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Schematic Phase Diagram of cuprates

Strange Metal Phase
These are the degrees
of freedom that condense
to form superconductor.



Strange Metal / QCP

Linear resistivity
driven by Quantum Critical
Fluctuations?

One popular scenario:



Why QCP?

Non Fermi-liquid like non-elephant biology. 
Defined by what it is not.

Landau: low energy degrees of freedom weakly coupled fermions
implies Fermi liquid behavior!

QCP allows extra light degree of freedom (order parameter)
and so in principle allows departure from Fermi liquid.

Many different possibilities for underlying microscopic mechanism!



Multiple critical points seem to exist!

(Grissonnanche et al, 2014)

Cuprates have seemingly  
two QCPs! 

Rearrangment of
electronic structure?
Presumably the one 
responsible for strange metal

Magnetic Rearrangements?



Two basic scenarios

1) Charged sector with approximately conserved
momentum current interacts with QCP whose
Green’s functions are governed by scale invariance 
of the QCP.   E.g. marginal Fermi liquid

2) Charged sector itself is quantum critical. All transport
phenomena obey scaling laws. Temperature
dependence essentially governed by dimensional analysis.
Incoherent Metal.

We study this second scenario.



Transport governed by scaling

Simplest regime:

Temperature >> critical temperature

Transport coeff = Tempaturepower + ….

Power determined by dimensional analysis



Dimensional Analysis at QCP
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𝑥𝑥 = −1 𝑡𝑡 = −𝑧𝑧

Dynamical Critical
Exponent.



Dimensional Analysis at QCP
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𝑥𝑥 = −1 𝑡𝑡 = −𝑧𝑧

Examples: 𝒊𝒊
̇𝒅𝒅

𝒅𝒅𝒅𝒅
𝝍𝝍 = −

𝝍𝝍𝝍𝝍
𝟐𝟐𝟐𝟐

x → 𝜆𝜆 𝑥𝑥,
𝑡𝑡 → 𝜆𝜆2𝑡𝑡

𝒛𝒛 = 𝟐𝟐

̇𝒅𝒅𝟐𝟐

𝒅𝒅𝒅𝒅𝟐𝟐
𝝍𝝍 = −𝝍𝝍𝝍𝝍

x → 𝜆𝜆 𝑥𝑥,
𝑡𝑡 → 𝜆𝜆𝑡𝑡

𝒛𝒛 = 𝟏𝟏



Dimensional Analysis at QCP

10

𝑥𝑥 = −1 𝑡𝑡 = −𝑧𝑧

𝑠𝑠 = 𝑑𝑑 − θ
Hyperscaling Violating
Exponent.



Dimensional Analysis at QCP
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𝑠𝑠 = 𝑑𝑑 − θ

Entropy S. Counts microstates.
Dimensionless number.
s should scale as volume.

Volume scaling violated
if every time the volume appears
(e.g. the metric appears)
it is accompanied with extra
powers of the correlation length.



Dimensional Analysis at QCP
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𝑥𝑥 = −1 𝑡𝑡 = −𝑧𝑧

𝑠𝑠 = 𝑑𝑑 − θ 𝜀𝜀 = 𝑑𝑑 + 𝑧𝑧 − θ

𝜽𝜽 = anomalous dimension of energy density/current.

Ex: Stat Mech critical systems above critical dimension
where mean field applies.



Dimensional Analysis at QCP
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𝑥𝑥 = −1 𝑡𝑡 = −𝑧𝑧

𝑠𝑠 = 𝑑𝑑 − θ

𝑛𝑛 = 𝑑𝑑 − θ + Φ
Anomalous Scaling of
Charge Density

(Gouteraux et al, AK)

(Φ required in holographic models)



Dimensional Analysis at QCP
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𝐵𝐵 = 2 −Φ

𝐸𝐸 = 1 + 𝑧𝑧 − Φ
Anomalous Coupling
to E&M Fields.

𝐿𝐿~ 𝐴𝐴 𝑗𝑗



Dimensional Analysis at QCP
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𝐵𝐵 = 2 −Φ

𝐸𝐸 = 1 + 𝑧𝑧 − Φ

E, B always appears as g E, g B where
g is a dimensionful coupling. 



Examples:

Φ generically non-zero in holographic models
(AK; Gouteraux et. al.)

Holography: Large class of strongly correlated quantum
systems whose dynamics can be solved analytically by
mapping to dual gravitational description. Toy models.

Non-zero Φ recently been demonstrated in large classes of
standard large N field theories.

(AK; 1504.02478)



Upshot: Scaling fixed by 3 parameters
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𝑥𝑥 = −1 𝑡𝑡 = −𝑧𝑧

𝑠𝑠 = 𝑑𝑑 − θ

𝑛𝑛 = 𝑑𝑑 − θ + Φ

𝐵𝐵 = 2 −Φ

𝐸𝐸 = 1 + 𝑧𝑧 − Φ

𝜀𝜀 = 𝑑𝑑 + 𝑧𝑧 − θ



Scaling and the Cuprates.

If we try to explain scaling in the cuprates,
is non-zero Φ needed?

Is there a simple physical observable whose dimension
is zero unless Φ is non-zero?

thermal conductivity

electric conductivity

Lorenz ratio



Thermoelectric transport

Electric current

Energy (heat) current



Scaling and the Cuprates.

If we try to explain scaling in the cuprates,
is non-zero Φ needed?

Is there a simple physical observable whose dimension
is zero unless Φ is non-zero?

thermal conductivity

electric conductivity

Lorenz ratio



Lorenz ratio and scaling

Non-zero Φ implies:   𝑳𝑳 ~ 𝑻𝑻−𝟐𝟐𝜱𝜱/𝒛𝒛

Sharp contrast to Wiedemann-Franz law:

𝑳𝑳 =
𝝅𝝅𝟐𝟐

𝟑𝟑
𝟏𝟏
𝒆𝒆𝟐𝟐

True in metals. Both heat and charge get
transported by electrons. Electron charge fixes ratio.

Non-zero Φ can be interpreted as 
scale-dependent charge!



Experimental Data on Lorenz Ratio?

Concern: Thermal conductivity receives contributions
from all degrees of freedom including phonons.

Expect system to be:    QCP +  neutral heat bath
(can carry spin, but no charge)

Isolate: Hall Lorenz ratio.



Wiedemann-Franz Law Violation
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(Zhang, Ong, Xu, Krishana,
Gagnon, Taillefer, PRL 84, 2000) 

Caveat: Recently Matusiak et al have reported results differing by an order of magnitude)



Are we in business?

QCP at high temperatures governed by
simple power laws governed by dimensional analysis.

To fix remaining powers one needs to spell out a few 
dynamical assumptions.

𝛼𝛼𝑥𝑥𝑥𝑥~𝑇𝑇(𝑑𝑑+𝜙𝜙−𝜃𝜃−2)/𝑧𝑧

𝜎𝜎𝑥𝑥𝑥𝑥~𝑇𝑇(𝑑𝑑+2𝜙𝜙−𝜃𝜃−2)/𝑧𝑧 𝜅𝜅𝑥𝑥𝑥𝑥~𝑇𝑇(𝑑𝑑−𝜃𝜃+𝑧𝑧−2)/𝑧𝑧



Dynamical Assumption (I)

(I)    QCP is time reversal invariant

𝜎𝜎𝑥𝑥𝒚𝒚,𝛼𝛼𝑥𝑥𝒚𝒚, 𝜅𝜅𝑥𝑥𝒚𝒚 are time reversal odd

These Hall-type conductivities must be proportional
to background magnetic field.

𝛼𝛼𝑥𝑥𝑥𝑥~𝐵𝐵𝑇𝑇(𝑑𝑑+2𝜙𝜙−𝜃𝜃−3)/𝑧𝑧

𝜎𝜎𝑥𝑥𝑥𝑥~𝐵𝐵𝑇𝑇(𝑑𝑑+3𝜙𝜙−𝜃𝜃−4)/𝑧𝑧

𝜅𝜅𝑥𝑥𝑥𝑥~𝐵𝐵𝑇𝑇(𝑑𝑑+𝜙𝜙−𝜃𝜃+𝑧𝑧−4)/𝑧𝑧



Dynamical Assumption (II)

(II)    QCP has broken particle-hole symmetry

Otherwise: 𝜎𝜎𝑥𝑥𝒚𝒚,𝛼𝛼𝑥𝑥𝒚𝒚, 𝜅𝜅𝑥𝑥𝒚𝒚 are particle-hole symmetric,
but magnetic field is not.

Would be proportional to B and charge density.

𝛼𝛼𝑥𝑥𝑥𝑥~𝐵𝐵𝑛𝑛𝑇𝑇(𝜙𝜙−3)/𝑧𝑧

𝜎𝜎𝑥𝑥𝑥𝑥~𝐵𝐵𝑛𝑛𝑇𝑇(2𝜙𝜙−4)/𝑧𝑧

𝜅𝜅𝑥𝑥𝑥𝑥~𝐵𝐵𝑛𝑛𝑇𝑇(𝑧𝑧−4)/𝑧𝑧

Alternative scaling.
Requires non-zero n
QCP not along physical axis.



Dynamical Assumption (III)

(III) Currents not dominated by (almost) 
conserved momentum 

Conductivities dominated by scaling in 
quantum critical regime.

No Drude peak with width much smaller
than the temperature.



Test scaling experimentally: Inputs

Need 3 experimentally well established scalings
to pin down the three exponents.

1) Lorenz Ratio  linear in T

𝑧𝑧 = −2𝜙𝜙



2) Linear Resistivity 

Cooper et al, Science (2009)

θ = 0

𝜎𝜎𝑥𝑥𝑥𝑥~𝑇𝑇(𝑑𝑑+2𝜙𝜙−𝜃𝜃−2)/𝑧𝑧



(Tyler and Mackenzie, 1997)

3) Hall Angle

cot 𝜃𝜃𝐻𝐻 =
𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝑥𝑥

𝜎𝜎𝑥𝑥𝑥𝑥~𝐵𝐵𝑇𝑇(𝑑𝑑+3𝜙𝜙−𝜃𝜃−4)/𝑧𝑧

𝑧𝑧 =
4
3

𝜙𝜙 = −
2
3



(Tyler and Mackenzie, 1997)

Alternate Scenario

cot 𝜃𝜃𝐻𝐻 =
𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝑥𝑥

𝜎𝜎𝑥𝑥𝑥𝑥~𝐵𝐵𝑛𝑛𝑇𝑇(2𝜙𝜙−4)/𝑧𝑧

𝑧𝑧 = 2
𝜙𝜙 = −1



Prediction 1: Magnetoresistance

𝜌𝜌 = 𝜌𝜌𝐵𝐵=0 + 𝐵𝐵2𝜌𝜌(2) + ⋯

Time reversal

(Harris et al, 1996))

B2

Δρ Δρ



Magnetoresistance

Scaling implies:

Δ𝜌𝜌
𝜌𝜌𝐵𝐵=0

~
𝐵𝐵2

𝑇𝑇4

Perfectly agrees with experimental data!

(Harris et al, 1996))



Magnetoresistance

Alternative Scenario (z=2, Φ=-1) predicts:

Δ𝜌𝜌
𝜌𝜌𝐵𝐵=0

~
𝐵𝐵2

𝑇𝑇3

Genuinely new observable. Non-trivial.



Prediction 2: Thermoelectric

Typically measured as Seebeck:

𝑆𝑆 ≡
𝛼𝛼𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝑥𝑥

~ − 𝑇𝑇1/2

(find E so that no current flows 
in response to T-gradient)

(Nishikawa et al, 1994)

No fit to shape of data attempted in
early experimental work.



Prediction 2: Thermoelectric coefficient

(Kim et al, 2004)

Ten years later data looks
much cleaner !

The published linear fit clearly
doesn’t capture high T.

Does this look like const.- 𝑇𝑇 ?



Prediction 2: Thermoelectric coefficient

(Kim et al, 2004)

Use Mathematica to
pick out points along
the x=0.25 curve and attempt
our own fit!



Seebeck Coefficient

𝒂𝒂 − 𝒃𝒃 𝑻𝑻𝟏𝟏/𝟐𝟐

fits data head on!

𝒂𝒂 − 𝒃𝒃 𝑻𝑻𝟏𝟏 and
𝒂𝒂 − 𝒃𝒃 𝑻𝑻−𝟏𝟏/𝟐𝟐

don’t.

Best fit: 𝑎𝑎 − 𝑏𝑏 𝑇𝑇𝑚𝑚 with: a=32, b=1.2, m=.49



Hall-Thermoelectric or Nernst

No sufficiently high quality high T data
exists to extract power law with confidence.
Existing data consistent with our scaling.

𝜈𝜈 ≡
1
𝐵𝐵

𝛼𝛼𝑥𝑥𝑥𝑥
𝜎𝜎𝑥𝑥𝑥𝑥

− 𝑆𝑆 tan𝜃𝜃𝐻𝐻 ~𝑇𝑇−3/2



Nernst data

(Wang et al, 2006)

Need higher T!

Hard to fit a power law to this!



Nernst vs thermoelectric

160 K

700 K

160 K



Doping dependence

Two dimensionfull parameters, T and Δ

Pseudogap. Scales as energy. Parametrizes
distance to optimal doping.

Expect: all transport scaling function of T/Δ

Scaling hypothesis tested by Luo et al, PRB 09



Scaling hypothesis

out of plane resistivity
in plane resistivity

Hall

Curves collapse for doping dependent gap!



Our exponents?

According to our
scaling n and T have
the same units.

Predicts pseudogap
should close as T* ~ (p-pc)



Executive Summary so far

Scaling hypothesis works for transport!



Thermodynamics

Our Scaling Analysis also makes predictions for
Thermodynamic properties.

Scaling gives consistent picture of transport!

Heat Capacity ~ T3/2

Magnetic Susceptibility ~ T-3/2

Not born out by data. Thermo mostly “conventional”



Boring Thermo, anomalous transport?

Suggests interplay between neutral sector (thermo) and 
charged sector (quantum criticial, dominates transport)

Makes clear predictions which quantities should be 
governed by scaling analysis.

Data leaves room for a significant contribution:

Heat Capacity ~ T3/2

Magnetic Susceptibility ~ T-3/2



Example: Magnetic Susceptibility

Magnetic Susceptibility 
~ T-3/2 + other ?

(Nakano et al, 1994)



Neutral versus charged sector

Lots of options:

• Localized degrees of freedom (spins?)

• Neutral degrees of freedom (spinons?)

• Charge carriers localized in momentum space (density wave?)

Dimension of magnetic moment not linked to dimension of current!



Outlook



Predictions for the future

Scaling hypothesis in the cuprates should
be easy to test with future precision experiments
of transport at T >> Tc

Most pressing: clarity on Lorenz ratio.
Nernst effect.



Other Materials: Iron Pnictides

Not all the same. Example:    BaFe2(As1-xPx)2

(Hayes et al, 2014)
𝜌𝜌𝑥𝑥𝑥𝑥~ 𝑇𝑇2 + 𝐵𝐵2



Iron Pnictide

• 𝜌𝜌𝑥𝑥𝑥𝑥~ 𝑇𝑇2 + 𝐵𝐵2 implies  [B]=[T]
• Apparently we still have linear resistivity
• Assume θ=0

𝑧𝑧 = 4, 𝜙𝜙 = −2

Makes lots of predictions!
More measurements are needed.
Lorenz??



Summary

Holography suggests that NR scale invariant theories generically
allow for anomalous a dimension of the current operator.

Allowing for this anomalous dimension one obtains a 
surprisingly successful fit for transport in the cuprates.

Scaling hypothesis should be easy to test in new
transport experiments (higher T, other materials).
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