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Introduction

In standard QFT, for an interaction Lint = λO:
[λ] ≥ 0⇒ superficial renormalizability.
For GR, [

√
GN ] = −1

⇒ not renormalizable as a perturbative QFT.
Modifying GR with high order curvature terms

δL = αRµνRµν + βR2

Modified propagator has an improved UV behavior
1

k2 − k4

M2

=
1
k2 −

1
k2 −M2

Stelle 1977

Relativistic: ∂4
i improves UV⇐⇒ ∂4

t compromises unitarity.
Anisotropic scaling in UV: t → b−z t , ~x → b−1~x .
∂2

t ↔ ∂2z
i .

Cost: violation of local Lorentz invariance.
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Lifshitz scalar analogy
Dimensional counting

The action for a free Lifshitz scalar in D + 1, with critical
exponent z:

Sfree =

∫
dt dDx

[
φ̇2 − φ (−4)z φ

]
⇐4 ≡ ∂i∂

i

Field’s dimension. From [S] = 0,

−z︸︷︷︸
dt

−D︸︷︷︸
dDx

+

∂︷︸︸︷
2 z +

φ2︷︸︸︷
2 [φ] = 0⇒ [φ] =

D − z
2

Interaction λφn : for z ≥ D, we have [λ] > 0, ∀n > 0.
Interaction λ (∂2z

i , φn): closer to gravity

−D − z + [λ] + 2 z + n [φ] = 0 =⇒ [λ] =
(n − 2)(z − D)

2
Again, if z ≥ D, we have [λ] ≥ 0, ∀n > 2.
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Generalization to gravity: Hořava’s theory [Hořava ’09]

Symmetry

Momentum dimensions from scaling: [x ] = −1, [t ] = −z.

A compatible symmetry: foliation-preserving diffeos (FDiff)
t → t ′(t) ~x → ~x ′(t , ~x)

ADM decomposition provides a natural parametrization

ds2 = −N2 c2dt2 + gij

(
dx i + N idt

)(
dx j + N jdt

)
Building blocks (z = D)

[Kij ] = z ←→ φ̇
[Di ] = 1 ←→ ∂i

[ai ] = 1 ←→ ∂iφ
[Rij ] = 2 ←→ ∂i∂jφ

(ai ≡ ∂i log N)
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Action for Hořava gravity
z = D = 3 Minimal model:

LHG = KijK ij − λK 2 + 2α aiai + β R +
1

M2
∗
L4 +

1
M4
∗
L6

with

L4 = α1 R Diai + α2DiajDiaj + β1RijR ij + β2R2 + . . . ,

L6 = α3DiDiR Djaj + α4D2aiD2ai + β3DiRjk DiR jk + β4DiRDiR + . . . .

Blas, Pujolas, Sibiryakov 2009-2010

t → t ′(t) not enough to remove 1 dof⇒ scalar graviton

Dispersion relation for tensor modes

ω2 = βk2 − β1
k4

M2
∗
− β3

k6

M4
∗

Scalar mode is more subtle, but in the UV it goes ω2 ∝ k6

M4
∗

.

At low energies (k � M∗), where higher derivative terms are
suppressed, ∼GR is recovered for λ = β = 1, α = 0.
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Constraints on the IR theory
Theoretical consistency

Scalar kinetic term = 3λ−1
λ−1 > 0 ⇒ λ < 1/3 or λ > 1.

Dispersion relations in IR

ω2
IR,t = βk2 , ω2

IR,s =
β(β − α)(λ− 1)

α(3λ− 1)
k2

To avoid gradient instability ω2
IR > 0 ⇒ 0 < α < β.

Problem with IR theory: high order terms with ∂2
t violate

the perturbative expansion, power-counting under
suspicion. For α ∼ λ− 1, the non-perturbativity scale is
MNP =

√
αMp.

However, if high D operators contribute at a lower energy,
i.e. M∗ < MNP , the “strong coupling” is beyond reach. More
on this later.

Blas, Pujolas, Sibiryakov 2010
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Constraints on the IR theory
Observational constraints

Stringent constraint comes from the PPN parameters α1
and α2 ⇐ preferred-frame effects.

|α1| . 10−4 , |α2| . 10−7 .
Will 2006

Barring any special cancellations, the constraint gives

α , β − 1 , λ− 1 . 10−7 ÷ 10−6

Blas, Pujolas, Sibiryakov 2010

Non-perturbativity scale MNP =
√
αMp . 1016GeV

Requiring that the theory is perturbative at all scales
imposes M∗ < MNP < 1016GeV.

A. Emir Gümrükçüoğlu IPMU, 29 May 2015 A class of extended Hořava gravity
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Constraints on high dim. operators

Theoretical considerations and solar system tests imply
M∗ . 1016GeV.
Using only gravitational bound, from sub-mm tests,
M∗ & 10−2eV.
Enormous window for M∗.
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LV in the matter sector

Constraints on maximum attainable velocity for different species
e.g. Coleman, Glashow 1998

Cherenkov radiation bound: cp − cγ < 10−23

Frame of CMB: |cm − cγ | < 6× 10−22

Neutrino oscillations: |c′ − c|νeνµ < 6× 10−22

Radiative muon decay: |c′ − c|eµ < 4× 10−21

Neutral kaons: |cKL − cKR | < 3× 10−21.

Planck scale preferred frame⇒ LV at low energies ∼ 1%
Collins, Perez, Sudarsky, Urrutia, Vucetich 2004

Concrete example for multiple Lifshitz fields: 1–loop correction to
δc2. Although δc2 = 0 can be an attractive IR fixed point, flow is
too slow. Unnaturally strong fine-tuning unavoidable.

Iengo, Russo, Serone 2009
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Constraints on higher order operators

Even if matter sector SM, graviton loops still generate LV.

A symmetry to prevent lowest order LV terms? e.g. SUSY, but extension
to Hořava gravity highly non-trivial.

Groot-Nibbelink, Pospelov 2005; Xue 1010;
Redigolo 2012; Pujolas, Sibiryakov 2012

Constraints from higher order operators

Assume lowest order LV operators absent (e.g. fine tuned).

Matter dispersion relation will still get high order modification above
some scale M∗,m, e.g.

E2 = m2 + p2 +
p4

M2
∗,m

Synchrotron radiation constraints from the Crab nebula
M∗,m & 2× 1016GeV Liberati, Maccione, Sotiriou 2012

For a universal LV scale M∗,m ∼ M∗, the bound is in conflict with the
allowed region for M∗.
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Scale separation mechanism [Pospelov, Shang ’10]
Gravity: HG, z = D = 3. Matter: No LV.
Feedback of LV from graviton loops f (M∗/Mp). LV in the matter sector under
control if M∗ � Mp . [Reminder: M∗ has a vast allowed range.]
1-loop corrections to matter propagator:

c2
v − c2

s = (. . . )
M2
∗

M2
p

log
Λ2

UV

M2
∗

+ (. . . )
Λ2

UV

M2
p

2nd term diverges⇒Naturalness problem. From vector graviton loops.
Vector part of HG = Vector part of GR. Propagator ∼ 1

~k2 .

Resolution, also from [Pospelov, Shang ’10]

New term 1
M2
∗

Di Kik Dj K jk =⇒ 2 time, 2 space derivatives.

Scalar & Tensor still ω2
UV ∼ k6. Vector propagator 1

~k4 , which is sufficient.

The degree of non-universality of speeds:

c2
v − c2

s = (. . . )
M2
∗

M2
p

log
Λ2

UV

M2
∗

Other DKDK terms? Generically S&T have ω2 ∼ k4. Colombo, AEG, Sotiriou ’14

Does this imply non-renormalizable? If tuned to have ω2 ∼ k6, is tuning stable?
Is it even necessary?
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Using Lifshitz scalar as a proxy
[Colombo, AEG, Sotiriou ’15]

The Lifshitz analogue with mixed derivatives

S =

∫
dt dDx

[
φ̇(−4)y φ̇− φ(−4)zφ+λ(∂pt

t , ∂
px
i , φn)

]
Scaling: t → b−mt , ~x → b−1~x .
∂

2y
i ∂2

t ↔ ∂2z
i =⇒ m + y = z.

We consider a diagram with L loops, V vertices, I/E
internal/external lines.
ΛUV contributions:

Loops :
∫

dω dDk −→ Λm+D
UV

Internal : 1
k2ω2−k2z −→ Λ−2z

UV

Vertices : ∂p
i −→ Λp

UV

where p ≡ m pt + px .
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Using Lifshitz scalar as a proxy
Superficial degree of divergence–Limitations of dimensional counting

Collecting these, degree of divergence (ΛUV )δ:

δ ≤ (D + m)L− 2 z I + p V

Identities: L− I + V = 1 , n V = E + 2 I
Eliminating L and I, we get the familiar relation:

δ ≤ D + m − [φ] E − [λ] V

Dimensional counting works if [φ] ≥ 0, so that [λ] > 0 is
sufficient for p-c renormalizability.
However, for [φ] < 0, it is not enough to have [λ] > 0, the
relation is opaque. However, it demonstrates that
dimensional counting assumes positive dimensional fields!
Also relevant for standard Hořava theory (no mixed
derivatives y = 0). Only the minimal theory has [φ] = 0.
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Using Lifshitz scalar as a proxy
Superficial degree of divergence–# of derivatives as a renormalizability criterion

A more useful relation can be found by reusing the
identities to eliminate E and I

δ ≤ 2 z + 2 [φ] L− (2z − p) V

For [φ] ≤ 0, vertex term determines degree of divergence.
For interaction terms with weighted derivatives p ≤ 2z,
=⇒ δ bounded from above by 2 z. ⇒ p-c renormalizable.
For p > 2 z, for a given loop order, there are always
diagrams with large enough vertices.
Therefore, renormalizability condition is [φ] ≤ 0, or

z + y ≥ D , or using m + y = z, m + 2 y ≥ D

provided that derivatives in the interaction term satisfy
p = m pt + px ≤ 2z
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Using Lifshitz scalar as a proxy
Constraints from unitarity

Condition on the number of derivatives in an interaction:

p = m pt + px ≤ 2z

pt and px have maximum values

px ≤ 2z , pt ≤
2z
m

= 2
(

1 +
y
m

)
If pt ≥ 4, unitarity compromised! Therefore, the only sensible theories
are those which satisfy y < m

In standard Hořava, y = 0 and m = z, so this is never an issue. But
applies to mixed derivative cases.
For the y = 1 case in D = 3 (analogue of the Pospelov-Shang term),
renormalizability: m ≥ 1 ; unitarity m > 1. Minimal version is not
unitary! The first unitary theory has m = 2, z = 3. Pospelov-Shang’s
action is a tuned version of this theory! Generically, one also needs
other ∇K∇K terms as well as K 2a2, K 2R, a K ∇K type terms. Fourth
order dispersion relations, power-counting renormalizable and unitary.
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Allowed region in D=3
Power-counting renormalizable and unitary Hořava–like theories in D=3
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Conclusions

Preservation of LI in matter sector is the biggest challenge
for LV gravity theories.
A promising mechanism relies on a hierarchy between M∗
and Mp. Naturalness problem from vector loops.
Resolution: extend HG by new terms that can modify the
vector sector. Pospelov-Shang used a mixed derivative
term, as deformation to HG. However, these generically
modify scaling anisotropy.
Specifically, the generalization of Pospelov-Shang terms
lead to ω2 ∼ k4 without undermining p-c renormalizability.
Power-counting uncovers a new class of Hořava–like
theories that are p-c renormalizable and unitary.
Mixed derivatives: any improvements to original theory?
Other ways of modifying vector part?
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