Interaction with hydrogenless envelopes as the least energetic model for a bulk of Type Ic Superluminous Supernovae

Elena Sorokina

Sternberg astronomical institute, Moscow State University

in collaboration with Sergei Blinnikov, Ken'ichi Nomoto, Petr Baklanov, Aleksey Tolstov, Robert Quimby

Kavli IPMU - 12 February 2015 - p. 1

SN classification

Turrato 2003

SN Light Curves

R-band light curves for different SNe Ic (Young et al. 2010)

Observations of superluminous SNe

Quimby et al. 2011

Cooke+ 2012

- Pair instability SNe
- Magnetar energy pumping
- Interaction with CSM

One of the latest and the brightest SLSN PTF 12dam (Nicholl+, Nature, 2013)

Interaction model for PTF12dam

Baklanov, Sorokina, Blinnikov, 2015

Rise time for interacting model of $\sim 50 M_{\odot}$ He, E = 4B corresponds to observations !

Interaction model for PTF12dam

Baklanov, Sorokina, Blinnikov, 2015

Interaction model for PTF12dam

Baklanov, Sorokina, Blinnikov, 2015

Broad band light curves for 100 M_{\odot} of C and O

Windy model for core collapse SNe

Ofek et al. 2010

Ejecta: polytropic mass distribution Parameters: M_{ej} , R_{ej} , $E_{explosion}$

Wind: power-law mass distribution $\rho \sim r^{-p}$ or detached envelope Parameters: $M_{\rm w}$, $R_{\rm w}$, p, $E_{\rm kin}$, $\rho_{\rm max}$

Composition: uniform for most of models; mostly CO in different ratio + 2% of metals; a few He models; no 56 Ni in most of models

Initial models

Initial models

 time-dependent equations for the angular moments of intensity (coupled to 1D hydro equations) in fixed frequency bins are solved implicitly

- time-dependent equations for the angular moments of intensity (coupled to 1D hydro equations) in fixed frequency bins are solved implicitly
- no need to ascribe any temperature to the radiation: the photon energy distribution may be quite arbitrary

- time-dependent equations for the angular moments of intensity (coupled to 1D hydro equations) in fixed frequency bins are solved implicitly
- no need to ascribe any temperature to the radiation: the photon energy distribution may be quite arbitrary
- up to ~ 500 zones for the Lagrangean coordinate and up to 200 (sometimes even 1000) frequency bins are used (usually 100)

Code STELLA

 heating by decays of ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe with the γ-ray transfer in a one-group approximation following Swartz et al. 1995 (with purely absorptive opacity in the gamma-ray range)

- heating by decays of ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe with the γ-ray transfer in a one-group approximation following Swartz et al. 1995 (with purely absorptive opacity in the gamma-ray range)
- Local Thermodynamic Equilibrium (LTE) for ionization and atomic level populations is assumed (but radiation is nonequilibrium)

- heating by decays of ⁵⁶Ni → ⁵⁶Co → ⁵⁶Fe with the γ-ray transfer in a one-group approximation following Swartz et al. 1995 (with purely absorptive opacity in the gamma-ray range)
- Local Thermodynamic Equilibrium (LTE) for ionization and atomic level populations is assumed (but radiation is nonequilibrium)
- the effect of line opacity is treated as an expansion opacity according to Eastman & Pinto 1993 (and our new recipes).

SN 2010gx and PTF09cnd – the limiting cases

Models for SN 2010gx and PTF09cnd

	Model	$M_{\rm ej}$	$R_{\rm ej}$	p	structure	$M_{\rm w}$	$R_{ m w}$	$E_{\mathrm{expl}},$	$E_{\rm w,kin},$	Composition
	NO	0.2	10	1.8	env	9.7	10^{5}	2	.04	CO7
l	N1	0.2	10	1.8	env	4.9	10^{5}	2	.02	CO7
ł	N2	0.2	10	1.5	env	4.8	10^{5}	2	.02	CO7
l	N3	0.2	10	1.8	env	4.9	10^{5}	2	.02	CO9
	N4	0.2	10	1.8	env	4.9	10^{5}	2	0	CO9
	N5	0.2	10	1.8	env	4.9	10^{5}	3	0	CO9
	N6	0.19	10	3.5	sh	9.8	10^{5}	2	.1	CO9
	N7	0.19	10	3.5	sh	9.8	10^{5}	2	0	CO9
	N8	0.19	10	3.5	sh	4.7	10^{5}	2	0	CO9
	B0	5	10	1.8	env	49	10^{5}	4	0	CO9
	B1	5	10	1.8	env	49	10^{5}	4	.1	CO9
	B2	5	10	1.8	env	49	10^{5}	4	.3	CO9
	B3	0.2	10	1.8	env	20	10^{5}	4	0	He
	B4	0.2	10	1.8	env	20	10^{5}	4	0	CO5
	B5	0.2	10	1.8	env	20	10^{5}	4	0	CO9

Light curves for PTF09cnd

Different composition

Hydro evolution

Bolometric light curves

Spectra

Light curves and spectra for both SN 2010gx and PTF09cnd can be fitted by interacting model, which means that the bulk of SLSNe Ic can come from interaction of SN ejecta with rather dense and extended envelope the origin of which is not well understood yet.

It must be rare event since the model requires large amount of carbon surrounding the exploding star challenge for stellar evolution theory.

Thank you!