Beyond Thermodynamics: the Physics of Matter, Life, and Intelligence

Piet Hut

Institute for Advanced Study, Princeton (IAS) Earth-Life Science Institute, Tokyo (ELSI)

Kavli-IPMU, 12 May 2015

3 BIG questions:

- the Origin of the Universe
- the Origin of Life
- the Origin of Intelligence

3 BIG questions:

- the Origin of the Universe
- the Origin of Life

• the Origin of being able to ask: what is the Origin of the Universe the Origin of Life the Origin of being able to ask: what is the Origin of the Universe the Origin of Life the Origin of being able to ask: what is the Origin of being able to ask: what is the Origin of being able to ask: what is

the Origin of Life

the Origin of being able to ask: what is

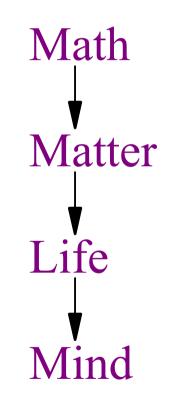
The 3 BIG questions:

- the Origin of the Universe
 the Origin of Life
 Biology
- the Origin of Intelligence Cognitive Science

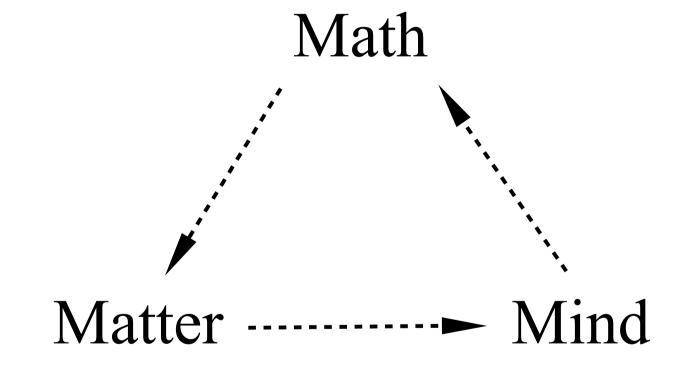
The 3 BIG questions:

- the Origin of the Universe
- the Origin of Life

Autonomous Agents

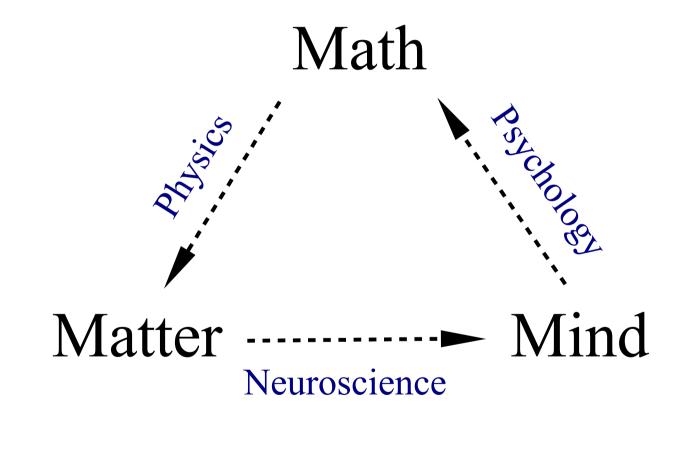

Information

Matter


• the Origin of Intelligence Awareness

The 3 BIG questions:

- the Origin of the Universe
- the Origin of Life
- the Origin of Intelligence



and . . . 3 *other* BIG questions:

What underlies what?

and . . . 3 *other* BIG questions:

What underlies what?

Let us look at the middle question:

• the Origin of Life

In 2012, a new institute was started at Tokyo Tech, *ELSI*, short for *Earth-Life Science Institute*, to study the origin of life, in the context of the origin of the Earth and of other planets, with room for chemists, biologists, geophysicists, astrophysicists, physicists, computer scientists, mathematicians, a paradise for broadly interdisciplinary collaborations. The success of science rest on:

- Reductionism -- look for building blocks
- Complexity -- look for emergent features

Quarks, gluons, electrons

Protons, neutrons, electrons

Atomic nuclei, electrons

Atoms

Molecules

Protons, neutrons, electrons

Atomic nuclei, electrons

Atoms

Molecules

Organic Molecules

...???...

Life

Protons, neutrons, electrons

Atomic nuclei, electrons

Atoms

Molecules

Organic Molecules

...???... Life

Physics

Chemístry

Bíology

Protons, neutrons, electrons

Atomic nuclei, electrons

Atoms

Physics

Bíologu

Molecules

Organic Molecules Chemistry

Geology …???… Life

Protons, neutrons, electrons

Atomic nuclei, electrons

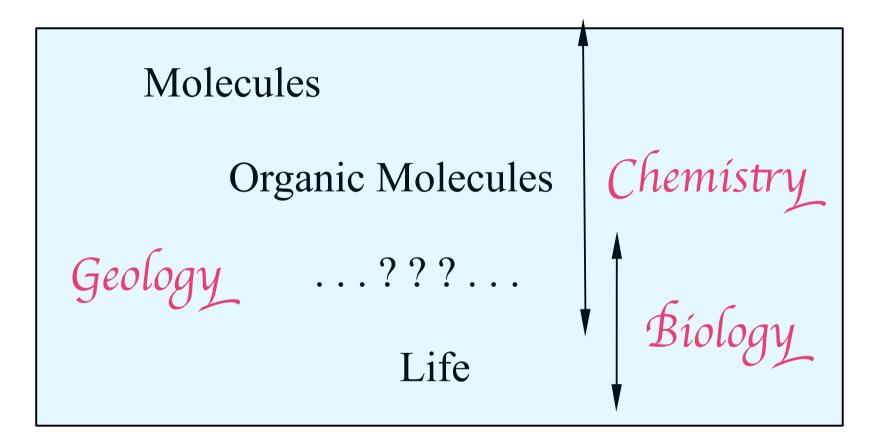
Atoms

Physics

Molecules

stronomy

Geology ...???... Life Organic Molecules


Chemístry

Quarks, gluons, electrons Protons, neutrons, electrons Physics Atomic nuclei, electrons Atoms Molecules Chemistry_ **Organic Molecules** ronomy Geology ...???... Bíologi Life

theory

omplexíti

But . . . this picture is misleading: the question marks are presented on the level of *Structure*

. . . whereas the answers must surely

be found in terms of *process*

The success of science rest on:

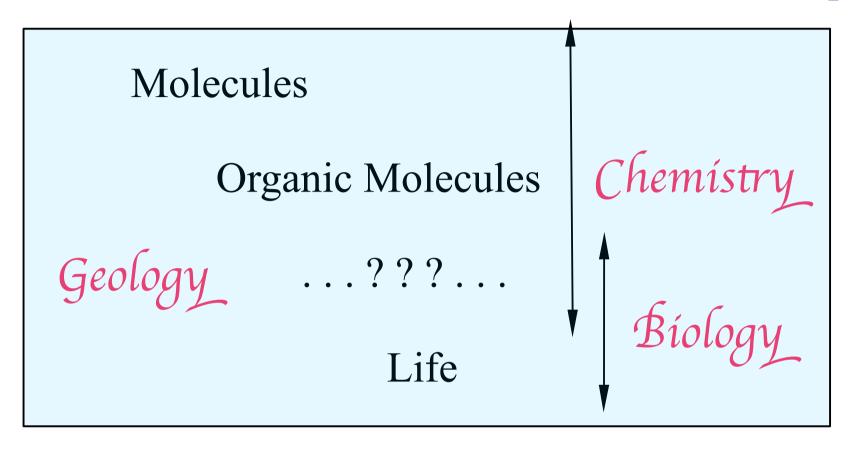
- Reductionism -- look for building blocks
- Complexity -- look for emergent features

Quarks, gluons, electrons

Protons, neutrons, electrons

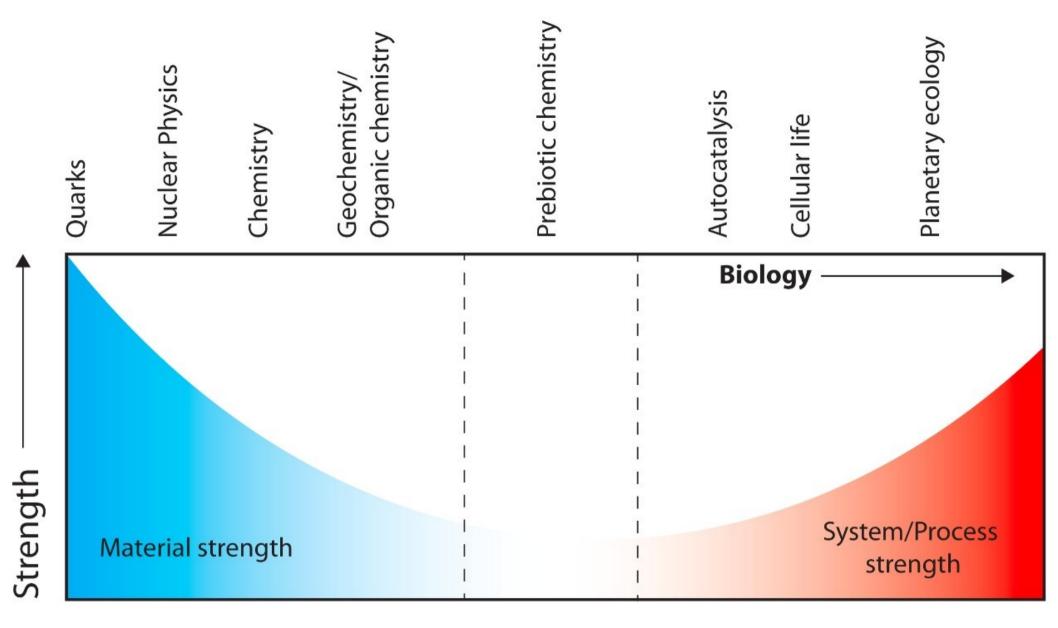
Atomic nuclei, electrons

Atoms

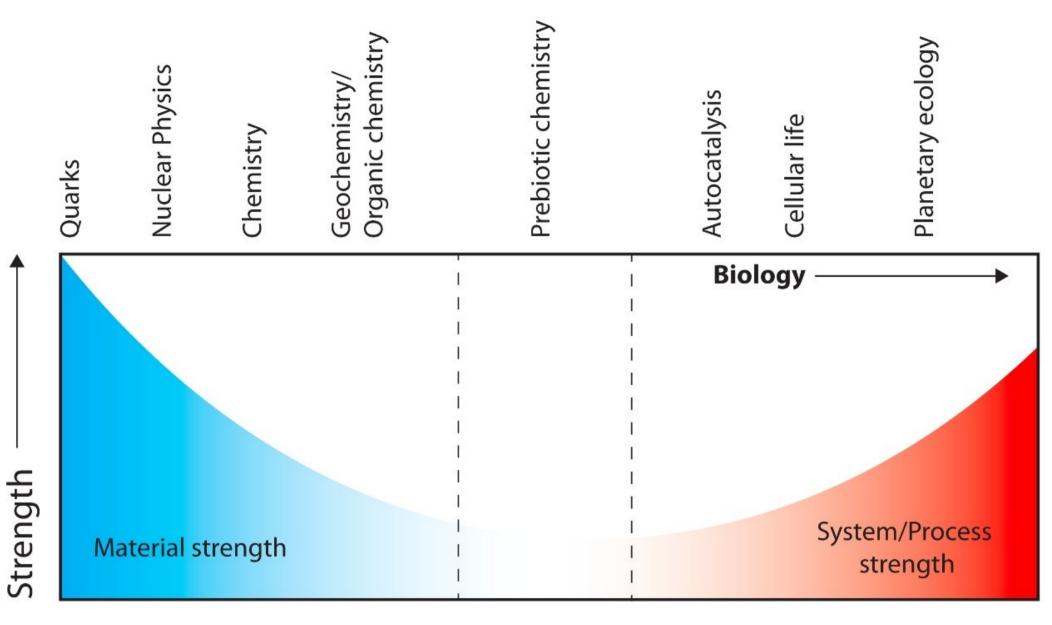

Molecules

Quarks: elementary particles (as far as we know)

Protons: we cannot liberate the quarks !


Atomic nuclei: we can transmute (nuclear energy) Atoms: we can strip electrons (in a candle) Molecules: we can rearrange (chemistry!)

The more complex, the more brittle, so . . . molecules that are more and more complex are unlikely to survive in a natural environment So . . . how come nature could add further complexity ???



The trick is the invention of repair, maintenance, resilience.

Make many copies, tinker, let most fail but keep the best: this is evolution, and evolution produced resilience.

Complexity ------

Complexity —

Thermodynamics !

Infodynamics ?

A Brief History of Thermodynamics

- 1775: James Watt: Steam Engine
- 1800: Richard Trevithick: Steam Locomotive
- 1825: Sadi Carnot: Carnot diagram
- 1850: Rudolf Clausius: 2nd Law of Thermodynamics
- 1875: Ludwig Boltzmann: entropy from molecular motion

	Quarks	Nuclear Physics	Chemistry	Geochemistry/ Organic chemistry	Prebiotic chemistry	Autocatalysis	Cellular life	Planetary ecology
Strength	Ma	aterial st	rength			Bio	logy -	System/Process strength

Complexity —

Thermodynamics ! (1775 - 1875)

Infodynamics ? (1953 – 2053?)

	Quarks	Nuclear Physics	Chemistry	Geochemistry/ Organic chemistry		Prebiotic chemistry	Autocatalysis	Cellular life	Planetary ecology	
Strength	Ma	terial st	rength				Bio	logy — Sys	tem/Proces strength	s
	Com	plexit	{ Deg	radation te in entro	-		<pre>{ (in</pre>	Resili Repai Learn crease in	r >	

	Quarks	Nuclear Physics	Chemistry	Geochemistry/ Organic chemistry	Prebiotic chemistry		Autocatalysis	Cellular life	Planetary ecology
Î						- - 	Biol	ogy —	
Strength	М	aterial st		SPACE			TIME		stem/Process strength
	Cor	nplexit	у —				5	Resili	
<pre>{ Degradation } (increase in entropy)</pre>								Repai Learn crease i	$\int \\ n \dots ??)$

	Quarks	Nuclear Physics	Chemistry	Geochemistry/ Organic chemistry	Prebiotic chemistry	Autocatalysis	Cellular life	Planetary ecology
1						Bio	logy —	
		<u>Str</u>	ength j	from parts		<u>Strength from whole</u>		
gth				SPACE		TIME		
Strength	M	aterial st	rength				Sy	stem/Process strength
94008 - 184	Con	nplexit	ty —			5		ience
<pre>{ Degradation } (increase in entropy)</pre>						L	Repa Learr crease i	

The success of science rest on:

- Reductionism -- look for building blocks
- Complexity -- look for emergent features

A single water molecule is not wet, nor are two or three. Yet a thousand molecules are starting to become wet . . .

A few molecules don't exhibit thermodynamics, but . . . 10^23 molecules certainly do so, as an *emergent* property.

Yet physicists consider the 2^{nd} law of thermodynamics to be more *fundamental* than any particular law of motion.

Why? It's a mystery . . . (Freeman Dyson)

A major 19th century *mystery*:

Physicists consider the 2nd law of thermodynamics to be more *fundamental* than any particular law of motion.

(a major 20th century *mystery*: unify qm & gravity)

What next? My prediction:

A major 21th century *mystery*:

Biologists may consider laws of infodynamics to be more *fundamental* than any particular laws of physics.

A major 19th century *mystery*:

Physicists consider the 2nd law of <u>thermodynamics</u> to be more *fundamental* than any particular law of motion.

(a major 20th century *mystery*: unify <u>qm</u> & gravity)

What next? My prediction:

A major 21th century *mystery*:

Biologists may consider laws of *infodynamics* to be more *fundamental* than any particular laws of physics.

A major 19th century *mystery*:

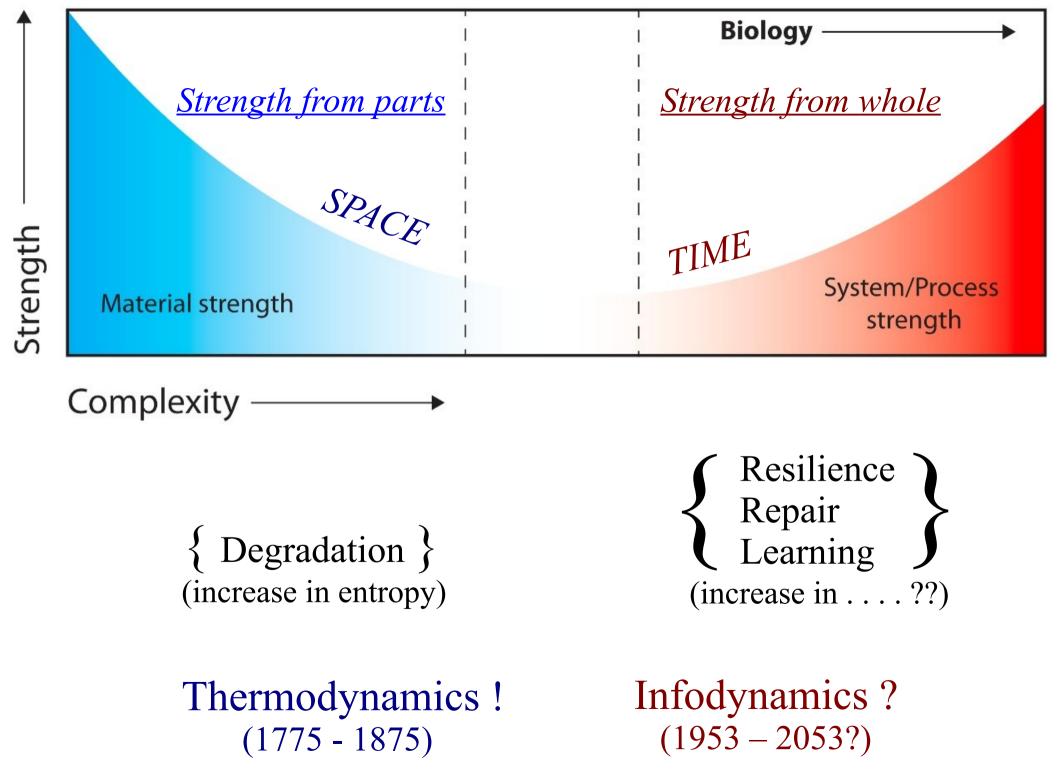
Physicists consider the 2nd law of <u>thermodynamics</u> to be more *fundamental* than any particular law of motion.

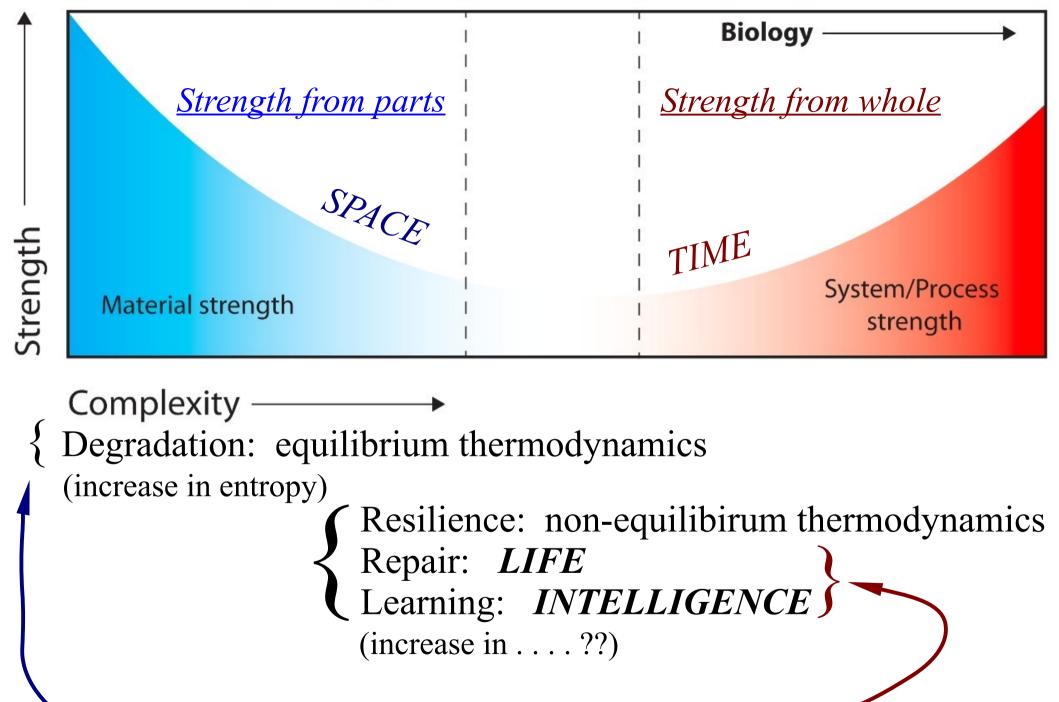
(a major 20th century *mystery*: unify <u>qm</u> & gravity)

What next? My prediction:

A major 21th century *mystery*: Siologists may considered more *fundamental* than any particular laws of physics.

Aristotle: causality & teleology


Newton: causality


Darwin: *evolution* as emergent adaptation: <u>statistical</u> teleology from causality

Gibbs, Maxwell, Boltzmann: <u>statistical</u> causality: *Thermodynamics*

???: emerging autonomous agents, <u>statistically</u> arising in complex systems: *Infodynamics* origin of life(-like processes)

???: emerging learning leading to intelligence. origin of intelligence

 Thermodynamics !
 Infodynamics ?

 (1775 - 1875)
 (1953 - 2053?)

Five centuries of fundamental modern science:

Popular view:

- 17th century: Galileo, Kepler, Newton: building up
- 18th century: Newton: classical mechanics
- 19th century: Maxwell: electromagnetism
- 20th century: Einstein + ... : relativity + qm
- 21th century: ???: unified theory

Deeper view:

- 17th century: Differential equations
- 18th century: Variational calculus
- 19th century: Thermodynamics
- 20th century: Quantum mechanics
- 21th century: Infodynamics ?

infinitesimals

Five centuries of fundamental modern science:

- 17th century: Differential equations
- 18th century: Variational calculus
- 19th century: Thermodynamics
- 20th century: Quantum mechanics
- 21th century: Infodynamics ?

The main challenge for 21th century fundamental science: to invent a *statistical theory of self-organizing information*

Advice for young (at heart) people:

while working in chemistry, biology, neuroscience, computational science of complex systems in general: keep an eye open for an *info* equivalent of *thermo*-dynamics