IPMU MS seminar 2015 Feb 12th

Superconformal Quantum Mechanics from M2-branes

Tadashi Okazaki

Osaka Univ. & Caltech

Nucl. Phys. B890 (2015) 400-441, 1410.8180 arXiv: 1503.XXXXX

Motivations

M5-branes

- $\mathbb{R}^{1,3} \times \Sigma_{g}$ AGT relations '09 Alday Gaiotto Tachikawa
- **R^{1,2} × M₃** 3d-3d relations '11 Dimofte Gaiotto Gukov; Terashima Yamazaki
- **R¹, ¹** × **M**₄ 2d-4d relations '13 Gadde Gukov Putrov

SCFT on R^{1,5-d} \iff Geometry M_d

Q. How about curved M2-branes ?

M2-branes

<u>Outline</u>

I. SCQM

Conf. Transf.

Id conf. transf. => 3 generators H, D, K

<u>CQM</u>

Q. How to construct Confroma Quantum Mechanics (CQM) ?

scale inv. scalar field theory

$$L = \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - g \phi^{\frac{2d}{d-2}}$$
$$d=1$$
$$S = \frac{1}{2} \int dt (\dot{x}^2 - \frac{g}{x^2})$$
DFF model

'76 de Alfaro Fubini Furlan

finite conf. transf.

$$t' = \frac{at+b}{ct+d}$$
 $x'(t') = \frac{x(t)}{ct+d}$ $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix} \det A = 1$

<u>**I.Translation**</u> $t' = t - \epsilon_1$ x'(t') = x(t) $A = \begin{pmatrix} 1 & 0 \\ -\epsilon_1 & 1 \end{pmatrix}$

2. Dilatation
$$t' = e^{-\epsilon_2}t$$
 $x'(t') = e^{-\frac{\epsilon_2}{2}}x(t)$ $A = \begin{pmatrix} e^{-\frac{\epsilon_2}{2}} & 0\\ 0 & e^{\frac{\epsilon_2}{2}} \end{pmatrix}$

3. Conformal boost
$$t' = \frac{t}{\epsilon_3 t + 1}$$
 $x'(t') = \frac{x(t)}{\epsilon_3 t + 1}$ $A = \begin{pmatrix} 1 & \epsilon_3 \\ 0 & 1 \end{pmatrix}$

Conformal invariant !

infinitesimal conf. transf.

$$\delta t = f(t) \qquad \delta x = \frac{1}{2}\dot{f}x \qquad f(t) = 0 + 0t + 0t^{2}$$
H
$$H$$

$$D$$
Noether's thm.
$$H = \frac{1}{2}(p^{2} + \frac{g}{x^{2}})$$
Dilatation generator
$$D = tH - \frac{1}{4}(xp + px)$$
Conformal boost generator
$$K = t^{2}H - \frac{1}{2}t(xp + px) + \frac{1}{2}x^{2}$$

sl(2,R) conformal alg.

 $[H,D] = iH \qquad [K,D] = -iK \quad [H,K] = 2iD$

CQM is expected to be solved algebraically !

But story is not so simple • • •

i. no normalizable ground state !ii. continuous energy spectrum !

DFF's proposal

$$G = uH + vD + wK \longrightarrow \frac{\partial G}{\partial t} + i[H, G] = 0.$$

=> G can be used as the new Hamiltonian describing the time evolution

$$d\tau = \frac{dt}{u + vt + wt^2}$$
$$q(\tau) = \frac{x(t)}{\sqrt{u + vt + wt^2}}$$

G can be non-compact !

compactness condition for G

$$v^2 - 4uw < 0$$

Physical quantities can be computed from the eigenstate of L_0 !

$$(x) = \sqrt{\frac{2}{\Gamma(2r_0)}} e^{-\frac{x^2}{2}} x^{\frac{1}{2}} \sqrt{g^2 + \frac{1}{4}}$$

$$\psi_n(x) = \sqrt{\frac{\Gamma(n+1)}{2\Gamma(n+2r_0)}} x^{-\frac{1}{2}} \left(\frac{x^2}{a}\right)^{r_0} e^{-\frac{x^2}{2a}} L_n^{2r_0-1} \left(\frac{x^2}{a}\right)$$

correlation function

'76 de Alfaro et al. '12 Jackiw et al.

$$F_2(t_1, t_2) = \langle t_1 | t_2 \rangle = \frac{\Gamma(2r_0)a^{2r_0}}{[2i(t_1 - t_2)]^{2r_0}}$$

$$F_{3}(t;t_{2},t_{1}) = \langle t_{2} | B(t) | t_{1} \rangle$$

= $\langle 0 | B(0) | 0 \rangle \left(\frac{i}{2}\right)^{2r_{0}+\Delta} \frac{\Gamma(2r_{0})a^{2r_{0}}}{(t-t_{1})^{\Delta}(t_{2}-t)^{\Delta}(t_{1}-t_{2})^{-\Delta+2r_{0}}}$

$$F_{4}(t_{1}, t_{2}, t_{3}, t_{4}) = \langle 0|B(0)|0\rangle \langle 0|\tilde{B}(0)|0\rangle \frac{\Gamma(2r_{0})}{2^{\Delta + \tilde{\Delta} + 2r_{0}}} \\ \times \frac{1}{(t_{13})^{\Delta - r_{0}}(t_{24})^{\tilde{\Delta} - r_{0}}(t_{12})^{\tilde{\Delta} + r_{0}}(t_{34})^{\Delta + r_{0}}(t_{14})^{2r_{0} - \Delta - \tilde{\Delta}}} x^{r_{0}} \ _{2}F_{1}(\Delta, \tilde{\Delta}; 2r_{0}; x)$$

Gauged Quantum Mechanics

Hamiltonian reduction (Routh reduction)

$$\tilde{\mathcal{M}}_c = \mu^{-1}(c)$$

Gauged Matrix Model

Hamiltonian reduction (Routh reduction)

(Super)conformal Quantum Mechanics can be constructed by "gauging"!

'91 Polychronakos; '08 Fedoruk et al.

Supersymmetry

Supersymmetric quantum mechanics (SQM) was originally introduced as the simple model of SUSY QFT '81 Witten

But SUSY in QM is much more **fruitful** and **exotic** !

- i. #(component in supermultiplet) \geq #(SUSY)
- ii. #(physical boson) \neq #(fermion)

Superspace and Superfield

'00 Pashnev et al.; '02 Gates et al.

\mathcal{N}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
$d_{\mathcal{N}}$	1	2	4	4	8	8	8	8	16	32	64	64	128	128	128	128

#(components in supermultiplet) \geq #(SUSY)

<u>AD map</u>

#(physical boson) \neq #(fermion)

Why does this happen in Id?

Hodge dual *: dS

$$: d\Omega_p \to d\Omega_{d-p-2}$$

0-form \leftrightarrow (-1)-form

physical boson \leftrightarrow auxiliary boson

Automorphic Duaity Map '96 Gates et al.

From the above facts

i) Only $\mathcal{N}=1,2,4,8$ SQM have been constructed via superspace & superfield formulation.

ii) Supermultiplet is denoted by

(#(boson), \mathcal{N} , \mathcal{N} -#(boson))

Superconformal symmetry

Id superconformal group

	R-symmetry	supergroup	supersymmetry	
constructed	1	OSp(1 2)	$\mathcal{N} = 1$	
	U(1)	SU(1, 1 1)	$\mathcal{N}=2$	
via superfield	SU(2)	OSp(3 2)	$\mathcal{N}=3$	
	SU(2)	SU(1, 1 2)	$\mathcal{N} = 4$	
	$SU(2) \times SU(2)$	$D(2,1;\alpha), \alpha \neq -1, 0,$		
	SO(5)	OSp(5 2)	$\mathcal{N} = 5$	
conjectured	SU(3) imes U(1)	SU(1, 1 3)	$\mathcal{N} = 6$	
via superfield	SO(6)	OSp(6 2)		
	SO(7)	OSp(7 2)	$\mathcal{N}=7$	
	G_2	G(3)		
	SO(8)	OSp(8 2)	$\mathcal{N} = 8$	
	$SU(4) \times U(1)$	SU(1, 1 4)		
my work	$SU(2) \times SO(5)$	$OSp(4^* 4)$		
	SO(7)	F(4)		
	$SO(\mathcal{N})$	$OSp(\mathcal{N} 2)$	$\mathcal{N}>8$	
	$SU(\frac{N}{2}) \times U(1)$	$SU(1,1 \frac{N}{2})$		
	$SU(2) \times Sp(\frac{N}{2})$	$OSp(4^* \frac{N}{2})$		

Conjectured $\mathcal{N} \ge 8$ SCQM

 \mathcal{N} >8 SCQM is not available from superfield & superspace.

However, $SU(I,I|\mathcal{N}/2)$ SCQM action is conjectured from $\mathcal{N}=4$ SU(I,I|2) SCQM.

$$S = \int dt \left[\dot{x}^2 + i \left(\overline{\psi}_i \dot{\psi}^i - \dot{\psi}_i \psi^i \right) - \frac{\left(c + \overline{\psi}_i \psi^i \right)^2}{x^2} \right]$$

'88 Ivanov et al.

II. M2-brane

M2-brane

(1+2) dimensional object in 11d SUGRA background M2-brane (electric)

(1+2) dimensional extended object in 11d SUGRA bckd.

(1+2) dimensional world-volume theory on the branes

World-volume theory of M2-branes

Required information

- X^I (position of M2-brane)
- Ψ (SUSY)
- A_{μ} (internal d.o.f.)
- conformal (IR theory of D2-brane (3d SYM))

$$M_3 = \mathbb{R}^{1,2} \longrightarrow \begin{array}{c} \mathbf{`07} \ \mathbf{BLG-model} \\ \mathbf{`08} \ \mathbf{ABIM-model} \end{array}$$

BLG-model

'08 Bagger Lambert; Gustavsson

• 3d \mathcal{N} = 8 superconformal CS-matter w/OSp(8|4)

Lagrangian

$$\mathcal{L}_{BLG} = -\frac{1}{2} D^{\mu} X^{Ia} D_{\mu} X^{I}_{a} + \frac{i}{2} \overline{\Psi}^{a}_{\dot{A}} \Gamma^{\mu}_{\dot{A}\dot{B}} D_{\mu} \Psi_{\dot{B}a} + \frac{i}{4} \overline{\Psi}_{\dot{A}b} \Gamma^{IJ}_{\dot{A}\dot{B}} X^{I}_{c} X^{J}_{d} \Psi_{\dot{B}a} f^{abcd} - V(X) + \mathcal{L}_{TCS} V(X) = \frac{1}{12} f^{abcd} f^{efg}_{\ d} X^{I}_{a} X^{J}_{b} X^{K}_{c} X^{I}_{e} X^{J}_{f} X^{K}_{g} \mathcal{L}_{TCS} = \frac{1}{2} \epsilon^{\mu\nu\lambda} \left(f^{abcd} A_{\mu ab} \partial_{\nu} A_{\lambda cd} + \frac{2}{3} f^{cda}_{\ g} f^{efgb} A_{\mu ab} A_{\nu cd} A_{\lambda ef} \right)$$

ABJM-model

'08 Aharony et al.

• 3d \mathcal{N} = 6 superconformal CS-matter w/Osp(6|4)

 $\begin{array}{cc}
\text{Conf}(\mathbb{R}^{1,2}) \\
\left(\begin{array}{cc}
Sp(4) & \text{fermionic} \\
\text{fermionic} & SU(4) \cong SO(6) \end{array}\right) \\
\end{array}$ $\begin{array}{c}
\mathbb{R}\text{-sym}
\end{array}$

• $U(N)_{k} \times U(N)_{k}$ quiver gauge theory

Moduli space & brane interpretation

$$\mathcal{M}_{N,k} = \frac{(\mathbb{C}^4/\mathbb{Z}_k)^N}{S_N} = \operatorname{Sym}^N(\mathbb{C}^4/\mathbb{Z}_k)$$

'08 Aharony et al.

ABJM-model N M2-branes propagating in (SO(4) BLG-model k=I 2 M2-branes propagating in

Spin(4) BLG-model k=2

2 M2-branes propagating in

 \mathbb{R}^8

III. SCQM from M2-branes

World-volume theories of M2-branes

$M_3 = \mathbf{R}^{1,2} \longrightarrow \mathbf{`07} \mathbf{BLG} \\ \mathbf{`08} \mathbf{ABJM}$

energy scale characterized by volume of Σ >> enegy

Further IR limit can be taken !

Namely

IR QM with energy scale << vol $(\Sigma)^{-1}$

How to derive?

Step I. BPS eq. \rightarrow low-energy conf.

Step2. Integration over the Riemann surface

'95 Bershadsky Sadov Vafa; '06 Kapustin Witten

Step I. BPS eq. \rightarrow low-energy conf.

 $[X^I, X^J, X^K] = 0 \qquad D_z X^I = 0 \qquad D_{\overline{z}} X^I = 0$

$$X^{I+2} = \begin{pmatrix} \cos \theta^{I} \\ \sin \theta^{I} \\ 0 \\ 0 \end{pmatrix} r^{I} \qquad \tilde{A}_{z} = \begin{pmatrix} 0 & -2\pi \frac{\Theta}{\tau - \overline{\tau}} \omega_{z} & 0 & 0 \\ 2\pi \frac{\Theta}{\tau - \overline{\tau}} \omega_{z} & 0 & 0 & 0 \\ 0 & 0 & 0 & A_{z4}^{3}(z, \overline{z}) \\ 0 & 0 & -\tilde{A}_{z4}^{3}(z, \overline{z}) & 0 \end{pmatrix}$$

Step2. Integration over the Riemann surface

$$S = \int_{\mathbb{R}} dt \left[\frac{1}{2} D_0 X^{Ia} D_0 X^I_a - \frac{i}{2} \overline{\Psi}^{\alpha a} D_0 \Psi_{\alpha a} - k C_1(E) \tilde{A}^1_{02} \right]$$

$\mathcal{N}=16$ Superconformal gauged QM

Hamiltonian reduction (Routh reduction) decoupled motion associated with local charge

$$S = \frac{1}{2} \int_{\mathbb{R}} dt \left[\dot{q}^2 - i\overline{\Psi}^{\alpha a} \dot{\Psi}_{\alpha a} - \frac{\left(kC_1(E) + i\overline{\Psi}^{\alpha}_A \Psi_{\alpha B}\right)^2}{q^2} \right]$$

OSp(16|2) SCQM

ABJM-model/T²

Step I. BPS eq. \rightarrow low-energy conf.

 $D_z Y^A = 0, \quad D_{\overline{z}} Y^A = 0 \quad Y^C Y^{\dagger}_C Y^B - Y^B Y^{\dagger}_C Y^C = 0 \quad Y^C Y^{\dagger}_A Y^D = 0$

Step2. Integration over the Riemann surface

$$\int_{\mathbb{R}} dt \left[D_0 \overline{y}^a_A D_0 y^A_a - i \psi^{\dagger \alpha A a} D_0 \psi_{\alpha A a} + k C_1(E_a) \mathcal{A}_{0a}^{-} \right]$$

$\mathcal{N}=12$ superconformal gauged QM

Hamiltonian reduction (Routh reduction)

decoupled motion associated with local charge

$$S = \int_{\mathbb{R}} dt \sum_{a=1}^{N} \left[\dot{x}_a^2 - i\psi^{\dagger\alpha Aa} \dot{\psi}_{\alpha Aa} - \frac{\left(kC_1(E_a) + \psi^{\dagger\alpha Aa} \psi_{\alpha Aa}\right)^2}{4x_a^2} \right]$$

SU(1,1|6) SCQM

flat branes

flat BPS branes

decoupling limit

world-volume theory of flat BPS branes = SUSY gauge theory

- Dp-branes \rightarrow (I+p) dimensional SYM
- M2-branes \rightarrow BLG-model, ABJM-model

'95 Bershadsky Sadov Vafa

Curved M2-branes

Now consider topological twisting !

'88 Witten

Consider

$$X = \mathcal{L}_1 \oplus \mathcal{L}_2 \oplus \mathcal{L}_3 \oplus \mathcal{L}_4 \to \Sigma_g$$

$SO(8)_R \rightarrow SO(2)_1 \times SO(2)_2 \times SO(2)_3 \times SO(2)_4$

BLG theory probing K3

 $\epsilon \quad \mathbf{8}_{s+} \oplus \mathbf{8}_{s-} \qquad \qquad \mathbf{4}_0 \oplus \overline{\mathbf{4}}_2 \oplus \mathbf{4}_{-2} \oplus \overline{\mathbf{4}}_0 \\ \hline \boldsymbol{\epsilon} \quad \tilde{\boldsymbol{\epsilon}}_z \quad \boldsymbol{\epsilon}_{\overline{z}} \quad \boldsymbol{\epsilon}_{\overline{z}} \quad \boldsymbol{\epsilon}_{\overline{z}} \\ \mathcal{N} = \mathbf{8} \ \mathbf{SUSY}$

$$\begin{aligned} \mathcal{L} &= \frac{1}{2} (D_0 \phi^I, D_0 \phi^I) - (D_z \phi^I, D_{\overline{z}} \phi^I) + (D_0 \Phi_z, D_0 \Phi_{\overline{z}}) - 2 (D_z \Phi_{\overline{w}}, D_{\overline{z}} \Phi_w) \\ &+ (\overline{\lambda}, D_0 \psi) + (\overline{\Psi}_z, D_0 \widetilde{\Psi}_{\overline{z}}) - (\overline{\Psi}_{\overline{z}}, D_0 \Psi_z) - 2i (\overline{\tilde{\Psi}}_{\overline{z}}, D_z \psi) + 2i (\overline{\lambda}, D_{\overline{z}} \Psi_z) \\ &+ \frac{i}{2} (\overline{\lambda} \widehat{\Gamma}^{IJ}, [\phi^I, \phi^J, \psi]) - i (\overline{\tilde{\Psi}}_{\overline{z}} \widehat{\Gamma}^{IJ}, [\phi^I, \phi^J, \Psi_z]) \\ &+ 2i (\overline{\psi} \widehat{\Gamma}^I, [\Phi_{\overline{z}}, \phi^I, \Psi_z]) - 2i (\overline{\lambda} \widehat{\Gamma}^I, [\Phi_z, \phi^I, \overline{\Psi}_{\overline{z}}]) \\ &+ i (\overline{\lambda}, [\Phi_z, \Phi_{\overline{z}}, \psi]) - 2i (\overline{\tilde{\Psi}}_{\overline{w}}, [\Phi_z, \Phi_{\overline{z}}, \Psi_w]) \\ &- \frac{1}{12} \left([\phi^I, \phi^J, \phi^K], [\phi^I, \phi^J, \phi^K] \right) - \frac{1}{2} \left([\Phi_z, \phi^I, \phi^J], [\Phi_{\overline{z}}, \phi^I, \phi^J] \right) \\ &- \frac{1}{2} \left([\Phi_z, \Phi_w, \phi^I], [\Phi_{\overline{z}}, \Phi_{\overline{w}}, \phi^I] \right) - \frac{1}{2} \left([\Phi_z, \Phi_w, \Phi_{\overline{v}}], [\Phi_{\overline{z}}, \Phi_w, \phi^I] \right) + \mathcal{L}_{\mathrm{TCS}} \end{aligned}$$

Step I. BPS eq. \rightarrow low-energy conf.

$$D_z \phi^I = 0, \quad D_{\overline{z}} \phi^I = 0$$
$$D_z \Phi_{\overline{z}} = 0, \quad D_{\overline{z}} \Phi_z = 0$$

 $\begin{aligned} [\phi^{I}, \phi^{J}, \phi^{K}] &= 0 \\ [\Phi_{z}, \Phi_{\overline{z}}, \phi^{I}] &= 0, \quad [\Phi_{z}, \phi^{I}, \phi^{J}] = 0, \quad [\Phi_{\overline{z}}, \phi^{I}, \phi^{J}] = 0 \\ [\Phi_{w}, \Phi_{\overline{w}}, \Phi_{z}] &= 0, \quad [\Phi_{\overline{w}}, \Phi_{w}, \Phi_{\overline{z}}] = 0. \end{aligned}$

Step2. Integration over the Riemann surface

may describe curved M2-branes !

Now testing... (reduced Gromov-Witten inv. etc.)

IV. Conclusion

Conclusion

We found $\mathcal{N} \ge 8$ **SCQM** models

which are not available via superfield & superspace formalism.

They may describe the M2-branes wrapping a Riemann surface.

Future work

- Other Calabi-Yau case
- ABJM with $g \neq I$ case
- Analysis of the M2-branes through SCQM

Application

- AdS₂/CFT₁ (Black hole physics)
- 3=1+2 (AGT like relation arising from M2)
- reduced Gromov-Witten inv.
- construction of new SCQM