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Introduction

The holography gives the correspondences between black holes and fluids.

[Son-Starinets, 02] [Policastro-Son-Starinets, 02] [Bhattacharyya-Hubeny-Minwalla-Rangamani, 07]

Lifshitz spacetimes give holographic description of the Lifshitz
Sca“ng invariant theories. [Son, 08] [Balasubramanian-McGreevy, 08]

dTZ [Kachru-Liu-Mulligan, 08]  [Taylor, 08]

2
ds? = —r?z2dt? + ‘rz(dx‘) +—
r

Boundary theories in the Lifshitz spacetimes have
the Newton-Cartan geometry as a background. [Christensen-Hartong-Obers-Rollier, 14]
[Hartong-Kiritsis-Obers, 14, 14, 15]

Here we would like to see that

Fluid/gravity correspondence for the Lifshitz spacetime give a
holographic description of fluids in Newton-Cartan background.



Fluid mechanics

Fluid variables
p: particle number density E: energy density

P: Pressure vt: velocity field

Fluid equations
Continuity equation (for p, vi)
Energy conservation equation (for p, &, vt)
Navier-Stokes equation (for p, P, v')

Relativistic fluid

Fluid equation is unified to conservation law of stress-energy tensor 7"
Ttt ~p Tti — Tit — (,0 4+ P)vl' TU — P5U + Tij

Conservation law: D”T“" =

Viscous stress tensor TV is related to other fluid variables (constitutive relation)



AdS/CFT correspondence

Correspondence between classical solutions in anti-de Sitter spacetime (AdS)
and conformal field theories

Classical solutions of matter fields in anti-de Sitter spacetime or
asymptotically AdS (classical) solution of gravity

i | correspondence

(Quantum) states in conformal field theory

GKPW relation
In gravity side, solutions are parametrized by boundary conditions.

The boundary condition at the boundary is related to CFT;
Dirichlet condition = source for operators
Neumann condition = vacuum expectation value of operators

Source: metric |:> operator: stress-energy tensor

Stress-energy tensor in CFT corresponds to the Brown-York tensor, which is
expressed in terms of the extrinsic curvature at the boundary.



Einstein equation in gravity side
Equations which determine propagation from the bounary

Equations which give constraints on the boundary conditions

)

Constraint equations gives conservation law for the stress-energy tensor
in conformal field theory.

In order to see the correspondence between fluids in CFT and black holes in AdS,
we have to calculate the stress-energy tensor and its conservation law.

Stress-energy tensor can be calculated by using the extrinsic curvature
at the boundary in the gravity side.

Conservation law for stress-energy tensor is obtained from parts of the
Einstein equations which give constraints on the boundary conditions.



Asymptotically AdS solution for fluids

In CFT side, matters behaves as a fluid at finite temperature.
In AdS side, black holes appear at finite temperature.
» Finite temperature state in CFT corresponds to Black holes in AdS.

For fluids

Energy density (~ temperature) depends on position x*
» Horizon radius (~ temperature) of BH depends on x*

Fluids have flow # introduce (x*-dependent) boost to BH geometry

The modified black hole solution describes fluids in dual field theory

Solution can be calculated by using expansion for long wavelength.



Scaling symmetry of AdS
The metric of (pure) AdS can be written as
. dr?
ds? = —r?dt? + Erz(dx‘)z 3
i
The metric has scaling symmetry

toct xt = ¢ xt r—c 1y

This symmetry corresponds to the scaling symmetry of CFT

t>ct xt - ¢ xt



Generalization of AdS/CFT for Lifshitz

The Lifshitz scaling symmetry is an anisotropic scaling symmetry.

t - c%t xt - ¢ xt

Lifshitz spacetime is given by

dr?

ds? = —r?2dt* + Zrz(dxi)z 3

i
The metric has Lifshitz scaling symmetry

t > c%t xt - ¢ xt r—c 1lr

Lifshitz theory (field theory side) is non-relativistic.



Boundary of Lifshitz spacetime

For the Lifshitz spacetime

dr?

2
ds? = —r?2dt? + Zrz(dx‘) + 7

i

the induced metric on the boundary is not well defined (singular).

Induced metric on the boundary (r = ) of Lifshitz spacetime
-\ 2
ds? = —r??2dt? + r? z(dxl) - —1?2dt? + 0(r?)
i
Inverse induced metric on the boundary of Lifshitz spacetime
g"vo,0, = —r?20f + 172 z 07 > r2 z 97
i i

The leading terms are invariant under Galilean boost x* —» x' — v't.

Corresponding field theory for Lifshitz spacetime is non-relativistic.



Fluid gravity correspondence in AdS

Moditied black hole solution <:> Relativistic conformal fluid

in AdS spacetime i

Source term for stress-energy tensor is metric

Fluid gravity correspondence in Lifshitz spacetime

Modified black hole solution <:> Non-relativistic fluid?

in Lifshitz spacetime i

What is the source term for fluid variables?

Newton-Cartan gravity is non-relativistic theory of gravity

Field theory side of Lifshitz spacetime has Newton-Cartan theory as background

We calculate the stress-energy tensor via holography and show that
it is non-relativistic fluid in Newton-Cartan background



Newton-Cartan geometry

Nonrelativistic theory of gravity

Described by Newton-Cartan data (T , h*Y, oH, Au)

1-form T defines time direction.

0 e : : : — Galilei data
h*V is inverse metric on time slice.

Galilei data (t,, h*V) satisifies
uv _—
Tﬂh =
Galilei data is constant. For covariant derivative D“

D

Ty =0 D,h*V =

Galilei connection is not unique.

In order to define connection, we have to introduce 7 and /TM.



Conservation law for Newton-Cartan theory

In relativistic theory, geometry is described by metric g,,,

Associated operator = stress-energy tensor T#V

Conservation law is simply expressed only in terms of stress-energy tensor

The Newton-Cartan theory has Newton-Cartan data (Tﬂ ,hH*V ﬁ“,ﬁﬂ)

Associated operators are

Energy density (flow): E# Viscous stress tensor: 7,

Momentum density: 7, Mass current: J#

The conservation law is expressed in terms of these 4 quantities.



Gravity theory for Lifshitz

Einstein gravity + massive vector field

|:> No analytic black hole solution is known

Einstein gravity + massless vector (gauge) field + dilaton (scalar) <:|
We consider

_ _ _ o _ this model
We consider analytic asymptotically Lifshitz black hole solution.
introduce x*-dependence to the horizon radius

introduce x*-dependent Galilean boost

introduce x*-dependence to other parameters in the solution
for massless vector and dilaton

then, calculate correction terms in long wavelength expansion



Stress-energy tensor for Lifshtiz fluid/gravity

We obtain the gravitational solution for long wavelength expansion.
We calculate the stress-energy tensor in field theory from the solution.
We also have charge associated to the massless vector (gauge) field.

|:> This corresponds to mass (particle number) density.

The gravity solution for fluids contains some parameters:
boost parameter v*(x), horizon radius 1y (x), charge density a(x).

They are related to fluid variables:
velocity fields, energy density, mass density

The stress-energy tensor can be expressed in terms of the fluid variables.
|:> takes a similar form to that for fluids
Asymmetric (relativistic stress-energy tensor is symmetric)

Can be decomposed into energy density (flow), momentum
density and viscous stress tensor



Conservation law for Lifshtiz fluid/gravity
Einstein equation in gravity side

k Equations which determine propagation from the bounary

Equations which give constraints on the boundary conditions

The gravity solution for fluids contains some parameters:
velocity field v*(x), horizon radius 1y (x), charge density a(x).

- They must satisfy constraints

8

Conservation law for the stress-energy tensor

The equations of motion for massless vector has same structure.
» Conservation law for the charge (= mass density)

The conservation law takes the same form to that in Newton-Cartan theory.



Fluid equation and gauge field

An equation from gravity theory is slightly different from the Navier-Stokes eq,.

An equation from gravity theory (one of conservation law)
0;P — 8;(noi;) = FiyJ¥
The Navier-Stokes equation (equation for fluids)

0= alP ~+ patvi + pvjajvi — aj(T]O'U)

In Newton-cartan theory, if the gauge field 4 for vt = 0,
it transforms under a symmetry “Milne boost” as

- . . A |
A- A =A+v‘dx‘—§v2dt

If we identify gauge field A (F = dA) with that in Newton-Cartan theory A
the above equation becomes same to the Navier-Stokes equation.

The fluid is non-relativistic fluids in Newton-Cartan background



Summary

e We have studied fluid/gravity correspondence for Lifshitz spacetime

e \WWe calculate a modified black hole solution which describes fluids in
dual field theory side.

e Conservation law takes the same form to that in the Newton-Cartan
theory

e We calculate the stress-energy tensor and conservation law from the
modified black hole solution. They takes same form to those for
fluids but the Navier-Stokes equation is slightly different.

* If we identify the gauge field as that in the Newton-Cartan theory, the
Navier-Stokes equation (from black hole solution) agrees with that
for the standard fluids.

e We also calculated entropy density (current) and it satisfies the
thermodynamic relation and 2nd law.
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Einstein-Maxwell-Dilaton model

The action

1 1 1
_ d+1, [— _ 9N _ A2 _ 2
S 16ndo x,/—g(R 20— 7" F? =~ (09) )

Lifshitz spacetime solution

, .d—1
Ac =2
dr2 o z—1
ds? = —r?2dt? + —+ ) r*(dx") _ @E+d-1D(E+d-2)
r i - 5
A= aTZ+d_1dt e/lqﬁ — ‘L”,.Z(l—d) uaz _ Z(Z — 1)
z+d—-1

The metric has Lifshitz scaling symmetry

t > c%t xt - ¢ xt r—c 1lr

The gauge field A and dilaton ¢ breaks the scaling symmetry



Hydrodynamic ansatz

The black hole solution in the Eddington-Finkelstein coordinate
ds? = —r?2f(r)dt? + 2r dr dt + 7‘2(dx")2

A= ar?t1f () dt — ar?dr et? = yr2(-d)

§+d—1
f(?‘) =1- rz+d-1

Introduce Galilean boost (x! = x! — v't) and x*-dependence

ds? = —r?2f(r)dt? + 2r dr dt + r?(dx' — vi(x)dt)2
A= a()r#t4=1f(r)de — a(x)r?dr + A;(x)(dx' — v'(x)dt)

T()Z+d_1(X)

e’? = pCortTY f) =12

This is not a solition of EOM ‘ We have to introduce correction terms



Derivative expansion

We introduce the correction terms
ds? = —r?2f(r)dt? + 2r dr dt + r?(dx' — vi(x)dt)2 + hy,dxtdx”
A = a()r#t T (r)dt — a()r?dr + A;(x)(dxt — v (x)dt) + a,dxH

e/lqb = 'u(x)'rz(l_d)e/lgo

Hydrodynamic regime: variation of x*-dependence is very slow.
|:> derivative expansion (with respect to d,,)
ro(x) = 15(0) + x#9,715(0) + -
vi(x) = v(0) + x“@uvi(O) + -
a(x) = a(0) + x#9,a(0) + -



Derivative expansion
We introduce the correction terms
ds? = —r?2f(r)dt? + 2r dr dt + r?(dx' — vi(x)dt)2 + hy,dxtdx”
A = a()r#t T (r)dt — a()r?dr + A;(x)(dxt — v (x)dt) + a,dxH
eA® =y (x)r2(-dele

First order EOM

Correction terms ¢ = (h,,, a,, @) are treated as first order in d,.

W' (r) + Fy ()Y’ (r) + Fp(r) = F3(8,70, 00", )

= =

Linear terms of Linear terms of
correction terms hy,, a,, @ source terms 9,1y, d,v",d,a, -

We solve these linear inhomogeneous differential equations



First order solution (ford = 4, z = 2)

ds? = —r4f(r)dt? + 2r dr dt + r2(dxt — vidt)’

+5720'dt? — r2F oy (dx’ — vidt) (dx! - v/dt)

1 . . .
A=a (rSf(r) - §r30iv‘) dt — ar?dr + A;(dx' — vidt)

5

/1¢ — MT.Z(].—d) f(T') —1—-—=
; g TP | 2
(T‘) o TT'(T'S — 7 ) Oij = 6iv1 + ajv‘ — §6ij6kvk

It must satisfy the following constraints

0 = d,a + v'd;a — ad;v*

2(z—1)
z+d-—1

. 1 .
0 = 0,1y +v'0;1ry + §r06iv‘ u(x)a*(x) =

0= atcfli + U]a]cfll + Jl]alvf + aairg



Boundary stress-energy tensor for Lifshitz
Induced metric in terms of the vielbein
Vv = —T%f1,T, + 1r%ee] YW = —r 22 fTIpHGY 4 r2el el
Gauge field in this frame: A4, = D#4, A, =elA,
Variation of the action in these variables
55 = j dx (~S989H + $98¢k + [95 A + J*8 A0 + 0,60)
The stress-energy tensor and current are defined by
P, = $094 — Se i = Jook + fock
The stress-energy tensor is related to Brown-York tensor T”V as

TH _— TH 7 uv _ 1 UV _ ruv
T, =T", + JFA, where T _8nG(y K — K*)

T* , is asymmetric tensor K,,,: extrinsic curvature



Stress-energy tensor for Lifshitz fluid

We introduce the counter term

z+d—-1
Set = j d*x\—y [—(5 +z) + > e’wy‘“’AMAv]
The renormalized stress-energy tensor
1 1 71 3 z—1
F0 +3 —(z+4
T =gngre3| 7270 _Tvl"q"] +0(r)
_ . 1 1| z+3 . z(z+ 3) z—1 .
_ +3 2
T, = e e g v‘+4(Z_1)r026ir0— - Vvl A
! , |
+§T30'ij17]] + O(T_(Z+4))
1 1 z—-1
F0 _ —(z+4
% =g—mm A+ 0(r )
- 1 1 [z 1 z—1 . _
T = e [ETOZJ’?’ —Ergaij + - v‘cflj] + 0(r~ )



Stress-energy tensor for Lifshitz fluid

Since the volume form behaves as
V=7 ~ rz+3

The leading terms of the following stress-energy tensor
gives regular contributions

s _ L 1.3 . —Z_lvidqi] +0(r=+9)

0 T 8nGrets| 20 a
_ . 1 1| z+3 . z(z+ 3) z—1 .
Fo=gugrems |~ 2 10 VTG g VYA
! ) |
+§T30'ij17]] + O(T_(Z+4))
1 1 z—-1
70 _ —(z+4
% =g—mm A+ 0(r )
1 1 gz 1 z—1 . )
T‘j=8nGrz+3[§roz+3—Ergaij+ - v‘cflj]+0(r (z+4))



Constraints and conservation law

The following constraints in EOM gives the conservation law on the boundary
ntyPR,, = 8nGnty“PT,, n,V,(e?FH) = 0
This should agree with the conservation law for T .

The constraints do not agree with D”T"”v =0,
but agree with the conservation law in the Newton-Cartan theory.

1
D,EH = —3 (DHDY + DVDH)T,,

D, T¥ = DtD;P, — D, (V*P;)

_ Ho— _pH
D,J* =0 where Jd o

Energy flow £, momentum density ), and stress tensor T“v are defined as
et = _T“vﬁv :PM = TPVTPPMV Tlf/ = Tpappﬂpva

p# = (1,vY) P}’ = e, eZ: Projection to spatial direction



Newton-Cartan geometry

Non-relativistic theory of gravity

Described by Newton-Cartan data (T , h*Y, oH, Au)

1-form T defines time direction.

0 e : : : — Galilei data
h*V is inverse metric on time slice.

Galilei data (t,, h*V) satisifies
uv _—
Tﬂh =
Galilei data is constant. For covariant derivative D“

D

Ty =0 D,h*V =

Galilei connection is not unique.

In order to define connection, we have to introduce 7 and /TM.



Timelike unit vector v#
iy _
T, v =1
Induced metric on time slice h,,,, is defined by Galilei data and ¥¥

— _ vV — SV __ Y
vHhy, =0 h,,hP" =6, — 1,V
To write down connection I'”., we introduce 7% and F = dA

Iz

_ 1 -
rjv = 9P0,7T, + zhpa(auhw + 0, hye — Oshyy) + hPon Fyyg

In general, Newton-Cartan theory has torsion

T;fv = ﬁ“(@urv — OVTH)



Conservation law in Newton-Cartan theory

In the Newton-Cartan theory variation of the action is

3 1
5S = f AU xTT# 84, — P60 — E18T, — =T, ShH]

Under the infinitesimal coordinate transformation & (for torsionless case)
6¢ty = Du(§V1y) 8:h*Y = h*PD,EY + hVPD,EH
§edt = §PD,0" = DPDpEY  Bphy = =R g

Since the covariant derivative of U* does not vanish,
the conservation law is different from ordinary cases.

- 1 _ _
D,E* = —F,, v*]V — E(D”v" + DVvH)T,,

D, 7%, = "D, P, — D,(?*P,) — E,,,J*



Fluid variables and fluid equations

Energy flow, momentum density and stress tensor takes the following form

E'=¢ gl = gvl — kd;T
Pi = qA,; Jij = Poj; — noy;
The energy density, pressure and charge density are
3 Z z—1 Z+ 3
E = Z+3 — Z+3 — T = VA
167G ° 167G ° 1= a0

The shear viscosity and thermal conductivity are

1 3 1 Z+1
16nG

17 Tenc “T86E-D"° o
Bulk viscosity vanishes.

Energy density and pressure satisfy the Lifshitz scaling condition

zE=(d—-1)P



Fluid variables and fluid equations

Energy flow, momentum density and stress tensor takes the following form
E'=¢ gl = gvl — kd;T
P = qA,; Jij = Poij —noyj
The conservation law gives the fluid equations
D,EH = —%(D“ﬁv + DVDH)T,, D,J* =0
D, T¥ = PtD;P, — D, (V*P;)
The fluid equation is expressed as
0 =0, +v'0;E + (€ + P)o;v* — %naijai,- — 0;(k0;T)
0 = 0;P + q0;A; + quI 0;A; + qA;0;v) — 0;(noy;)

0 = d.q + 9;(qv')



Non-relativistic fluid equations
The fluid equations from the Lifshitz black hole are
0 =0, + v'0;E + (£ + P)o;vt — %naijaij — 0;(k0;T)
0 =0;P + qo;A; + qul0;A; + qA;0;v) — 0;(noy;)

0 = d.q + 9;(qv") H 0;P — 0;(nayj) = FiJ*

Ordinary fluid equations are
0 =0, +v'0;E + (£ + P)o;v* — %naijaij — 0;(k0;T)
0=0;P+po.v' + pv/djv' — 0;(noy;)
0 =0d.p + 9;(pv?)

Energy conservation (15t line) and continuity equation (37 line) agree.
But the Navier-Stokes does not agree.



Fluid equations in Newton-Cartan theory

The Newton-Cartan theory gives ordinary fluid equations.

Torsionless Newton-Cartan connection is invariant under Milne boost

. . N - .1
v#* = (1,0) - (1,vY) A->A=A+vidxt— Evzdt

Then, the Navier-Stokes equation with external gauge field
0;P + pd, vt + pv/9;v' — 0;(noy;) = FyJ*
is expressed as
d; P — aj(naij) = Fi#/“ where JH = pD*
Our result agrees with the Navier-Stokes equation in terms of A.

In our conservation equations, vielbein is not 7* = (1,0) but o# = (1, v')



Navier-Stokes in non-zero Newton potential

The Navier-Stokes equation from Lifshitz black hole is
aiP — aj(T]O'U) = :Fi[,lju where A = qu(dxi — vidt)
The Navier-Stokes equation in the Newton-Cartan theory is
. . 1
d; P — aj(naij) = F,J#  where A=A+ vidx' — Evzdt
If we identify A with 4,
- 1, .

Since the gauge field in the Newton-Cartan theory is generalization
of Newton gravity, A # 0 implies non-zero Newton potential.

Since we took Eddington-Finkelstein coordinates,
the gauge field is not singular even if A; # 0, atr =71y



General background gauge field
If we impose regularity condition only at the future horizon, we can take

o1 .
A = vidxt — Evzdt + A, dxH
We generalize A, to arbitrary
ds? = —r?2f(r)dt? + 2r dr dt + r?(dx' — v"(x)dt)2

CANNE)
Tz+d—1

A =a()r?ta 1 (r)de — a(x)ridr + A;(x)(dxt — vi(x)dt)

-

A=aC)r?* 1 () dt — a(x)r?dr + A, (x)dt + A; (x)dx?

e’ = p(x)rzd-4 fFr)=1-

The solution does not change but constraint for A = vidx! — Evzdt
0P — 0;(no;;) = Fy J* = —qo, vt — qv/9;v'

gives the non-relativistic Navier-Stokes equation.



The stress-energy tensor becomes

1 1 1 3 z—1 .
0 _ +3 —(z+4
T = gy | g7 g v+ 0(mE)
. 1 1| z+3 - z(z+3) z—1 .
_ +3 2
‘o = Sc 3| ré v‘+4(z_1)rozair0+ - VA
i ) |
+§T030ij17]] + O(T_(Z+4))
1 1 z—-1
=0 _ —(z+4
T% =g—mm A+ 0(r )
. 1 1 z—1 1 z—1 .
Fi_ 3 K 3
le _87TGT'Z+3 [(ZT()Z+ — q (cflt+v c/lk)>5ij—§7"00'ij+7vlcﬂj

+0(r~ )

T“v cannot be identified with the fluid stress-energy tensor.



We define new stress-energy tensor T””v as
T, =T% + J*A, — 6% JPA,

Energy density E#, pressure P and stress tensor Tij does not change
but momentum density vanishes P; = 0, for new T*,..

Now, we take F,,,J” term in the conservation into account.
D, = =F,,0H]V — % (DHDY + DYDH)T,,
D, 7", = oD, P, — D, (D" P,) — F,,J*
Then, these equation gives the non-relativistic fluid equations
0=0,E+v'9;E+ (E+P)ov: — %naijaij — 0;(k0;T)
0 = ;P + qov' + quv/ 9;v* — 0;(noy;) — Fy J*
0 = d.q + 0;(qv')



We define another stress-energy tensor T, as
U _ FU u
T, =T%,+6",J°PA,

The stress-energy tensor is expressed in terms of fluid variables as

TO =—(:£+l v? — cﬁ)
0 ZCI qsie

~

_. 1 . .
Ty = — (8 + P +—qv* — qc/lt) v' +noyv’ + k0;T



The bulk constraint equations can be rewritten as
0,T", +J#0,A, =0
9 J"* =0

In terms of the fluid variables, conservation of T*, is expressed as

1 .
O — at (8+§qv2 _qc/qt>

1 - . .
+0; K& + P+ Equ — qc/lt) vt —no;jv) — k0;T
+q0,A; + qutocA;

0 = 0;P + qov' + qv/ 9v* — 9;(noy;) — FyJ*



Holographic entropy current
Entropy Currentfg - Volume form on time slice at the horizon
eul...ﬂdjgfldx/“‘2 A Adxtd

In terms of the normal vector to the horizonn, = 9,8 where§ =r — 1y (x).

u Vhn#
Js = 4G nO
The entropy current for Lifshitz black hole is calculated as
1 . 1 . Z

1 =ors =26 ~ e o




Thermodynamic relation

Energy flow, pressure and temperature

1 . 1 z(z+3)
0 — Z+3 El = Z+3.,,0 _
¢ = Teng 167G (T" Y T2@-D 0
z +3
p=—_ Z+3 . Z 7
167G I'=—"To

1 : 1 Z

o __— ..3 l —
Is =367 Js =36 “geE D"

15 0;70

They satisfy the thermodynamic relation

Ty = —T", DV + PDY = E* + PDH

ré?0; r(,)



Second law of thermodynamics

Divergence of the entropy current becomes

0 v _ 1 0 3 0 3,1 Z Z9
u]S_E tto +0;(1ov _2(2_1)7”0 iTo

. . . . . A |
Since fluid equaitons give 0=0.E+v'9,E+ (E+ P)ovt — >7101j0ij — 9; (1k0;T)
0 = 30,773 + 3v'0,1F*3 + (z + 3)rf 30,0} '
z(z+ 3)
9% T 30, - 1) 0; (157 9;10)

divergence of the entropy current becomes

2
U 4 _
aﬂjé‘ = 277,'%0'1']'0'1']' + 8G(Z — 1) rOZ 1(ai7'0)2 =0

Divergence of the entropy current is non-negative

‘ 2nd law of thermodynamics



Kovtun-Son-Starinets bound

Entropy density and shear viscosity satisfy the following condition

1
n_1
s 4
In our case, the entropy density is

1
S=ISQ=ET03

Shear viscosity is

1
l16mG

TS

T]:

In the fluid/gravity model of Lifshitz, it saturate the KSS bound
n 1

s 4m



Conclusion

* We have considered fluid/gravity correspondence for the Lifshitz black
hole geometry.

e Naive ansatz gives the stress-energy tensor which satisfy the
conservation law of the Newton-Cartan theory.

e Energy conservation and continuity equations agree with those for
ordinary non-relativistic fluids.

e The Navier-Stokes equation is different from ordinary one, but in terms
of the gauge field, it agrees with that in the Newton-Cartan theory.

.1 : . .
o If we take A = vidx! — Evzdt, the constraints agrees with the ordinary
non-relativistic fluid equations.

* Entropy current is defined from the horizon area and satisfies the local
thermodynamic relation and second law.
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