x′) 0

)
, (53)

where the advanced and retarded propagators are given in terms of the spectral function:

GA(x, x′) = iρ(x, x′)θ(t′ − t) , GR(x, x′) = −iρ(x, x′)θ(t− t′) . (54)

Similarly, for the self-energy matrix (which contributes to the inverse propagator matrix), we have:

Σa
′b′(x, x′) =

(
0 ΣA(x, x′)

ΣR(x, x′) −iΣF (x, x′)

)
, (55)

where

ΣA(x, x′) = −Σρ(x, x
′)θ(t′ − t) , ΣR(x, x′) = Σρ(x, x

′)θ(t− t′) . (56)

As an example of application of this formalism and the convenience of using the Keldysh representation, let us
consider a massive scalar field with a quartic self-coupling:

S[φ1, φ2] =

∫
d4x

[
1

2
φ1(−∂2 −m2)φ1 −

λ

4!
φ4

1

]
− (φ1 ↔ φ2) . (57)

In the Keldysh representation, this action then takes the form:

S[φc, φ∆] =

∫
d4x

[
φ∆(−∂2 −m2)φc −

λ

4!

(
4φ∆φ

3
c + φ3

∆φc
)]

. (58)

Varying the action with respect to φ∆ and setting φ∆ = 0, we obtain the standard classical equation of motion:

(∂2 +m2)φc +
λ

3!
φ3
c = 0 . (59)

We thus see that, even though we have doubled the number of fields, this is simply an auxiliary procedure, with
physical results corresponding to setting φ1 = φ2 at the end of the calculation.

4 Langevin-like equation for a dynamical scalar field

Having introduced the real-time formalism and its different representations, we will now describe how a Langevin-like
equation appears in non-equilibrium QFT. Quantum corrections to the classical action of a quantum field theory are
determined by the effective action. As in conventional QFT, only the 1-particle-irreducible (1PI) diagrams contribute
to the effective action in the Schwinger-Keldysh formalism, which is then given by2:

eiΓ[φ1,φ2] =

∫
1PI

D[φ′1]D[φ′2]ρ[φ′1(−∞), φ′2(−∞)]ei(S[φ1+φ′1]−S[φ2+φ′2]) . (60)

2For other approaches using n-PI effective actions see e.g. [11].
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The quantum field equation can then be obtained by varying the effective action with respect to the fields and setting
φ1 = φ2 in the end:

δΓ

δφa

∣∣∣∣
φ1=φ2

= 0 . (61)

In the Keldysh representation, this corresponds to:

δΓ

δφ∆

∣∣∣∣
φ∆=0

= 0 , (62)

as we had seen for the quartic example above. Besides the classical terms that appeared in this example, the
effective action receives contributions from loop-diagrams, the leading corrections being given by the elements of the
self-energy matrix. We then have the generic expansion:

Γ[φc, φ∆] = −
∫
d4xφ∆

[
(∂2 +m2)φc +

∂V (φc)

∂φc

]
−
∫
d4x

∫
d4x′φ∆ΣR(x, x′)φc(x

′)

+
1

2

∫
d4x

∫
d4x′φ∆(x)iΣF (x, x′)φ∆(x′) +O(φ3

∆) , (63)

where we have included terms up to quadratic order in the auxiliary field and V (φ) is a generic tree-level potential.
At a first glance, only the linear terms in φ∆ will contribute to the effective equation of motion, which is given by:

(∂2 +m2)φc + V ′(φc) +

∫
d4x′ΣR(x, x′)φc(x

′) = 0 , (64)

which explicitly exhibits causality from the use of the retarded self-energy ΣR(x, x′). However, the quadratic term
can be rewritten in the effective action by introducing an auxiliary field ξ(x) and using the properties of gaussian
functional integrals:

e−
1
2

∫
d4x

∫
d4x′φ∆(x)ΣF (x,x′)φ∆(x′) = |det(ΣF )|1/2

∫
D[ξ]e−

1
2

∫
d4x

∫
d4x′ξ(x)Σ−1

F (x,x′)ξ(x′)ei
∫
d4xξ(x)φ∆(x) . (65)

This thus introduces an additional linear term in φ∆(x), such that the effective equation of motion becomes:

(∂2 +m2)φc + V ′(φc) +

∫
d4x′ΣR(x, x′)φc(x

′) = ξ(x) . (66)

Comparing with the results obtained in the context of non-relativistic quantum mechanics, we see that this corre-
sponds to a Langevin-like equation for the dynamics of a quantum field, with the auxiliary field ξ(x) being interpreted
as a Gaussian stochastic noise:

〈ξ(x)〉 = 0 , 〈ξ(x)ξ(x′)〉 = ΣF (x, x′) . (67)

The term in ΣR(x, x′) gives the dissipation term that we had found earlier, which can be seen more explicitly by
defining a dissipation kernel:

ΣR(x, x′) = −∂D
∂t′

(x, x′) (68)

in such as way that, upon integration by parts and assuming the fields vanish at infinity, the Langevin-like equation
becomes:

(∂2 +m2)φc + V ′(φc) +

∫
d4x′D(x, x′)φ̇c(x

′) = ξ(x) . (69)
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We can now see that the KMS relation between the self-energy functions yields the fluctuation-dissipation relation
for a system close to thermal equilibrium:

ΣF (p, ω) = 2ω

(
n(ω) +

1

2

)
D(p, ω) . (70)

For ω � T , n(ω) ' (βω)−1 � 1 and this gives:

〈ξ(p, t)ξ(p′, t′)〉 = 2T

∫
dω

2π
D(p, ω)eiω(t−t′) . (71)

This is a powerful result, which tells us that both the effects of dissipation and fluctuation on the dynamics of the field
from the interaction with the surrounding environment are, close to equilibrium, given in terms of the self-energy,
which can be easily computed from its interactions with the fields that make up the environment.

Particularly useful for cosmological applications are scenarios where the field moves slowly compared to the
typical relaxation time of the environment or thermal bath. In this case, we can expand the field for small velocities
to yield, for a homogeneous field (see [18] for the effect of inhomogeneities):∫

d4x′ΣR(x, x′)φc(x
′) =

∫
d4x′ΣR(x− x′)

[
φc(t) + φ̇c(t)(t

′ − t) + . . .
]

(72)

By absorbing the term in φc in the quantum effective potential, the equation of motion then takes the local form:

(∂2 +m2)φc + V ′eff (φc) + Υφ̇c = ξ , (73)

with the dissipation or friction coefficient given by:

Υ = −
∫
d4x′ΣR(x′)t′ = − i

2

∂Σρ
∂ω

(0, ω)

∣∣∣∣
ω=0

. (74)

Hence, we again find that the adiabatic regime yields a local Ohmic dissipation regime with the fluctuation-dissipation
relation yielding:

〈ξ(p, t)ξ(p′, t′)〉 = 2ΥT (2π)3δ(p− p′)δ(t− t′) , (75)

which is the field theory analogue of Eq. (30).

5 Examples of local dissipation coefficients

Although in deriving the Langevin-like equation it was convenient to introduce the Keldysh representation, practical
computations of dissipation coefficients are more easily performed in the original field basis. Using Eq. (47) and that
Σ12 = −Σ∗21, we then have:

Υ = −
∫ t

−∞
dt′Σρ(0, t

′)t′ = 2

∫ +∞

0

Re [Σ21((0), t′)] t′ . (76)

Let us consider, as an example for the calculation of dissipation coefficients that will be useful for cosmological
applications, the interaction between two real scalar fields φ and χ, the former being the system that we are interested
in and the latter describing the degrees of freedom in an ambient thermal bath near equilibrium:

Lint = −1

2
g2φ2

aχ
2
a , (77)

with a = 1, 2 for the two copies of each field in the CTP contour.

12



Figure 1: Leading 1-loop contribution for the Σ21 self-energy of the scalar field φ from a biquadratic interaction
with another scalar field χ. The shaded circles represent the self-energy of the χ field, so that the propagators are
effectively ‘dressed’.

The leading part of the self-energy of the φ field induced by the interaction with the χ field is illustrated in
Figure 1 and is given by:

iΣ21 =
1

2
(2g2φ)2

∫
d3p

(2π)3
[Gχ21(t′)]2 . (78)

The corresponding dissipation coefficient can then be written in the form:

Υ = 4g4φ2Im

∫
d3p

(2π)3

∫
dt′[Gχ21(t′)]2t′ . (79)

We can obtain the Wightman function for the χ field in terms of its spectral function using (44), such that:

Gχ21(t′) = −i
∫ +∞

−∞

dω

2π
[n(ω) + 1] ρχ(ω)e−iωt

′
. (80)

If we use the identity:

Im

(∫ +∞

0

dt′t′e−iωt
′
)

= −πδ′(ω) , (81)

and integrate by parts, taking into account that ρ(−ω) = −ρ(ω) and that n′(−ω) = −n′(ω) = βn(ω)(1 + n(ω)), we
may write the dissipation coefficient after some algebra as:

Υ =
2g4φ2

T

∫
d4p

(2π)4
ρ2
χ(ω)n(ω)(n(ω) + 1) . (82)

Now, the spectral function corresponds to the imaginary part of the propagator, such that:

ρχ =
i

p2 +m2
χ,R + 2iωpΓχ

− i

p2 +m2
χ,R − 2iωpΓχ

=
4ωpΓχ

(ω2 − ω2
p)2 + 4ω2

pΓ2
χ

, (83)

where we have used the relation between the imaginary part of the self-energy and the decay width in Eq. (49) and
absorbed the real part of the self-energy into the renormalized mass of the field, m2

χ,R, such that ω2
p = |p|2 +m2

χ,R.
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Hence, to compute the dissipation coefficient resulting from the interaction between the fields φ and χ, we just
need to compute the latter’s mass and decay width and perform a loop-integral at finite temperature. Neglecting
the quantum corrections to the field’s mass, we have in our example:

mχ = gφ . (84)

The decay width of the field receives contributions from all possible processes at finite temperature, including direct
and inverse decays as well as thermal scatterings (Landau damping). If the χ field has cubic self-interactions, for
example, the process χ(p1)χ(p2) → χ(p3) is possible at finite temperature, even though it would be kinematically
forbidden at zero temperature in the final χ rest frame. This is due to the fact that the heat bath induces a preferred
frame that explicitly breaks Lorentz invariance. We will nevertheless focus on a case where the χ field is truly
unstable and can decay into scalar particles σ, which we take to have a small mass mσ � T , independent of the φ
field. The decay corresponds to a trilinear interaction:

Lχσ =
1

2
hMχσ2 , (85)

where M is a mass scale. The decay width of the χ field is then given by:

Γχ =
h2

32π

M2

mχ
+ finite T corrections . (86)

We will be particularly interested in the case M = mχ = gφ, which arises in supersymmetric theories with superpo-
tential:

W =
g

2
ΦX2 +

h

2
XY 2 , (87)

where the scalar fields φ, χ and σ correspond to the (complex) scalar components of the chiral superfields Φ, X and
Y , respectively. Note that the term of the form (85) arises through the F -term of the χ field and that the σ mass is
indeed independent of φ as assumed above.

The 4-momentum integral has to be performed numerically in the general case, but there are two particular
limits where the integration can be done analytically and yields simple results for the dissipation coefficient:

1. High temperature or narrow width regime

For T � mχ or when the field has a small decay width Γχ � mχ, the main contribution to the integral in
Eq. (82) comes from the pole in the spectral function at ω = ωp, i.e. to the resonant production of on-shell χ
particles in the thermal bath, and we can make the replacement:

ρ2
χ →

π

2ω2
pΓχ

δ(ω − ωp). (88)

This yields, using the zero-temperature result for the decay width, which is a good approximation in this
regime:

Υ ' 8

π

g4

h2

φ2mχ

M2

∫ +∞

0

x2dx

x2 + α2

e
√
x2+α2

(e
√
x2+α2 − 1)2

, (89)

where x = |p|/T and α = mχ/T . For α � 1, the integral above is well approximated by α−1 (up to an O(1)
numerical factor), yielding:

Υ ' 8

π

g4

h2

φ2

M2
T ' 8

π

g2

h2
T , (90)

where in the last line we have used M = mχ.
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2. Low temperature regime

For mχ & T , the contribution from the poles of the spectral function to the 4-momentum integral become
Boltzmann-suppressed, since n(ωp) . e−mχ/T � 1. If the decay width is sufficiently small, this suppression
may be compensated, but in this case one has to worry about whether the evolution of the field is truly adiabatic
to yield a local dissipation coefficient, since τχ = Γ−1

χ sets the relaxation time of the thermal bath (namely the
relevant time scale for the self-energy of the field). Except for this case, the main contribution to dissipation
will come from off-shell or virtual modes of low momenta, |p|, ω ∼ T . mχ. We may then approximate the
spectral function by:

ρχ '
4Γχ
m3
χ

. (91)

It is then easy to see that Υ ∝ h4T 3/φ2 for M = mχ with a coefficient that must be determined by numerical
integration, which typically requires including the finite temperature corrections to the field’s decay width. A
detailed analysis including thermal corrections to the χ mass (proportional to h2) yields [19]:

Υ = Cφ
T 3

φ2
, Cφ = 0.02h2NYNX , (92)

where we have generalized for NX χ fields coupled to φ, each of them decaying into NY light species, the
notation referring to the SUSY realization in Eq. (87). We note that the dependence on the coupling g between
the φ and χ fields has cancelled out in this regime, which is particularly relevant for cosmological applications
as we describe below. In addition, in a SUSY model there are also fermionic contributions to dissipation, but
these are sub-dominant compared to the scalar contribution above at low temperatures, as shown in [4, 20].

Both on-shell and off-shell modes contribute to the dissipation coefficient in general, and numerically one observes
that adding both contributions gives a very good approximation to the overall result [19]. In practice, well within
the regimes described above, the dissipation coefficient can be taken to have the simple forms given above, which
can thus be both field and temperature-dependent.

6 Applications to Cosmology: the case of warm inflation

Having now obtained the Langevin-like equation that describes the motion of a quantum field interacting with other
fields in a thermal bath and computed the associated dissipation coefficient in some particular cases, let us know
discuss some of the effects that this may have in Cosmology.

Scalar fields are ubiquitous in particle physics models, the best example being the Standard Model Higgs boson
that has been recently discovered at the LHC. Several extensions of the Standard Model predict the existence of
additional scalar fields, such as the superpartners of quarks and leptons in SUSY theories, extra-dimensional moduli
in string theory or Higgs-like fields in Grand Unification Theories.

In many cases such scalar fields have a non-trivial cosmological dynamics, since their potential may depend
on the temperature through their interactions with the degrees of freedom in the cosmic heat bath, as for example
during cosmological phase transitions. In this case the effects of dissipation and associated fluctuations may play an
important role in the dynamics and we will illustrate this in the best-known case of warm inflation.

The standard paradigm for inflation considers a homogeneous scalar field whose potential energy dominates
the energy balance in the early universe and leads to a period of accelerated expansion. This is achieved if there
is a sufficiently flat section of the scalar potential such that the field evolves slowly and behaves effectively as a
cosmological constant. In the standard case the inflaton is taken as a weakly coupled field, effectively isolated from
other degrees of freedom in the cosmic plasma, such that accelerated expansion drives the temperature of the universe
to negligible values and the inflationary dynamics is entirely determined by the scalar field alone.

In warm inflation one considers the possibility of having significant interactions between the inflaton and other
degrees of freedom in the cosmic bath, such that it experiences the effects of dissipation and fluctuations that we
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have described before. Since it is evolving slowly, the Ohmic form of the dissipation kernel is generically a good
approximation, and its effective equation of motion is Langevin-like:

φ̈+ 3Hφ̇+ V ′(φ) + Υφ̇ = ξ , (93)

where the fluctuation-dissipation relation yields:

〈ξ(k, t)ξ(k′, t′)〉 =
2ΥT

a3
(2π)3δ(k− k′)δ(t− t′) , (94)

where k is the comoving momentum, which justifies the inclusion of the scale factor a(t) in the above expression [16].
It is easy to see that the Langevin-like equation can be rewritten in the form:

ρ̇φ + 3H(ρφ + pφ) = −Υφ̇2 , (95)

where ρφ = φ̇2/2 + V (φ) and pφ = φ̇2/2 − V (φ) are the energy density and pressure of a homogeneous scalar field.
Thus, we see that dissipation decreases the field’s energy density, which must be transferred into the heat bath.
Although we are not going to show this explicitly in these lectures, it is worth mentioning that this can be rigorously
shown [21] by computing the self-energy of the fields in the heat bath. If the particles that result from dissipation
are light compared to the ambient temperature, as in the example considered in the previous section, the inflaton’s
energy will be dissipated into radiation, which must thus follow:

ρ̇R + 4HρR = Υφ̇2 , (96)

where in equilibrium ρR = 3pR = (π2/30)g∗T
4 for g∗ relativistic degrees of freedom. In the absence of dissipation,

ρR ∼ e−4Ht → 0 during inflation and the universe supercools as mentioned above, requiring a separate period of
reheating after inflation. On the other hand, if the inflaton is varying slowly, the source term on the right-hand side
of Eq. (96) is approximately constant, yielding a slow-roll solution:

ρR '
Υφ̇2

4H
. (97)

If this yields a temperature T & H, we say that the universe remains warm during inflation. In the slow-roll regime,
the inflaton’s equation of motion can be written as:

3H(1 +Q)φ̇ ' −V ′(φ) , (98)

where the dissipative ratio is defined as:

Q ≡ Υ

3H
. (99)

Additionally, if the inflaton dominates the energy density, as required in order to yield accelerated expansion, the
Friedmann equation reads:

H2 ' V (φ)

3M2
P

, (100)

where MP = (8πGN )−1/2 is the reduced Planck mass. One can then use Eqs. (98) and (100) to show that:

Ḣ

H2
' − εφ

1 +Q
, (101)

where εφ = (M2
P /2)[V ′(φ)/V (φ)]2 is the standard slow-roll parameter. Hence, a quasi-exponential period of inflation

can be obtained provided that:

εφ � 1 +Q . (102)
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Consistency of the slow-roll solution also requires that the acceleration term is negligible in the field equation of
motion and that the time derivative of the radiation energy density can also be neglected. These yield the condition:

|ηφ| � 1 +Q , (103)

where ηφ = M2
PV
′′(φ)/V (φ) is the second slow-roll parameter measuring the curvature of the potential. We thus

see that the standard conditions on the inflationary potential εφ, |ηφ| � 1 are relaxed in the presence of dissipation,
since friction slows down the motion of the field and makes it easier to obtain 50-60 e-folds of inflation. In particular,
if Q � 1 at some stage in the evolution, this may offer a solution to the so-called “eta-problem” typically found in
supergravity models of inflation [22, 23]. We note that Q is a dynamical variable, since the dissipation coefficient
generically depends on dynamical quantities such as the temperature or the field value and the Hubble parameter is
also not exactly constant. We will see below that Q satisfies a slow-roll equation as well.

Using the slow-roll equations for the radiation and the field, one can show that:

ρR
ρφ
' 1

2

Q

1 +Q

εφ
1 +Q

, (104)

so that, for εφ � 1 + Q, radiation is indeed a sub-dominant component and expansion is accelerated. However, at
the end of the slow-roll regime, εφ ∼ 1 + Q and we can have ρR ∼ ρφ/2 if Q & 1. Thus, in models where Q grows
during inflation and attains large values towards the end, radiation can become a significant component at the end
of inflation and, in fact, smoothly take over the inflaton as the dominant component as it exits the slow-roll regime.
Thus, in warm inflation one may have a smooth exit from inflation into the standard ‘Big Bang’ Cosmology, with no
need for a separate reheating period.

The best-studied examples of successful warm inflation models are based on the type of scalar interactions found
in supersymmetric models that we have described in the previous section, with the inflaton coupled to a scalar χ field
(and its fermion superpartner), which decay into light degrees of freedom in a SUSY multiplet Y as given in Eq. (87).
Supersymmetric models allow for successful realizations of warm inflation since the cancellation between bosonic and
fermionic radiative corrections to the inflaton’s effective potential protects the flatness of the potential while allowing
for significant dissipative effects. However, SUSY cancellations are not fully effective at finite temperature, since
bosons and fermions have distinct equilibrium distributions, and in particular both types of species will generate
inflaton thermal masses if the fields in the X sector are light. We may, however, consider the low temperature regime,
T . mχ, where inflaton thermal masses are Boltzmann-suppressed and the effective potential takes the standard
1-loop Coleman-Weinberg form:

∆Veff (φ) =
1

32π2
Str

[
m4
X

(
log

(
m2
X

µ2

)
− 3

2

)]
=
g2NX
32π2

log

(
m2
χ,T

µ2

)
V (φ) , (105)

where the supertrace is taken over the bosonic and fermionic components of the X chiral multiplet, V (φ) is the tree-
level potential and µ is the renormalization scale. Note that the effective potential does depend on the temperature
through thermal mass corrections in m2

χ,T = g2φ2 + h2NY T
2/8 [19], which are due to the coupling of the χ fields

to the light Y species in the thermal bath. Since these only contribute logarithmically and are typically negligible
for mχ & T , we see that the flatness of the tree-level potential (chosen through a suitable analytic function in the
superpotential) is preserved.

As we had seen in the previous section, the dissipation coefficient in the low-temperature regime is essentially
due to the excitation of virtual low-momentum χ modes in the heat bath and independent of the coupling g. This
implies that we may obtain arbitrarily strong dissipation for a large number of X fields if the coupling g is kept small
such that g2NX . 1 and radiative/thermal corrections to the inflaton potential are suppressed. This also ensures
that the perturbative calculation of the effective potential and dissipation coefficient is under control, provided also
that the effective coupling h2NY . 1 [19] (see also [24] for a discussion of the effective potential).

For this dissipation coefficient, Υ = CφT
3/φ2, we can write the slow-roll equation for radiation (97) in the form:

T

H
' 15

2π2

Cφ
g∗

(
φ′

φ

)2

, (106)
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where φ′ = dφ/dNe = φ̇/H, with Ne denoting the number of e-folds of inflationary expansion until the end of the
slow-roll regime. The flat space calculation of the dissipation coefficient that we have illustrated in the previous
section is only consistent for T & H, a regime where we can neglect the effects of space-time curvature. Since
φ′/φ ∼ N−1

e , the above expression shows that this implies Cφ/g∗ & N2
e . Since only the fields in the Y sector are

light and hence g∗ ∝ NY , this yields h2NX & N2
e up to numerical factors. Consistent realizations of warm inflation

can thus be obtained by taking a sufficiently large number of heavy fields coupled directly to the inflaton, pointing
towards beyond the Standard Model constructions such as e.g. string theory or extra-dimensions, where explicit
models with large field multiplicities have been constructed (see e.g. [25, 26]).

Let us now consider the dynamics of warm inflation, corresponding to the coupled evolution of the inflaton field
and the ambient radiation. It is convenient to express the slow-roll equations in terms of the number of e-folds of
inflation defined above. It is easy to show that the slow-roll equation for the inflaton (98) can be written in the form:

φ′

φ
' − σφ

1 +Q
, (107)

where we defined the slow-roll parameter σφ = M2
PV
′(φ)/[φV (φ)]. From Eq. (106), this yields:

T

H
' Cφ

4CR

(
σφ

1 +Q

)2

, (108)

where we have defined CR = (π2/30)g∗ for simplicity. We can then use this to relate the dissipative ratio and the
inflaton field value, yielding after some algebra:

Q(1 +Q)6 '
C4
φ

24CR
ε3φ

(
MP

φ

)8(
H2

M2
P

)
. (109)

If we now differentiate both sides with respect to the number of e-folds and use Eqs. (101), (107) and also that:

ε′φ =
2εφ

1 +Q
(2εφ − ηφ) , (110)

we obtain:

Q′

Q
=

10εφ − 6ηφ + 8σφ
1 + 7Q

, (111)

which explicitly shows that the dissipative ratio also evolves slowly during inflation but is nevertheless a dynamical
variable. We may thus express the system of equations in terms of the dynamical variables (φ,Q) instead of (φ, T ),
which turns out to be typically more convenient. To see this, let us consider the example of a quartic potential:

V (φ) = λ2φ4 (112)

corresponding to including a cubic term in the superpotential λΦ3/3. For this potential, the slow-roll parameters
take a simple form:

εφ =
2

3
ηφ = 2σφ = 8

(
MP

φ

)2

. (113)

In the absence of dissipation, this requires superplanckian values of the inflaton field in order to yield a slow-roll
regime. This is not the case if dissipation is strong throughout inflation, Q � 1, but as we will see the most
interesting models correspond to cases where dissipation is weak when the relevant CMB scales leave the horizon
50-60 e-folds before the end of inflation. In this case, one also requires superplanckian values at horizon-crossing,
although somewhat smaller than in the supercooled inflation case.
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For this potential, we can express Eq. (109) in the form:

Q(1 +Q)6 ' 64

9
λ2
C4
φ

CR

(
MP

φ

)10

(114)

and use this to obtain:

Q′

Q
=

40

1 + 7Q

(
MP

φ∗

)2(
Q

Q∗

)1/5(
1 +Q

1 +Q∗

)6/5

, (115)

where the subscript ‘∗’ denotes quantities evaluated at horizon-crossing. Firstly, this shows that Q′ > 0, such that
the effects of dissipation will become progressively stronger as inflation proceeds, with the quartic potential being
one of the examples where radiation smoothly takes over at the end of the slow-roll regime. In addition, we see that
the coupled dynamics can be expressed as a single first order differential equation for the dissipative ratio Q. This
equation can actually be solved exactly in terms of hypergeometric functions, but it is simpler to understand the
effects of dissipation by considering the limit where Q∗ � 1 and dissipation becomes significant towards the end of
inflation. This yields for the number of e-folds of inflation after horizon-crossing:

Ne '
1

8

(
φ∗
MP

)2 (
1 + 2.8Q

1/5
∗

)
, (116)

which reduces to the standard supercooled result in the limit Q∗ → 0. It is thus explicit that dissipation makes
inflation last longer, with significant effects for Q∗ & 10−6.

Having determined the effects of dissipation on the average evolution of the homogeneous inflaton field, we now
turn to the related effects of fluctuations, which we will only briefly discuss due to our limited time. While for the
background field we neglect the effects of the noise term on the right-hand side of the Langevin-like equation (93)
since 〈ξ〉 = 0, these need to be considered when computing the spectrum of inflaton fluctuations, which in Fourier
space satisfy3 [1, 29,30]:

δφ̈k + 3H(1 +Q)δφ̇k +

(
k2

a2
+ V ′′(φ)

)
δφk = ξk . (117)

We thus see that the noise term, whose amplitude is determined by the dissipation coefficient, will source the
fluctuations of the inflaton field. As in the supercooled case, the amplitude of the field perturbations will freeze out.
However, due to dissipation, this may happen even before their physical size becomes larger than the horizon.

Solving the Langevin equation in the general case can be rather involved and here we will focus on the simpler
scenario where dissipation is weak when the observable CMB scales become super-horizon, Q∗ � 1, such that
fluctuations freeze-out when crossing the Hubble horizon as in the standard inflationary models. The main difference
between this case and the standard supercooled inflationary model is that inflaton fluctuations need not be in the
de Sitter vacuum and may in fact have a near-equilibrium distribution (see [31, 32] for a more detailed discussion).
In this case, we can simply employ the canonical quantization procedure at finite temperature, where the creation
and annihilation operators yield 〈â−kâ†k′〉 = [n(ωk) + 1](2π)3δ3(k + k′) and 〈â†k′ â−k〉 = n(ωk)(2π)3δ3(k + k′) where
ωk ' k/a. The calculation is otherwise analogous to the computation of the inflaton spectrum in supercooled
scenarios, yielding:

〈δφ2〉 '
∫
k<kF

d3k

(2π)3

1

2k
|δφk|2 [1 + 2n(ωk)]

' 2

(
T∗
H∗

)∫
k<kF

dk

k

(
H∗
2π

)2

, (118)

3This equation actually neglects the dependence of the dissipation coefficient on both φ and T . While discarding the former is
typically a good approximation in the slow-roll regime, the temperature dependence generates a coupling between the inflaton and
radiation perturbations that makes the analysis more complex and is beyond the scope of these lectures. However, in our working
example with Q∗ � 1 at horizon-crossing, this effect may safely be neglected [27,28].
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where kF = aH is the comoving momentum of the scale crossing the Hubble horizon at a given time, |δφk| ∼ H/k
for super-horizon scales and in the last step we have used that T & H. We thus have that inflaton fluctuations have
a larger amplitude than in the standard supercooled scenarios:

〈δφ2〉 ' 2

(
T∗
H∗

)
〈δφ2〉cold . (119)

This consequently enhances the spectrum of primordial curvature perturbations, which is given by:

∆2
R '

1

12π2

V (φ∗)

M4
P

ε−1
φ∗

(
T∗
H∗

)
. (120)

This allows one to relate the temperature and dissipative ratio at horizon-crossing by substituting this result into
Eq. (104), yielding:

Q∗ '
8π2

3
CR∆2

R

(
T∗
H∗

)3

' 2× 10−8g∗

(
T∗
H∗

)3

, (121)

where we have used the observational value for the amplitude of the primordial curvature spectrum ∆2
R ' 2.2×10−9

[33]. This thus sets a lower limit on the strength of dissipative effects at horizon-crossing from the requirement that
T∗ & H∗ for consistency of our calculation.

From the amplitude of the spectrum we can also deduce two other observables. Firstly, the scalar spectral index
is given by:

ns − 1 ≡ d log ∆2
R

d log k
' d log ∆2

R
dNe

' 2ηφ∗ − 6εφ∗ +
d log(T/H)

dNe

∣∣∣∣
∗
, (122)

where we have used the result from supercooled inflation. From Eq. (108) and using that σ′φ/σφ ' σφ + 2εφ − ηφ for
weak dissipation, we obtain:

ns − 1 ' 2σφ∗ − 2εφ∗ . (123)

This is independent of the second derivative of the inflaton potential, as opposed to supercooled scenarios. Secondly,
since neither dissipation nor the presence of a heat bath will change the evolution of tensor perturbations, as gravity
waves interact extremely weakly with matter, the tensor-to-scalar ratio is reduced compared to non-dissipative
models:

r ≡ ∆2
t

∆2
R

= 8εφ∗

(
T∗
H∗

)−1

. (124)

Since the tensor spectral index is unaffected by dissipation, this yields a modified consistency relation for warm
inflation models in general:

nt ' −2εφ ' −
r

8

(
T∗
H∗

)
, (125)

which may thus be used to observationally probe the significance of dissipative effects during inflation.
If we apply the above results to our example of a quartic scalar potential, we obtain:

ns − 1 ' − 1

Ne

(
1 + 2.8Q

1/5
∗

)
r ' 8

Ne

(
1 + 2.8Q

1/5
∗

)( T∗
H∗

)−1

. (126)
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These two observables are then determined by the duration of inflation and a single additional parameter, which
we may take to be either Q∗ or the ratio T∗/H∗ using Eq. (121). For example, if Q∗ ' 0.005, corresponding to
T∗/H∗ ' 10 if all the MSSM degrees of freedom are present the heat bath (g∗ = 228.75), we obtain:

ns ' 0.961− 0.967 (0.94− 0.95) r ' 0.026− 0.031 (0.27− 0.32) (127)

for 50-60 e-folds of inflation, with the values given in brackets corresponding to the supercooled inflation case. We thus
see that the quartic potential is an example of an inflationary model that is only in agreement with the observations
of the Planck satellite in the presence of dissipation (see [32] for a more complete discussion), with the results of the
Planck satellite giving ns = 0.968± 0.006 [33] and r < 0.12 (in combination with BICEP2/Keck [34]).

�2

0.95 0.96 0.97 0.98 0.99 1.00

ns

0.00

0.05

0.10

0.15

0.20

0.25

r 0
.0

0
2

N
=

50

N
=

60

ConvexConcave

�

Planck TT+lowP

Planck TT+lowP+BKP

+lensing+extNe = 50 

Ne = 60 

Figure 2: Observational predictions for a quartic potential in warm inflation with weak dissipation at horizon crossing
and g∗ = 228.75 (black curves) compared to the recent limits obtained by the Planck satellite [33]. The dashed part of
the curves corresponds to T∗ < H∗, where the underlying assumptions fail. The black circles indicate the predictions
for T∗ = H∗ (small black circles) and Q∗ = 0.01 (large black circles), the latter setting the limit of validity of the
weak dissipation analysis. [Courtesy of Sam Bartrum]

7 Summary and further reading

To summarize the main points of these lectures, we have seen that two effects arise when one considers the interactions
between a dynamical system and the surrounding environment - dissipation and fluctuations. This applies to many
different systems in nature and in particular to quantum fields. These are generically non-local effects but, when
the evolution of the field is slow compared to the typical time scale of microphysical processes in the environment
(adiabatic regime), dissipation results in a local friction coefficient in the field’s equation of motion and a Gaussian
white noise term. The variance of the noise term is entirely determined by the dissipation coefficient in what is
known as the fluctuation-dissipation relation.

Dissipation coefficients can be computed using the Schwinger-Keldysh formalism from the self-energy of the
dynamical field and depend on the properties of the degrees of freedom present in the heat bath, namely their masses
and decay width. Dissipation coefficients generically depend on the field value and the temperature of the heat bath
(for a near-equilibrium configuration). For further reading on the more formal aspects of non-equilibrium QFT and
computation of dissipation coefficients, I suggest [35–46] in addition to the references mentioned in the text.

These effects may have a large impact on the dynamics of cosmological scalar fields. As we have seen for the
case of warm inflation, friction slows down the average field motion and leads to entropy production as the field’s
energy is transferred into the heat bath. Additionally, the noise term sources random fluctuations of the field, with
an amplitude that depends on the size of the dissipation coefficient and on the field’s statistical state. In warm
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inflation, these effects prolong the duration of the slow-roll period, lead to a graceful exit into a radiation-dominated
era and modify the form of the primordial spectrum of curvature perturbations. There is an extensive literature on
warm inflation models, their dynamics, particle physics realizations and observational predictions and besides the
references mentioned above I would suggest [47–58] for those interested in knowing more about this topic and also
in applying similar techniques to the dynamics of other cosmological scalar fields.

The field of applications of non-equilibrium QFT in Cosmology is still in its infancy and there are several research
avenues to pursue. I thus hope that these lectures will motivate you to learn more about these and other related
topics.
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