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Motivation
Supersymmetry relies on two-Higgs-doublet structure.

PQ symmetry can be imposed to rotate away the CPV term from
QCD Lagrangian when there are two scalar doublets. This leads to
axions. Simplest versions are ruled out.

With one Higgs doublet it is not possible to generate BAU of sufficient
size. 2HDM provides additional room.

Natural extension keeping ρ = 1 at tree level.
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The scalar potential
Parametrization 1 :
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All potential parameters are real.

There is a Z2 symmetry in the potential (Φ1 → Φ1,Φ2 → −Φ2).

m2
12 and λ5 break the Z2 symmetry softly.
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The two parametrizations
Parametrization 1 is ‘more general’ than 2. The second parametrization assumes that
both scalars receive vevs.

The ‘inert doublet’ limit can be achieved in the first one, not in second. Putting
β2 = β3 = β4 = β5 = m2

12 = 0, m2
22 > 0, and v2 = v21 = −m2

11/β1.

SM potential: V ∼ µ2|φ|2 + λ|φ|4, and V ′ ∼ λ
(

|φ|2 − v2/2
)2. They are not always

equivalent.

If we assume that both scalars receive vevs, then
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2
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Physical Eigenstates
We express the scalar doublets as
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Counting of parameters
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8 parameters: 6 lambdas, v1, v2 (or, v = 246 GeV, tanβ). All lambdas, except λ5, can be
traded for mh(= 125 GeV), mH+ , mH , mA and α.
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The Alignment limit

H0 =
1

v
(v1h1 + v2h2)

has gauge couplings exactly as the SM Higgs boson and its orthogonal combination (R)
does not have any RV V trilinear couplings. H0 also mimics the SM Higgs in Yukawa sector.
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cosβ sinβ
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 .

H = cos(β − α)H0 − sin(β − α)R ,

h = sin(β − α)H0 + cos(β − α)R .

If we want the lightest CP-even physical scalar h to posses SM-like couplings, we must set
sin(β − α) = 1, which is the definition of the alignment limit.
Number of free parameters is then reduced by one.
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Global U(1) symmetry

Φ1 → Φ1 , Φ2 → eiθΦ2 .

On the quartic terms, this symmetry is realized by putting

λ5 = λ6 ,

which means that the potential now reads
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v2 6= 0 spontaneously breaks the global symmetry. The λ5 terms avoids the appearance of
massless pseudoscalar by explicitly breaking the U(1) symmetry. The psedo-scalar can be
light.
Light A or H,H± can be perfectly accommodated in ‘alignment limit’! This is often called
‘decoupling limit’ - be alert!!
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Stability and Unitarity limits
Conditions for the potential to be bounded from below:

λ1 + λ3 > 0 , λ2 + λ3 > 0 ,

2λ3 + λ4 + 2
√

(λ1 + λ3)(λ2 + λ3) > 0 ,

2λ3 + λ5 + 2
√

(λ1 + λ3)(λ2 + λ3) > 0 .

Upper bounds from perturbative unitarity: Scattering amplitudes involving longitudinal gauge
bosons and Higgs bosons comprise the elements of an S-matrix, having 2-particle states as
rows and columns. The eigenvalues are restricted by |a0| < 1.
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∣
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Constraints
Put the following constraints:

β − α = π/2 and λ5 = λ6

mh = 125GeV

mH+ > 100GeV, which is a rough lower bound from direct searches

On top of it put the constraints from oblique electroweak T parameter:

T =
1

16π sin2 θwM2
W

[

F (m2

H+ ,m2
H) + F (m2

H+ ,m2
A)− F (m2

H ,m2
A)
]

,

with

F (x, y) =
x+ y

2
− xy

x− y
ln(x/y) .

The new physics contribution to the T -parameter as

T = 0.05± 0.12 .
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Plots of mass spectra
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Salient features
It follows from unitarity and stability

0 ≤ (m2
H −m2

A)(tan2 β + cot2 β) + 2m2
h ≤ 32πv2

3
.

For tanβ away from unity, H and A are almost degenerate.

There is a similar correlation between mH and mH+ , but this time without any
dependence on tanβ.

∣

∣

∣2m2

H+ −m2
H −m2

A +m2
h

∣

∣

∣ ≤ 16πv2 .

The unitarity conditions apply on the difference of their squared masses. Any individual
mass can be arbitrarily large. This conclusion crucially depends on the existence of a
U(1) symmetry of the potential. When the symmetry of the potential is only a discrete
Z2, considerations of unitarity do restrict the individual non-standard masses.

The constraints from the T -parameter are stronger than that from unitarity and stability.
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Diphoton decay width
Only charged scalars provide additional contributions.

µγγ ≡ σ(pp → h)

σSM(pp → h)
· BR(h → γγ)

BRSM(h → γγ)
=

Γ(h → γγ)

ΓSM(h → γγ)
.

Parametrize the coupling of h to the charged scalars as

ghH+H− ≡ κ
gm2

H+

MW

,

Then

µγγ =

∣

∣

∣AW + 4

3
At + κAH+

∣

∣

∣

2

∣

∣

∣AW + 4

3
At

∣

∣

∣

2
.

If κ saturates to some finite value in the limit when the charged scalar is too heavy, the effect
will not decouple (as AH+ saturates to 1

3
).
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Decoupling vs nondecoupling
When the symmetry is Z2

κ = − 1

m2

H+

(

m2

H+ +
m2

h

2
− λ5v2

2

)

Decoupling can be achieved by tuning m2

H+ ≃ λ5v2/2.
When the symmetry is U(1)

κ = − 1

m2

H+

(

m2

H+ −m2
A +

m2
h

2

)

Unitarity and T -parameter together restrict the numerator ensuring decoupling.
The key point is that the soft global symmetry breaking parameter λ5 is now related to a
physical scalar mass, and mass square differences are constrained. Thus, no tuning is
involved.
For decoupling, there must be a non-SSB component in the mass term of the heavy particle.
When λ5 = 0, nondecoupling would restrict the number of additional scalars, strictly when
both scalars receive vevs.
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3HDM scalar potential
S3 or A4 symmetric flavor models are typical examples which employ three Higgs doublets.

V S3
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= −µ2

1(φ
†
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{
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2
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1
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2
φ2)

2
}

+λ4
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3
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1
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2
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3
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†
3
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†
3
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2 .

There will be two pairs of charged scalars:

κi = −
(

1 +
m2

h

2m2
i+

)

for i = 1, 2 .
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Global symmetry for S3 potential
Assume a global SO(2) symmetry, then λ4 = 0, and introduce a soft breaking term
(−µ2

12φ
†
1
φ2). Then

m2
h′ = 2µ2

12 ,

where h′, H and h(= 125) are the three CP even Higgses. h′ coupling is peculiar as it does
not have any h′V V triliear coupling.

κ1 = − 1

m2
1+

(

m2
1+ −m2

h′ +
m2

h

2

)

,

κ2 = −
(

1 +
m2

h

2m2
2+

)

.

Note that (|m2
1+ −m2

h′ |) is constrained from unitarity.

With an extended global symmetry SO(2)×U(1), together with an extra soft breaking
parameter which is related to mA2, decoupling in κ2 can be ensured.
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Outlook
With increasing LHC Higgs data we are gradually pushed to Alignment limit. But this
can still accommodate light (rather not so heavy) additional scalars.

Symmetries of the scalar potential and their soft breaking terms play crucial role,
especially in ensuring decoupling.

Flavor symmetries also decide the scalar structure. New scalars with exotic behavior
are present in 3HDM (S3, S4, A4, ∆(27), · · · ).
Validity up to high scale puts a constraint on tanβ.
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