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Introduction
The holography gives the correspondences between black holes and fluids. 

Lifshitz spacetimes give holographic description of the Lifshitz
scaling invariant theories. 

𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑧𝑧𝑑𝑑𝑡𝑡2 + 𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 2 +
𝑑𝑑𝑟𝑟2

𝑟𝑟2

Boundary theories in the Lifshitz spacetimes have 
the Newton-Cartan geometry as a background. 

Fluid/gravity correspondence for the Lifshitz spacetime give a 
holographic description of fluids in Newton-Cartan background.

Here we would like to see that
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Fluid mechanics
Fluid variables

𝜌𝜌: particle number density ℰ: energy density

𝑃𝑃: Pressure 𝑣𝑣𝑖𝑖: velocity field

Fluid equations

Continuity equation (for 𝜌𝜌, 𝑣𝑣𝑖𝑖)

Energy conservation equation (for 𝜌𝜌, ℰ, 𝑣𝑣𝑖𝑖)

Navier-Stokes equation (for 𝜌𝜌, 𝑃𝑃, 𝑣𝑣𝑖𝑖)

Relativistic fluid

Fluid equation is unified to conservation law of stress-energy tensor 𝑇𝑇𝜇𝜇𝜇𝜇

𝑇𝑇𝑡𝑡𝑡𝑡 ∼ 𝜌𝜌 𝑇𝑇𝑡𝑡𝑡𝑡 = 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝜌𝜌 + 𝑃𝑃 𝑣𝑣𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖 = 𝑃𝑃𝛿𝛿𝑖𝑖𝑖𝑖 + 𝜏𝜏𝑖𝑖𝑖𝑖

Conservation law: 𝐷𝐷𝜇𝜇𝑇𝑇𝜇𝜇𝜇𝜇 = 0
Viscous stress tensor 𝜏𝜏𝑖𝑖𝑖𝑖 is related to other fluid variables (constitutive relation)



AdS/CFT correspondence
Correspondence between classical solutions in anti-de Sitter spacetime (AdS) 
and conformal field theories

Classical solutions of matter fields in anti-de Sitter spacetime or 
asymptotically AdS (classical) solution of gravity  

(Quantum) states in conformal field theory

correspondence

GKPW relation
In gravity side, solutions are parametrized by boundary conditions.

The boundary condition at the boundary is related to CFT; 
Dirichlet condition ⇒ source for operators 
Neumann condition ⇒ vacuum expectation value of operators 

Stress-energy tensor in CFT corresponds to the Brown-York tensor, which is 
expressed in terms of the extrinsic curvature at the boundary. 

Source: metric operator: stress-energy tensor



Einstein equation in gravity side

Equations which determine propagation from the bounary

Equations which give constraints on the boundary conditions

Constraint equations gives conservation law for the stress-energy tensor 
in conformal field theory.

Stress-energy tensor can be calculated by using the extrinsic curvature 
at the boundary in the gravity side. 

In order to see the correspondence between fluids in CFT and black holes in AdS, 
we have to calculate the stress-energy tensor and its conservation law.

Conservation law for stress-energy tensor is obtained from parts of the 
Einstein equations which give constraints on the boundary conditions. 



Asymptotically AdS solution for fluids
In CFT side, matters behaves as a fluid at finite temperature.

In AdS side, black holes appear at finite temperature.

Finite temperature state in CFT corresponds to Black holes in AdS.

For fluids

Energy density (~ temperature) depends on position 𝑥𝑥𝜇𝜇

Horizon radius (∼ temperature) of BH depends on 𝑥𝑥𝜇𝜇

Fluids have flow introduce (𝑥𝑥𝜇𝜇-dependent) boost to BH geometry

Solution can be calculated by using expansion for long wavelength. 

The modified black hole solution describes fluids in dual field theory



𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑑𝑑𝑡𝑡2 + �
𝑖𝑖

𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 2 +
𝑑𝑑𝑟𝑟2

𝑟𝑟2

The metric has scaling symmetry

𝑡𝑡 → 𝑐𝑐 𝑡𝑡 𝑥𝑥𝑖𝑖 → 𝑐𝑐 𝑥𝑥𝑖𝑖 𝑟𝑟 → 𝑐𝑐−1𝑟𝑟

Scaling symmetry of AdS
The metric of (pure) AdS can be written as

This symmetry corresponds to the scaling symmetry of CFT

𝑡𝑡 → 𝑐𝑐 𝑡𝑡 𝑥𝑥𝑖𝑖 → 𝑐𝑐 𝑥𝑥𝑖𝑖



Generalization of AdS/CFT for Lifshitz
The Lifshitz scaling symmetry is an anisotropic scaling symmetry.

𝑡𝑡 → 𝑐𝑐𝑧𝑧𝑡𝑡 𝑥𝑥𝑖𝑖 → 𝑐𝑐 𝑥𝑥𝑖𝑖

Lifshitz spacetime is given by

𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑧𝑧𝑑𝑑𝑡𝑡2 + �
𝑖𝑖

𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 2 +
𝑑𝑑𝑟𝑟2

𝑟𝑟2

The metric has Lifshitz scaling symmetry

𝑡𝑡 → 𝑐𝑐𝑧𝑧𝑡𝑡 𝑥𝑥𝑖𝑖 → 𝑐𝑐 𝑥𝑥𝑖𝑖 𝑟𝑟 → 𝑐𝑐−1𝑟𝑟

Lifshitz theory (field theory side) is non-relativistic.



Boundary of Lifshitz spacetime

Induced metric on the boundary (𝑟𝑟 → ∞) of Lifshitz spacetime

𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑧𝑧𝑑𝑑𝑡𝑡2 + 𝑟𝑟2�
𝑖𝑖

𝑑𝑑𝑥𝑥𝑖𝑖 2 → −𝑟𝑟2𝑧𝑧𝑑𝑑𝑡𝑡2 + 𝒪𝒪 𝑟𝑟2

Inverse induced metric on the boundary of Lifshitz spacetime

𝑔𝑔𝜇𝜇𝜇𝜇𝜕𝜕𝜇𝜇𝜕𝜕𝜈𝜈 = −𝑟𝑟−2𝑧𝑧𝜕𝜕𝑡𝑡2 + 𝑟𝑟−2�
𝑖𝑖

𝜕𝜕𝑖𝑖2 → 𝑟𝑟−2�
𝑖𝑖

𝜕𝜕𝑖𝑖2

the induced metric on the boundary is not well defined (singular).

For the Lifshitz spacetime

𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑧𝑧𝑑𝑑𝑡𝑡2 + �
𝑖𝑖

𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 2 +
𝑑𝑑𝑟𝑟2

𝑟𝑟2

The leading terms are invariant under Galilean boost 𝑥𝑥𝑖𝑖 → 𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑡𝑡 .

Corresponding field theory for Lifshitz spacetime is non-relativistic.



Modified black hole solution 
in AdS spacetime Relativistic conformal fluid

Fluid gravity correspondence in AdS

Source term for stress-energy tensor is metric

Modified black hole solution 
in Lifshitz spacetime Non-relativistic fluid?

Fluid gravity correspondence in Lifshitz spacetime

What is the source term for fluid variables?

Newton-Cartan gravity is non-relativistic theory of gravity

Field theory side of Lifshitz spacetime has Newton-Cartan theory as background

We calculate the stress-energy tensor via holography and show that 
it is non-relativistic fluid in Newton-Cartan background



Newton-Cartan geometry
Nonrelativistic theory of gravity

Described by Newton-Cartan data 𝜏𝜏𝜇𝜇 , ℎ𝜇𝜇𝜇𝜇, 𝑣̅𝑣𝜇𝜇, 𝐴̃𝐴𝜇𝜇

1-form 𝜏𝜏 defines time direction.

ℎ𝜇𝜇𝜇𝜇 is inverse metric on time slice.

Galilei data (𝜏𝜏𝜇𝜇, ℎ𝜇𝜇𝜇𝜇) satisifies

Galilei data is constant. For covariant derivative 𝐷𝐷𝜇𝜇

𝐷𝐷𝜇𝜇𝜏𝜏𝜈𝜈 = 0 𝐷𝐷𝜌𝜌ℎ𝜇𝜇𝜇𝜇 = 0

𝜏𝜏𝜇𝜇ℎ𝜇𝜇𝜇𝜇 = 0

Galilei data

Galilei connection is not unique. 

In order to define connection, we have to introduce 𝑣̅𝑣𝜇𝜇 and 𝐴̃𝐴𝜇𝜇. 



Conservation law for Newton-Cartan theory
In relativistic theory, geometry is described by metric 𝑔𝑔𝜇𝜇𝜇𝜇

Associated operator = stress-energy tensor 𝑇𝑇𝜇𝜇𝜇𝜇

Conservation law is simply expressed only in terms of stress-energy tensor

The Newton-Cartan theory has Newton-Cartan data 𝜏𝜏𝜇𝜇 , ℎ𝜇𝜇𝜇𝜇, 𝑣̅𝑣𝜇𝜇, 𝐴̃𝐴𝜇𝜇

Associated operators are

Energy density (flow): ℰ𝜇𝜇 Viscous stress tensor: 𝒯𝒯𝜇𝜇𝜇𝜇

Momentum density: 𝒫𝒫𝜇𝜇 Mass current: 𝐽𝐽𝜇𝜇

The conservation law is expressed in terms of these 4 quantities.



Gravity theory for Lifshitz
Einstein gravity + massive vector field

Einstein gravity + massless vector (gauge) field + dilaton (scalar)

No analytic black hole solution is known

We consider analytic asymptotically Lifshitz black hole solution. 

introduce 𝑥𝑥𝜇𝜇-dependence to the horizon radius

introduce 𝑥𝑥𝜇𝜇-dependent Galilean boost 

introduce 𝑥𝑥𝜇𝜇-dependence to other parameters in the solution 
for massless vector and dilaton

then, calculate correction terms in long wavelength expansion

We consider 
this model



Stress-energy tensor for Lifshtiz fluid/gravity
We obtain the gravitational solution for long wavelength expansion.

We calculate the stress-energy tensor in field theory from the solution. 

takes a similar form to that for fluids

Asymmetric (relativistic stress-energy tensor is symmetric)

Can be decomposed into energy density (flow), momentum 
density and viscous stress tensor

We also have charge associated to the massless vector (gauge) field.

This corresponds to mass (particle number) density.

The gravity solution for fluids contains some parameters: 
boost parameter 𝑣𝑣𝑖𝑖(𝑥𝑥), horizon radius 𝑟𝑟0(𝑥𝑥), charge density 𝑎𝑎(𝑥𝑥).

They are related to fluid variables: 
velocity fields, energy density, mass density

The stress-energy tensor can be expressed in terms of the fluid variables.



Conservation law for Lifshtiz fluid/gravity

The gravity solution for fluids contains some parameters: 
velocity field 𝑣𝑣𝑖𝑖(𝑥𝑥), horizon radius 𝑟𝑟0(𝑥𝑥), charge density 𝑎𝑎(𝑥𝑥).

Einstein equation in gravity side

Equations which determine propagation from the bounary

Equations which give constraints on the boundary conditions

They must satisfy constraints

Conservation law for the stress-energy tensor

The equations of motion for massless vector has same structure.
Conservation law for the charge (= mass density)

The conservation law takes the same form to that in Newton-Cartan theory. 



Fluid equation and gauge field
An equation from gravity theory is slightly different from the Navier-Stokes eq.

0 = 𝜕𝜕𝑖𝑖𝑃𝑃 + 𝜌𝜌𝜕𝜕𝑡𝑡𝑣𝑣𝑖𝑖 + 𝜌𝜌𝑣𝑣𝑗𝑗𝜕𝜕𝑗𝑗𝑣𝑣𝑖𝑖 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖

The Navier-Stokes equation (equation for fluids)

𝜕𝜕𝑖𝑖𝑃𝑃 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖 = ℱ𝑖𝑖𝑖𝑖𝐽𝐽𝜇𝜇
An equation from gravity theory (one of conservation law)

𝐴̃𝐴 → 𝐴̂𝐴 = 𝐴̃𝐴 + 𝑣𝑣𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖 −
1
2
𝑣𝑣2𝑑𝑑𝑑𝑑

In Newton-cartan theory, if the gauge field 𝐴̃𝐴 for 𝑣𝑣𝑖𝑖 = 0, 
it transforms under a symmetry “Milne boost” as 

If we identify gauge field 𝒜𝒜 (ℱ = 𝑑𝑑𝑑𝑑) with that in Newton-Cartan theory 𝐴̂𝐴
the above equation becomes same to the Navier-Stokes equation.

The fluid is non-relativistic fluids in Newton-Cartan background



• We have studied fluid/gravity correspondence for Lifshitz spacetime
• We calculate a modified black hole solution which describes fluids in 

dual field theory side. 
• Conservation law takes the same form to that in the Newton-Cartan

theory
• We calculate the stress-energy tensor and conservation law from the 

modified black hole solution. They takes same form to those for 
fluids but the Navier-Stokes equation is slightly different.

• If we identify the gauge field as that in the Newton-Cartan theory, the 
Navier-Stokes equation (from black hole solution) agrees with that 
for the standard fluids.

• We also calculated entropy density (current) and it satisfies the 
thermodynamic relation and 2nd law. 

Summary
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Einstein-Maxwell-Dilaton model
The action

𝑆𝑆 =
1

16𝜋𝜋𝜋𝜋
�𝑑𝑑𝑑𝑑+1𝑥𝑥 −𝑔𝑔 𝑅𝑅 − 2Λ −

1
4

e𝜆𝜆𝜆𝜆𝐹𝐹2 −
1
2
𝜕𝜕𝜕𝜕 2

Lifshitz spacetime solution

𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑧𝑧𝑑𝑑𝑡𝑡2 +
𝑑𝑑𝑟𝑟2

𝑟𝑟2
+ �

𝑖𝑖

𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 2

𝐴𝐴 = 𝑎𝑎𝑟𝑟𝑧𝑧+𝑑𝑑−1𝑑𝑑𝑑𝑑 𝑒𝑒𝜆𝜆𝜆𝜆 = 𝜇𝜇𝑟𝑟2(1−𝑑𝑑)

𝜆𝜆2 = 2
𝑑𝑑 − 1
𝑧𝑧 − 1

Λ = −
𝑧𝑧 + 𝑑𝑑 − 1 𝑧𝑧 + 𝑑𝑑 − 2

2

𝜇𝜇𝑎𝑎2 =
2 𝑧𝑧 − 1
𝑧𝑧 + 𝑑𝑑 − 1

The metric has Lifshitz scaling symmetry

𝑡𝑡 → 𝑐𝑐𝑧𝑧𝑡𝑡 𝑥𝑥𝑖𝑖 → 𝑐𝑐 𝑥𝑥𝑖𝑖 𝑟𝑟 → 𝑐𝑐−1𝑟𝑟

The gauge field 𝐴𝐴 and dilaton 𝜙𝜙 breaks the scaling symmetry



Hydrodynamic ansatz

The black hole solution in the Eddington-Finkelstein coordinate

𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑧𝑧𝑓𝑓 𝑟𝑟 𝑑𝑑𝑡𝑡2 + 2𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 2

𝑓𝑓 𝑟𝑟 = 1 −
𝑟𝑟0𝑧𝑧+𝑑𝑑−1

𝑟𝑟𝑧𝑧+𝑑𝑑−1

𝐴𝐴 = 𝑎𝑎𝑟𝑟𝑧𝑧+𝑑𝑑−1𝑓𝑓 𝑟𝑟 𝑑𝑑𝑑𝑑 − 𝑎𝑎𝑟𝑟2𝑑𝑑𝑑𝑑 𝑒𝑒𝜆𝜆𝜆𝜆 = 𝜇𝜇𝑟𝑟2(1−𝑑𝑑)

Introduce Galilean boost (𝑥𝑥𝑖𝑖 → 𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑡𝑡) and 𝑥𝑥𝜇𝜇-dependence

𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑧𝑧𝑓𝑓 𝑟𝑟 𝑑𝑑𝑡𝑡2 + 2𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖 𝑥𝑥 𝑑𝑑𝑑𝑑 2

𝑓𝑓 𝑟𝑟 = 1 −
𝑟𝑟0𝑧𝑧+𝑑𝑑−1 𝑥𝑥
𝑟𝑟𝑧𝑧+𝑑𝑑−1

𝐴𝐴 = 𝑎𝑎 𝑥𝑥 𝑟𝑟𝑧𝑧+𝑑𝑑−1𝑓𝑓 𝑟𝑟 𝑑𝑑𝑑𝑑 − 𝑎𝑎 𝑥𝑥 𝑟𝑟2𝑑𝑑𝑑𝑑 + 𝒜𝒜𝑖𝑖 𝑥𝑥 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖 𝑥𝑥 𝑑𝑑𝑑𝑑

𝑒𝑒𝜆𝜆𝜆𝜆 = 𝜇𝜇 𝑥𝑥 𝑟𝑟2(1−𝑑𝑑)

This is not a solition of EOM We have to introduce correction terms



Derivative expansion

Hydrodynamic regime: variation of 𝑥𝑥𝜇𝜇-dependence is very slow.

derivative expansion (with respect to 𝜕𝜕𝜇𝜇)

𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑧𝑧𝑓𝑓 𝑟𝑟 𝑑𝑑𝑡𝑡2 + 2𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖 𝑥𝑥 𝑑𝑑𝑑𝑑 2 + ℎ𝜇𝜇𝜇𝜇𝑑𝑑𝑥𝑥𝜇𝜇𝑑𝑑𝑥𝑥𝜈𝜈

𝐴𝐴 = 𝑎𝑎 𝑥𝑥 𝑟𝑟𝑧𝑧+𝑑𝑑−1𝑓𝑓 𝑟𝑟 𝑑𝑑𝑑𝑑 − 𝑎𝑎 𝑥𝑥 𝑟𝑟2𝑑𝑑𝑑𝑑 + 𝒜𝒜𝑖𝑖 𝑥𝑥 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖 𝑥𝑥 𝑑𝑑𝑑𝑑 + 𝑎𝑎𝜇𝜇𝑑𝑑𝑥𝑥𝜇𝜇

𝑒𝑒𝜆𝜆𝜆𝜆 = 𝜇𝜇 𝑥𝑥 𝑟𝑟2(1−𝑑𝑑)𝑒𝑒𝜆𝜆𝜑𝜑

𝑣𝑣𝑖𝑖 𝑥𝑥 = 𝑣𝑣 0 + 𝑥𝑥𝜇𝜇𝜕𝜕𝜇𝜇𝑣𝑣𝑖𝑖 0 + ⋯

𝑟𝑟0 𝑥𝑥 = 𝑟𝑟0 0 + 𝑥𝑥𝜇𝜇𝜕𝜕𝜇𝜇𝑟𝑟0 0 + ⋯

𝑎𝑎 𝑥𝑥 = 𝑎𝑎 0 + 𝑥𝑥𝜇𝜇𝜕𝜕𝜇𝜇𝑎𝑎 0 + ⋯

We introduce the correction terms



Derivative expansion

𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑧𝑧𝑓𝑓 𝑟𝑟 𝑑𝑑𝑡𝑡2 + 2𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖 𝑥𝑥 𝑑𝑑𝑑𝑑 2 + ℎ𝜇𝜇𝜇𝜇𝑑𝑑𝑥𝑥𝜇𝜇𝑑𝑑𝑥𝑥𝜈𝜈

𝐴𝐴 = 𝑎𝑎 𝑥𝑥 𝑟𝑟𝑧𝑧+𝑑𝑑−1𝑓𝑓 𝑟𝑟 𝑑𝑑𝑑𝑑 − 𝑎𝑎 𝑥𝑥 𝑟𝑟2𝑑𝑑𝑑𝑑 + 𝒜𝒜𝑖𝑖 𝑥𝑥 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖 𝑥𝑥 𝑑𝑑𝑑𝑑 + 𝑎𝑎𝜇𝜇𝑑𝑑𝑥𝑥𝜇𝜇

𝑒𝑒𝜆𝜆𝜆𝜆 = 𝜇𝜇 𝑥𝑥 𝑟𝑟2(1−𝑑𝑑)𝑒𝑒𝜆𝜆𝜑𝜑

We introduce the correction terms

𝜓𝜓′′ 𝑟𝑟 + 𝐹𝐹1 𝑟𝑟 𝜓𝜓𝜓 𝑟𝑟 + 𝐹𝐹2𝜓𝜓 𝑟𝑟 = 𝐹𝐹3(𝜕𝜕𝜇𝜇𝑟𝑟0, 𝜕𝜕𝜇𝜇𝑣𝑣𝑖𝑖,⋯ )

Correction terms 𝜓𝜓 = (ℎ𝜇𝜇𝜇𝜇, 𝑎𝑎𝜇𝜇, 𝜑𝜑) are treated as first order in 𝜕𝜕𝜇𝜇.

First order EOM

Linear terms of 
correction terms ℎ𝜇𝜇𝜇𝜇, 𝑎𝑎𝜇𝜇, 𝜑𝜑

Linear terms of 
source terms 𝜕𝜕𝜇𝜇𝑟𝑟0, 𝜕𝜕𝜇𝜇𝑣𝑣𝑖𝑖, 𝜕𝜕𝜇𝜇𝑎𝑎,⋯

We solve these linear inhomogeneous differential equations



𝑑𝑑𝑠𝑠2 = −𝑟𝑟4𝑓𝑓 𝑟𝑟 𝑑𝑑𝑡𝑡2 + 2𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑 2

+
2
3
𝑟𝑟2𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖𝑑𝑑𝑡𝑡2 − 𝑟𝑟2𝐹𝐹 𝑟𝑟 𝜎𝜎𝑖𝑖𝑖𝑖 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑 𝑑𝑑𝑥𝑥𝑗𝑗 − 𝑣𝑣𝑗𝑗𝑑𝑑𝑑𝑑

𝑓𝑓 𝑟𝑟 = 1 −
𝑟𝑟05

𝑟𝑟5

𝐴𝐴 = 𝑎𝑎 𝑟𝑟5𝑓𝑓 𝑟𝑟 −
1
3
𝑟𝑟3𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖 𝑑𝑑𝑑𝑑 − 𝑎𝑎𝑟𝑟2𝑑𝑑𝑑𝑑 + 𝒜𝒜𝑖𝑖 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑

𝑒𝑒𝜆𝜆𝜆𝜆 = 𝜇𝜇𝑟𝑟2(1−𝑑𝑑)

First order solution (for 𝑑𝑑 = 4, 𝑧𝑧 = 2)

It must satisfy the following constraints

0 = 𝜕𝜕𝑡𝑡𝑎𝑎 + 𝑣𝑣𝑖𝑖𝜕𝜕𝑖𝑖𝑎𝑎 − 𝑎𝑎𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖

0 = 𝜕𝜕𝑡𝑡𝑟𝑟0 + 𝑣𝑣𝑖𝑖𝜕𝜕𝑖𝑖𝑟𝑟0 +
1
3
𝑟𝑟0𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖

0 = 𝜕𝜕𝑡𝑡𝒜𝒜𝑖𝑖 + 𝑣𝑣𝑗𝑗𝜕𝜕𝑗𝑗𝒜𝒜𝑖𝑖 + 𝒜𝒜𝑗𝑗𝜕𝜕𝑖𝑖𝑣𝑣𝑗𝑗 + 𝑎𝑎𝜕𝜕𝑖𝑖𝑟𝑟05

𝜇𝜇 𝑥𝑥 𝑎𝑎2 𝑥𝑥 =
2 𝑧𝑧 − 1
𝑧𝑧 + 𝑑𝑑 − 1

𝐹𝐹 𝑟𝑟 = �𝑑𝑑𝑑𝑑
𝑟𝑟3 − 𝑟𝑟03

𝑟𝑟(𝑟𝑟5 − 𝑟𝑟05) 𝜎𝜎𝑖𝑖𝑖𝑖 = 𝜕𝜕𝑖𝑖𝑣𝑣𝑗𝑗 + 𝜕𝜕𝑗𝑗𝑣𝑣𝑖𝑖 −
2
3
𝛿𝛿𝑖𝑖𝑖𝑖𝜕𝜕𝑘𝑘𝑣𝑣𝑘𝑘



Boundary stress-energy tensor for Lifshitz
Induced metric in terms of the vielbein

𝛾𝛾𝜇𝜇𝜇𝜇 = −𝑟𝑟2𝑧𝑧𝑓𝑓𝜏𝜏𝜇𝜇𝜏𝜏𝜈𝜈 + 𝑟𝑟2𝑒𝑒𝜇𝜇𝑎𝑎𝑒𝑒𝜈𝜈𝑎𝑎 𝛾𝛾𝜇𝜇𝜇𝜇 = −𝑟𝑟−2𝑧𝑧𝑓𝑓−1 �𝑣𝑣𝜇𝜇 �𝑣𝑣𝜈𝜈 + 𝑟𝑟−2𝑒𝑒𝑎𝑎
𝜇𝜇𝑒𝑒𝑎𝑎𝜈𝜈

Gauge field in this frame: 𝐴̂𝐴0 = �𝑣𝑣𝜇𝜇𝐴𝐴𝜇𝜇 𝐴̂𝐴𝑎𝑎 = 𝑒𝑒𝑎𝑎
𝜇𝜇𝐴𝐴𝜇𝜇

𝛿𝛿𝛿𝛿 = �𝑑𝑑𝑑𝑑𝑥𝑥 −𝑆̂𝑆𝜇𝜇0𝛿𝛿 �𝑣𝑣𝜇𝜇 + 𝑆̂𝑆𝜇𝜇𝑎𝑎𝛿𝛿𝑒𝑒𝑎𝑎
𝜇𝜇 + 𝐽𝐽0𝛿𝛿𝐴̂𝐴0 + 𝐽𝐽𝑎𝑎𝛿𝛿𝐴̂𝐴𝑎𝑎 + 𝒪𝒪𝜙𝜙𝛿𝛿𝛿𝛿

Variation of the action in these variables

The stress-energy tensor and current are defined by

�𝑇𝑇 𝜈𝜈
𝜇𝜇 = 𝑆̂𝑆𝜈𝜈0 �𝑣𝑣𝜇𝜇 − 𝑆̂𝑆𝜈𝜈𝑎𝑎𝑒𝑒𝑎𝑎

𝜇𝜇 𝐽𝐽𝜇𝜇 = 𝐽𝐽0 �𝑣𝑣𝜇𝜇 + 𝐽𝐽𝑎𝑎𝑒𝑒𝑎𝑎
𝜇𝜇

The stress-energy tensor is related to Brown-York tensor 𝑇𝑇 𝜈𝜈
𝜇𝜇 as 

�𝑇𝑇 𝜈𝜈
𝜇𝜇 = 𝑇𝑇 𝜈𝜈

𝜇𝜇 + 𝐽𝐽𝜇𝜇𝐴𝐴𝜈𝜈 𝑇𝑇𝜇𝜇𝜇𝜇 =
1

8𝜋𝜋𝜋𝜋
𝛾𝛾𝜇𝜇𝜇𝜇𝐾𝐾 − 𝐾𝐾𝜇𝜇𝜇𝜇where

𝐾𝐾𝜇𝜇𝜇𝜇: extrinsic curvature�𝑇𝑇 𝜈𝜈
𝜇𝜇 is asymmetric tensor



Stress-energy tensor for Lifshitz fluid
We introduce the counter term

𝑆𝑆ct = �𝑑𝑑4𝑥𝑥 −𝛾𝛾 − 5 + 𝑧𝑧 +
𝑧𝑧 + 𝑑𝑑 − 1

2
𝑒𝑒𝜆𝜆𝜆𝜆𝛾𝛾𝜇𝜇𝜇𝜇𝐴𝐴𝜇𝜇𝐴𝐴𝜈𝜈

The renormalized stress-energy tensor 

�𝑇𝑇 0
𝑖𝑖 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

�−
𝑧𝑧 + 3

2
𝑟𝑟0𝑧𝑧+3𝑣𝑣𝑖𝑖 +

𝑧𝑧 𝑧𝑧 + 3
4 𝑧𝑧 − 1

𝑟𝑟02𝑧𝑧𝜕𝜕𝑖𝑖𝑟𝑟0 −
𝑧𝑧 − 1
𝑎𝑎

𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝒜𝒜𝑗𝑗

+ �
1
2
𝑟𝑟03𝜎𝜎𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4

�𝑇𝑇 𝑖𝑖
0 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

𝑧𝑧 − 1
𝑎𝑎

𝒜𝒜𝑖𝑖 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4

�𝑇𝑇 0
0 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

−
3
2
𝑟𝑟0𝑧𝑧+3 −

𝑧𝑧 − 1
𝑎𝑎

𝑣𝑣𝑖𝑖𝒜𝒜𝑖𝑖 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4

�𝑇𝑇 𝑗𝑗
𝑖𝑖 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

𝑧𝑧
2
𝑟𝑟0𝑧𝑧+3 −

1
2
𝑟𝑟03𝜎𝜎𝑖𝑖𝑖𝑖 +

𝑧𝑧 − 1
𝑎𝑎

𝑣𝑣𝑖𝑖𝒜𝒜𝑗𝑗 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4



Stress-energy tensor for Lifshitz fluid

The leading terms of the following stress-energy tensor 
gives regular contributions 

Since the volume form behaves as 

−𝛾𝛾 ∼ 𝑟𝑟𝑧𝑧+3

�𝑇𝑇 0
𝑖𝑖 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

�−
𝑧𝑧 + 3

2
𝑟𝑟0𝑧𝑧+3𝑣𝑣𝑖𝑖 +

𝑧𝑧 𝑧𝑧 + 3
4 𝑧𝑧 − 1

𝑟𝑟02𝑧𝑧𝜕𝜕𝑖𝑖𝑟𝑟0 −
𝑧𝑧 − 1
𝑎𝑎

𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗𝒜𝒜𝑗𝑗

+ �
1
2
𝑟𝑟03𝜎𝜎𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4

�𝑇𝑇 𝑖𝑖
0 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

𝑧𝑧 − 1
𝑎𝑎

𝒜𝒜𝑖𝑖 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4

�𝑇𝑇 0
0 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

−
3
2
𝑟𝑟0𝑧𝑧+3 −

𝑧𝑧 − 1
𝑎𝑎

𝑣𝑣𝑖𝑖𝒜𝒜𝑖𝑖 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4

�𝑇𝑇 𝑗𝑗
𝑖𝑖 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

𝑧𝑧
2
𝑟𝑟0𝑧𝑧+3 −

1
2
𝑟𝑟03𝜎𝜎𝑖𝑖𝑖𝑖 +

𝑧𝑧 − 1
𝑎𝑎

𝑣𝑣𝑖𝑖𝒜𝒜𝑗𝑗 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4



Constraints and conservation law
The following constraints in EOM gives the conservation law on the boundary

𝑛𝑛𝜇𝜇𝛾𝛾𝜈𝜈𝜈𝜈𝑅𝑅𝜇𝜇𝜇𝜇 = 8𝜋𝜋𝜋𝜋𝑛𝑛𝜇𝜇𝛾𝛾𝜈𝜈𝜈𝜈𝑇𝑇𝜇𝜇𝜇𝜇 𝑛𝑛ν𝛻𝛻𝜇𝜇 𝑒𝑒𝜆𝜆𝜆𝜆𝐹𝐹𝜇𝜇𝜇𝜇 = 0

The constraints do not agree with 𝐷𝐷𝜇𝜇 �𝑇𝑇 𝜈𝜈
𝜇𝜇 = 0, 

but agree with the conservation law in the Newton-Cartan theory. 

𝐷𝐷𝜇𝜇ℰ𝜇𝜇 = −
1
2
𝐷𝐷𝜇𝜇 �𝑣𝑣𝜈𝜈 + 𝐷𝐷𝜈𝜈 �𝑣𝑣𝜇𝜇 𝒯𝒯𝜇𝜇𝜇𝜇

𝐷𝐷𝜇𝜇𝒯𝒯 𝑖𝑖
𝜇𝜇 = �𝑣𝑣𝜇𝜇𝐷𝐷𝑖𝑖𝒫𝒫𝜇𝜇 − 𝐷𝐷𝜇𝜇(�𝑣𝑣𝜇𝜇𝒫𝒫𝑖𝑖)

𝐷𝐷𝜇𝜇𝒥𝒥𝜇𝜇 = 0 where 𝒥𝒥𝜇𝜇 =
1
𝑎𝑎
�𝑣𝑣𝜇𝜇

This should agree with the conservation law for �𝑇𝑇 𝜈𝜈
𝜇𝜇 . 

Energy flow ℰ𝜇𝜇, momentum density 𝒫𝒫𝜇𝜇 and stress tensor 𝒯𝒯 𝜈𝜈
𝜇𝜇 are defined as 

ℰ𝜇𝜇 = −�𝑇𝑇 𝜈𝜈
𝜇𝜇 �𝑣𝑣𝜈𝜈 𝒫𝒫𝜇𝜇 = �𝑇𝑇 𝜈𝜈

𝜌𝜌 𝜏𝜏𝜌𝜌𝑃𝑃𝜇𝜇𝜈𝜈 𝒯𝒯 𝜈𝜈
𝜇𝜇 = �𝑇𝑇 𝜎𝜎

𝜌𝜌 𝑃𝑃𝜌𝜌
𝜇𝜇𝑃𝑃𝜈𝜈𝜎𝜎

𝑃𝑃𝜈𝜈
𝜇𝜇 = 𝑒𝑒𝑎𝑎

𝜇𝜇𝑒𝑒𝜈𝜈𝑎𝑎: Projection to spatial direction�𝑣𝑣𝜇𝜇 = 1, 𝑣𝑣𝑖𝑖



Newton-Cartan geometry
Non-relativistic theory of gravity

Described by Newton-Cartan data 𝜏𝜏𝜇𝜇 , ℎ𝜇𝜇𝜇𝜇, 𝑣̅𝑣𝜇𝜇, 𝐴̃𝐴𝜇𝜇

1-form 𝜏𝜏 defines time direction.

ℎ𝜇𝜇𝜇𝜇 is inverse metric on time slice.

Galilei data (𝜏𝜏𝜇𝜇, ℎ𝜇𝜇𝜇𝜇) satisifies

Galilei data is constant. For covariant derivative 𝐷𝐷𝜇𝜇

𝐷𝐷𝜇𝜇𝜏𝜏𝜈𝜈 = 0 𝐷𝐷𝜌𝜌ℎ𝜇𝜇𝜇𝜇 = 0

𝜏𝜏𝜇𝜇ℎ𝜇𝜇𝜇𝜇 = 0

Galilei data

Galilei connection is not unique. 

In order to define connection, we have to introduce 𝑣̅𝑣𝜇𝜇 and 𝐴̃𝐴𝜇𝜇. 



To write down connection Γ𝜇𝜇𝜇𝜇
𝜌𝜌 , we introduce 𝑣̅𝑣𝜇𝜇 and �𝐹𝐹 = 𝑑𝑑𝐴̃𝐴

Γ𝜇𝜇𝜇𝜇
𝜌𝜌 = 𝑣̅𝑣𝜌𝜌𝜕𝜕𝜇𝜇𝜏𝜏 𝜈𝜈 +

1
2
ℎ𝜌𝜌𝜌𝜌 𝜕𝜕𝜇𝜇ℎ𝜈𝜈𝜈𝜈 + 𝜕𝜕𝜈𝜈ℎ𝜇𝜇𝜇𝜇 − 𝜕𝜕𝜎𝜎ℎ𝜇𝜇𝜇𝜇 + ℎ𝜌𝜌𝜌𝜌𝑛𝑛(𝜇𝜇 �𝐹𝐹𝜈𝜈)𝜎𝜎

Timelike unit vector 𝑣̅𝑣𝜇𝜇

𝜏𝜏𝜇𝜇𝑣̅𝑣𝜇𝜇 = 1

Induced metric on time slice ℎ𝜇𝜇𝜇𝜇 is defined by Galilei data and �𝑣𝑣𝜇𝜇

𝑣̅𝑣𝜇𝜇ℎ𝜇𝜇𝜇𝜇 = 0 ℎ𝜇𝜇𝜇𝜇ℎ𝜌𝜌𝜌𝜌 = 𝛿𝛿𝜇𝜇𝜈𝜈 − 𝜏𝜏𝜇𝜇𝑣̅𝑣𝜈𝜈

In general, Newton-Cartan theory has torsion

𝑇𝑇𝜇𝜇𝜇𝜇
𝜌𝜌 = 𝑣̅𝑣𝜇𝜇 𝜕𝜕𝜇𝜇𝜏𝜏𝜈𝜈 − 𝜕𝜕𝜈𝜈𝜏𝜏𝜇𝜇



Conservation law in Newton-Cartan theory
In the Newton-Cartan theory variation of the action is 

𝛿𝛿𝛿𝛿 = �𝑑𝑑𝑑𝑑𝑥𝑥 −𝛾𝛾[𝐽𝐽𝜇𝜇𝛿𝛿𝐴̃𝐴𝜇𝜇 − 𝒫𝒫𝜇𝜇𝛿𝛿𝑣̅𝑣𝜇𝜇 − ℰ𝜇𝜇𝛿𝛿𝜏𝜏𝜇𝜇 −
1
2
𝒯𝒯𝜇𝜇𝜇𝜇𝛿𝛿ℎ𝜇𝜇𝜇𝜇]

Under the infinitesimal coordinate transformation 𝜉𝜉𝜇𝜇 (for torsionless case)

𝛿𝛿𝜉𝜉𝜏𝜏𝜇𝜇 = 𝐷𝐷𝜇𝜇 𝜉𝜉𝜈𝜈𝜏𝜏𝜈𝜈 𝛿𝛿𝜉𝜉ℎ𝜇𝜇𝜇𝜇 = ℎ𝜇𝜇𝜇𝜇𝐷𝐷𝜌𝜌𝜉𝜉𝜈𝜈 + ℎ𝜈𝜈𝜌𝜌𝐷𝐷𝜌𝜌𝜉𝜉𝜇𝜇

𝛿𝛿𝜉𝜉 �𝑣𝑣𝜇𝜇 = 𝜉𝜉𝜌𝜌𝐷𝐷𝜌𝜌𝑣̅𝑣𝜈𝜈 − �𝑣𝑣𝜌𝜌𝐷𝐷𝜌𝜌𝜉𝜉𝜈𝜈 𝛿𝛿𝜉𝜉𝐴̃𝐴𝜇𝜇 = − �𝐹𝐹𝜇𝜇𝜇𝜇𝜉𝜉𝜈𝜈

Since the covariant derivative of �𝑣𝑣𝜇𝜇 does not vanish, 
the conservation law is different from ordinary cases.

𝐷𝐷𝜇𝜇ℰ𝜇𝜇 = − �𝐹𝐹𝜇𝜇𝜇𝜇𝑣̅𝑣𝜇𝜇𝐽𝐽𝜈𝜈 −
1
2
𝐷𝐷𝜇𝜇𝑣̅𝑣𝜈𝜈 + 𝐷𝐷𝜈𝜈𝑣̅𝑣𝜇𝜇 𝒯𝒯𝜇𝜇𝜇𝜇

𝐷𝐷𝜇𝜇𝒯𝒯 𝜈𝜈
𝜇𝜇 = 𝑣̅𝑣𝜇𝜇𝐷𝐷𝜈𝜈𝒫𝒫𝜇𝜇 − 𝐷𝐷𝜇𝜇 𝑣̅𝑣𝜇𝜇𝒫𝒫𝜈𝜈 − �𝐹𝐹𝜇𝜇𝜇𝜇𝐽𝐽𝜇𝜇



Fluid variables and fluid equations

ℰ =
3

16𝜋𝜋𝜋𝜋
𝑟𝑟0𝑧𝑧+3 𝑃𝑃 =

𝑧𝑧
16𝜋𝜋𝜋𝜋

𝑟𝑟0𝑧𝑧+3 𝑞𝑞 =
𝑧𝑧 − 1
𝑎𝑎

The energy density, pressure and charge density are 

The shear viscosity and thermal conductivity are 

𝜂𝜂 =
1

16𝜋𝜋𝜋𝜋
𝑟𝑟03

𝑇𝑇 =
𝑧𝑧 + 3
4𝜋𝜋

𝑟𝑟0𝑧𝑧

𝜅𝜅 =
1

8𝐺𝐺(𝑧𝑧 − 1)
𝑟𝑟0𝑧𝑧+1

Energy density and pressure satisfy the Lifshitz scaling condition

𝑧𝑧𝑧 = 𝑑𝑑 − 1 𝑃𝑃

ℰ0 = ℰ ℰ𝑖𝑖 = ℰ𝑣𝑣𝑖𝑖 − 𝜅𝜅𝜕𝜕𝑖𝑖𝑇𝑇

𝒫𝒫𝑖𝑖 = 𝑞𝑞𝒜𝒜𝑖𝑖 𝒯𝒯𝑖𝑖𝑖𝑖 = 𝑃𝑃𝛿𝛿𝑖𝑖𝑖𝑖 − 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖

Energy flow, momentum density and stress tensor takes the following form

Bulk viscosity vanishes.



0 = 𝜕𝜕𝑡𝑡ℰ + 𝑣𝑣𝑖𝑖𝜕𝜕𝑖𝑖ℰ + ℰ + 𝑃𝑃 𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖 −
1
2
𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜕𝜕𝑖𝑖 𝜅𝜅𝜕𝜕𝑖𝑖𝑇𝑇

0 = 𝜕𝜕𝑖𝑖𝑃𝑃 + 𝑞𝑞𝜕𝜕𝑡𝑡𝒜𝒜𝑖𝑖 + 𝑞𝑞𝑣𝑣𝑗𝑗𝜕𝜕𝑗𝑗𝒜𝒜𝑖𝑖 + 𝑞𝑞𝒜𝒜𝑗𝑗𝜕𝜕𝑖𝑖𝑣𝑣𝑗𝑗 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖

0 = 𝜕𝜕𝑡𝑡𝑞𝑞 + 𝜕𝜕𝑖𝑖 𝑞𝑞𝑣𝑣𝑖𝑖

Fluid variables and fluid equations

The fluid equation is expressed as

The conservation law gives the fluid equations

𝐷𝐷𝜇𝜇ℰ𝜇𝜇 = −
1
2
𝐷𝐷𝜇𝜇 �𝑣𝑣𝜈𝜈 + 𝐷𝐷𝜈𝜈 �𝑣𝑣𝜇𝜇 𝒯𝒯𝜇𝜇𝜇𝜇

𝐷𝐷𝜇𝜇𝒯𝒯 𝑖𝑖
𝜇𝜇 = �𝑣𝑣𝜇𝜇𝐷𝐷𝑖𝑖𝒫𝒫𝜇𝜇 − 𝐷𝐷𝜇𝜇(�𝑣𝑣𝜇𝜇𝒫𝒫𝑖𝑖)

𝐷𝐷𝜇𝜇𝒥𝒥𝜇𝜇 = 0

ℰ0 = ℰ ℰ𝑖𝑖 = ℰ𝑣𝑣𝑖𝑖 − 𝜅𝜅𝜕𝜕𝑖𝑖𝑇𝑇

𝒫𝒫𝑖𝑖 = 𝑞𝑞𝒜𝒜𝑖𝑖 𝒯𝒯𝑖𝑖𝑖𝑖 = 𝑃𝑃𝛿𝛿𝑖𝑖𝑖𝑖 − 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖

Energy flow, momentum density and stress tensor takes the following form



Non-relativistic fluid equations

0 = 𝜕𝜕𝑡𝑡ℰ + 𝑣𝑣𝑖𝑖𝜕𝜕𝑖𝑖ℰ + ℰ + 𝑃𝑃 𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖 −
1
2
𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜕𝜕𝑖𝑖 𝜅𝜅𝜕𝜕𝑖𝑖𝑇𝑇

0 = 𝜕𝜕𝑖𝑖𝑃𝑃 + 𝜌𝜌𝜕𝜕𝑡𝑡𝑣𝑣𝑖𝑖 + 𝜌𝜌𝑣𝑣𝑗𝑗𝜕𝜕𝑗𝑗𝑣𝑣𝑖𝑖 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖

0 = 𝜕𝜕𝑡𝑡𝜌𝜌 + 𝜕𝜕𝑖𝑖 𝜌𝜌𝑣𝑣𝑖𝑖

Ordinary fluid equations are 

Energy conservation (1st line) and continuity equation (3rd line) agree. 
But the Navier-Stokes does not agree. 

0 = 𝜕𝜕𝑡𝑡ℰ + 𝑣𝑣𝑖𝑖𝜕𝜕𝑖𝑖ℰ + ℰ + 𝑃𝑃 𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖 −
1
2
𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜕𝜕𝑖𝑖 𝜅𝜅𝜕𝜕𝑖𝑖𝑇𝑇

0 = 𝜕𝜕𝑖𝑖𝑃𝑃 + 𝑞𝑞𝜕𝜕𝑡𝑡𝒜𝒜𝑖𝑖 + 𝑞𝑞𝑣𝑣𝑗𝑗𝜕𝜕𝑗𝑗𝒜𝒜𝑖𝑖 + 𝑞𝑞𝒜𝒜𝑗𝑗𝜕𝜕𝑖𝑖𝑣𝑣𝑗𝑗 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖

0 = 𝜕𝜕𝑡𝑡𝑞𝑞 + 𝜕𝜕𝑖𝑖 𝑞𝑞𝑣𝑣𝑖𝑖

The fluid equations from the Lifshitz black hole are

𝜕𝜕𝑖𝑖𝑃𝑃 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖 = ℱ𝑖𝑖𝑖𝑖𝐽𝐽𝜇𝜇



Fluid equations in Newton-Cartan theory

Torsionless Newton-Cartan connection is invariant under Milne boost

𝐴̃𝐴 → 𝐴̂𝐴 = 𝐴̃𝐴 + 𝑣𝑣𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖 −
1
2
𝑣𝑣2𝑑𝑑𝑑𝑑𝑣̅𝑣𝜇𝜇 = 1,0 → (1, 𝑣𝑣𝑖𝑖)

Then, the Navier-Stokes equation with external gauge field

𝜕𝜕𝑖𝑖𝑃𝑃 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖 = �𝐹𝐹𝑖𝑖𝑖𝑖𝐽𝐽𝜇𝜇 𝐽𝐽𝜇𝜇 = 𝜌𝜌�𝑣𝑣𝜇𝜇where

𝜕𝜕𝑖𝑖𝑃𝑃 + 𝜌𝜌𝜕𝜕𝑡𝑡𝑣𝑣𝑖𝑖 + 𝜌𝜌𝑣𝑣𝑗𝑗𝜕𝜕𝑗𝑗𝑣𝑣𝑖𝑖 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖 = �𝐹𝐹𝑖𝑖𝑖𝑖𝐽𝐽𝜇𝜇

is expressed as

The Newton-Cartan theory gives ordinary fluid equations. 

In our conservation equations, vielbein is not 𝑣̅𝑣𝜇𝜇 = (1,0) but �𝑣𝑣𝜇𝜇 = (1, 𝑣𝑣𝑖𝑖)

Our result agrees with the Navier-Stokes equation in terms of 𝐴̂𝐴.



The Navier-Stokes equation from Lifshitz black hole is

𝜕𝜕𝑖𝑖𝑃𝑃 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖 = ℱ𝑖𝑖𝑖𝑖𝐽𝐽𝜇𝜇 where 𝒜𝒜 = 𝒜𝒜𝑖𝑖(𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖𝑑𝑑𝑑𝑑)

𝜕𝜕𝑖𝑖𝑃𝑃 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖 = �𝐹𝐹𝑖𝑖𝑖𝑖𝐽𝐽𝜇𝜇

The Navier-Stokes equation in the Newton-Cartan theory is

where 𝐴̂𝐴 = 𝐴̃𝐴 + 𝑣𝑣𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖 −
1
2
𝑣𝑣2𝑑𝑑𝑑𝑑

If we identify 𝒜𝒜 with 𝐴̂𝐴, 

𝐴̃𝐴𝑡𝑡 = −
1
2
𝑣𝑣2 𝐴̃𝐴𝑖𝑖 = 0

Since the gauge field in the Newton-Cartan theory is generalization 
of Newton gravity, 𝐴̃𝐴 ≠ 0 implies non-zero Newton potential.  

Since we took Eddington-Finkelstein coordinates, 
the gauge field is not singular even if 𝐴𝐴𝑡𝑡 ≠ 0, at 𝑟𝑟 = 𝑟𝑟0 . 

Navier-Stokes in non-zero Newton potential



General background gauge field

𝑑𝑑𝑠𝑠2 = −𝑟𝑟2𝑧𝑧𝑓𝑓 𝑟𝑟 𝑑𝑑𝑡𝑡2 + 2𝑟𝑟 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 + 𝑟𝑟2 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖 𝑥𝑥 𝑑𝑑𝑑𝑑 2

𝑓𝑓 𝑟𝑟 = 1 −
𝑟𝑟0𝑧𝑧+𝑑𝑑−1 𝑥𝑥
𝑟𝑟𝑧𝑧+𝑑𝑑−1

𝐴𝐴 = 𝑎𝑎 𝑥𝑥 𝑟𝑟𝑧𝑧+𝑑𝑑−1𝑓𝑓 𝑟𝑟 𝑑𝑑𝑑𝑑 − 𝑎𝑎 𝑥𝑥 𝑟𝑟2𝑑𝑑𝑑𝑑 + 𝒜𝒜𝑖𝑖 𝑥𝑥 𝑑𝑑𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖 𝑥𝑥 𝑑𝑑𝑑𝑑

𝑒𝑒𝜆𝜆𝜆𝜆 = 𝜇𝜇 𝑥𝑥 𝑟𝑟2(1−𝑑𝑑)

𝐴𝐴 = 𝑎𝑎 𝑥𝑥 𝑟𝑟𝑧𝑧+𝑑𝑑−1𝑓𝑓 𝑟𝑟 𝑑𝑑𝑑𝑑 − 𝑎𝑎 𝑥𝑥 𝑟𝑟2𝑑𝑑𝑑𝑑 + 𝒜𝒜𝑡𝑡 𝑥𝑥 𝑑𝑑𝑑𝑑 + 𝒜𝒜𝑖𝑖 𝑥𝑥 𝑑𝑑𝑥𝑥𝑖𝑖

If we impose regularity condition only at the future horizon, we can take

𝒜𝒜 = 𝑣𝑣𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖 −
1
2
𝑣𝑣2𝑑𝑑𝑑𝑑 + 𝒜̃𝒜𝜇𝜇𝑑𝑑𝑥𝑥𝜇𝜇

We generalize 𝒜𝒜𝑡𝑡 to arbitrary

The solution does not change but constraint for

𝜕𝜕𝑖𝑖𝑃𝑃 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖 = ℱ𝑖𝑖𝑖𝑖𝐽𝐽𝜇𝜇 = −𝑞𝑞𝜕𝜕𝑡𝑡𝑣𝑣𝑖𝑖 − 𝑞𝑞𝑣𝑣𝑗𝑗𝜕𝜕𝑗𝑗𝑣𝑣𝑖𝑖

gives the non-relativistic Navier-Stokes equation.

𝒜𝒜 = 𝑣𝑣𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖 −
1
2
𝑣𝑣2𝑑𝑑𝑑𝑑



The stress-energy tensor becomes 

�𝑇𝑇 0
𝑖𝑖 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

�−
𝑧𝑧 + 3

2
𝑟𝑟0𝑧𝑧+3𝑣𝑣𝑖𝑖 +

𝑧𝑧 𝑧𝑧 + 3
4 𝑧𝑧 − 1

𝑟𝑟02𝑧𝑧𝜕𝜕𝑖𝑖𝑟𝑟0 +
𝑧𝑧 − 1
𝑎𝑎

𝑣𝑣𝑖𝑖𝒜𝒜𝑡𝑡

+ �
1
2
𝑟𝑟03𝜎𝜎𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4

�𝑇𝑇 𝑖𝑖
0 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

𝑧𝑧 − 1
𝑎𝑎

𝒜𝒜𝑖𝑖 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4

�𝑇𝑇 0
0 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

−
3
2
𝑟𝑟0𝑧𝑧+3 −

𝑧𝑧 − 1
𝑎𝑎

𝑣𝑣𝑖𝑖𝒜𝒜𝑖𝑖 + 𝒪𝒪 𝑟𝑟− 𝑧𝑧+4

�𝑇𝑇 𝑗𝑗
𝑖𝑖 =

1
8𝜋𝜋𝜋𝜋

1
𝑟𝑟𝑧𝑧+3

𝑧𝑧𝑟𝑟0𝑧𝑧+3 −
𝑧𝑧 − 1
𝑎𝑎

𝒜𝒜𝑡𝑡 + 𝑣𝑣𝑘𝑘𝒜𝒜𝑘𝑘 𝛿𝛿𝑖𝑖𝑖𝑖 −
1
2
𝑟𝑟03𝜎𝜎𝑖𝑖𝑖𝑖 +

𝑧𝑧 − 1
𝑎𝑎

𝑣𝑣𝑖𝑖𝒜𝒜𝑗𝑗

+𝒪𝒪 𝑟𝑟− 𝑧𝑧+4

�𝑇𝑇 𝜈𝜈
𝜇𝜇 cannot be identified with the fluid stress-energy tensor. 



We define new stress-energy tensor 𝑇𝑇 𝜈𝜈
𝜇𝜇 as

�𝑇𝑇 𝜈𝜈
𝜇𝜇 = 𝑇𝑇 𝜈𝜈

𝜇𝜇 + 𝐽𝐽𝜇𝜇𝒜𝒜𝜈𝜈 − 𝛿𝛿 𝜈𝜈
𝜇𝜇 𝐽𝐽𝜌𝜌𝒜𝒜𝜌𝜌

Energy density ℰ𝜇𝜇, pressure 𝑃𝑃 and stress tensor 𝒯𝒯 𝑗𝑗
𝑖𝑖 does not change 

but momentum density vanishes 𝒫𝒫𝑖𝑖 = 0, for new 𝑇𝑇 𝜈𝜈
𝜇𝜇 . 

𝐷𝐷𝜇𝜇ℰ𝜇𝜇 = −ℱ𝜇𝜇𝜇𝜇 �𝑣𝑣𝜇𝜇𝐽𝐽𝜈𝜈 −
1
2
𝐷𝐷𝜇𝜇 �𝑣𝑣𝜈𝜈 + 𝐷𝐷𝜈𝜈 �𝑣𝑣𝜇𝜇 𝒯𝒯𝜇𝜇𝜇𝜇

𝐷𝐷𝜇𝜇𝒯𝒯 𝜈𝜈
𝜇𝜇 = �𝑣𝑣𝜇𝜇𝐷𝐷𝜈𝜈𝒫𝒫𝜇𝜇 − 𝐷𝐷𝜇𝜇 �𝑣𝑣𝜇𝜇𝒫𝒫𝜈𝜈 − ℱ𝜇𝜇𝜇𝜇𝐽𝐽𝜇𝜇

Now, we take 𝐹𝐹𝜇𝜇𝜇𝜇𝐽𝐽𝜈𝜈 term in the conservation into account. 

Then, these equation gives the non-relativistic fluid equations

0 = 𝜕𝜕𝑡𝑡ℰ + 𝑣𝑣𝑖𝑖𝜕𝜕𝑖𝑖ℰ + ℰ + 𝑃𝑃 𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖 −
1
2
𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜕𝜕𝑖𝑖 𝜅𝜅𝜕𝜕𝑖𝑖𝑇𝑇

0 = 𝜕𝜕𝑖𝑖𝑃𝑃 + 𝑞𝑞𝜕𝜕𝑡𝑡𝑣𝑣𝑖𝑖 + 𝑞𝑞𝑣𝑣𝑗𝑗𝜕𝜕𝑗𝑗𝑣𝑣𝑖𝑖 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖 − �ℱ𝑖𝑖𝑖𝑖𝐽𝐽𝜇𝜇

0 = 𝜕𝜕𝑡𝑡𝑞𝑞 + 𝜕𝜕𝑖𝑖 𝑞𝑞𝑣𝑣𝑖𝑖



We define another stress-energy tensor �𝑇𝑇 𝜈𝜈
𝜇𝜇 as

�𝑇𝑇 𝜈𝜈
𝜇𝜇 = �𝑇𝑇 𝜈𝜈

𝜇𝜇 + 𝛿𝛿 𝜈𝜈
𝜇𝜇 𝐽𝐽𝜌𝜌𝒜𝒜𝜌𝜌

�𝑇𝑇 0
0 = − ℰ +

1
2
𝑞𝑞𝑣𝑣2 − 𝑞𝑞𝒜̃𝒜𝑡𝑡

�𝑇𝑇 𝑗𝑗
𝑖𝑖 = 𝛿𝛿𝑖𝑖𝑖𝑖 − 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖 + 𝑞𝑞𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗 + 𝑞𝑞𝑣𝑣𝑖𝑖𝒜̃𝒜𝑗𝑗

�𝑇𝑇 0
𝑖𝑖 = − ℰ + 𝑃𝑃 +

1
2
𝑞𝑞𝑣𝑣2 − 𝑞𝑞𝒜̃𝒜𝑡𝑡 𝑣𝑣𝑖𝑖 + 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗 + 𝜅𝜅𝜕𝜕𝑖𝑖𝑇𝑇

�𝑇𝑇 𝑖𝑖
0 = 𝑞𝑞𝑣𝑣𝑖𝑖 + 𝑞𝑞𝒜̃𝒜𝑖𝑖

The stress-energy tensor is expressed in terms of fluid variables as



The bulk constraint equations can be rewritten as

𝜕𝜕𝜇𝜇 �𝑇𝑇 𝜈𝜈
𝜇𝜇 + 𝐽𝐽𝜇𝜇𝜕𝜕𝜈𝜈𝒜̃𝒜𝜇𝜇 = 0

𝜕𝜕𝜇𝜇𝐽𝐽𝜇𝜇 = 0

In terms of the fluid variables, conservation of �𝑇𝑇 𝜈𝜈
𝜇𝜇 is expressed as 

0 = 𝜕𝜕𝑡𝑡 ℰ +
1
2
𝑞𝑞𝑣𝑣2 − 𝑞𝑞𝒜̃𝒜𝑡𝑡

+𝜕𝜕𝑖𝑖 ℰ + 𝑃𝑃 +
1
2
𝑞𝑞𝑣𝑣2 − 𝑞𝑞𝒜̃𝒜𝑡𝑡 𝑣𝑣𝑖𝑖 − 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖𝑣𝑣𝑗𝑗 − 𝜅𝜅𝜕𝜕𝑖𝑖𝑇𝑇

+𝑞𝑞𝜕𝜕𝑡𝑡𝒜̃𝒜𝑡𝑡 + 𝑞𝑞𝑣𝑣𝑖𝑖𝜕𝜕𝑡𝑡𝒜̃𝒜𝑖𝑖

0 = 𝜕𝜕𝑖𝑖𝑃𝑃 + 𝑞𝑞𝜕𝜕𝑡𝑡𝑣𝑣𝑖𝑖 + 𝑞𝑞𝑣𝑣𝑗𝑗𝜕𝜕𝑗𝑗𝑣𝑣𝑖𝑖 − 𝜕𝜕𝑗𝑗 𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖 − �ℱ𝑖𝑖𝑖𝑖𝐽𝐽𝜇𝜇



Holographic entropy current
Entropy current 𝐽𝐽𝑆𝑆

𝜇𝜇 Volume form on time slice at the horizon

𝜖𝜖𝜇𝜇1⋯𝜇𝜇𝑑𝑑𝐽𝐽𝑆𝑆
𝜇𝜇1𝑑𝑑𝑥𝑥𝜇𝜇2 ∧ ⋯∧ 𝑑𝑑𝑥𝑥𝜇𝜇𝑑𝑑

In terms of the normal vector to the horizon 𝑛𝑛𝜇𝜇 = 𝜕𝜕𝜇𝜇𝒮𝒮 where 𝒮𝒮 = 𝑟𝑟 − 𝑟𝑟0 𝑥𝑥 .

𝐽𝐽𝑆𝑆
𝜇𝜇 =

ℎ
4𝐺𝐺

𝑛𝑛𝜇𝜇

𝑛𝑛0

The entropy current for Lifshitz black hole is calculated as

𝐽𝐽𝑆𝑆0 =
1
4𝐺𝐺

𝑟𝑟03 𝐽𝐽𝑆𝑆𝑖𝑖 =
1
4𝐺𝐺

𝑟𝑟03𝑣𝑣𝑖𝑖 −
𝑧𝑧

8𝐺𝐺 𝑧𝑧 − 1
𝑟𝑟0𝑧𝑧𝜕𝜕𝑖𝑖𝑟𝑟0



Thermodynamic relation

ℰ0 =
1

16𝜋𝜋𝜋𝜋
𝑟𝑟0𝑧𝑧+3 ℰ𝑖𝑖 =

1
16𝜋𝜋𝜋𝜋

𝑟𝑟0𝑧𝑧+3𝑣𝑣𝑖𝑖 −
𝑧𝑧 𝑧𝑧 + 3
2 𝑧𝑧 − 1

𝑟𝑟02𝑧𝑧𝜕𝜕𝑖𝑖𝑟𝑟0

𝑃𝑃 =
𝑧𝑧

16𝜋𝜋𝜋𝜋
𝑟𝑟0𝑧𝑧+3

Energy flow, pressure and temperature

𝐽𝐽𝑆𝑆0 =
1
4𝐺𝐺

𝑟𝑟03 𝐽𝐽𝑆𝑆𝑖𝑖 =
1
4𝐺𝐺

𝑟𝑟03𝑣𝑣𝑖𝑖 −
𝑧𝑧

8𝐺𝐺 𝑧𝑧 − 1
𝑟𝑟0𝑧𝑧𝜕𝜕𝑖𝑖𝑟𝑟0

Entropy current

They satisfy the thermodynamic relation

𝑇𝑇 =
𝑧𝑧 + 3
4𝜋𝜋

𝑟𝑟0𝑧𝑧

𝑇𝑇𝐽𝐽𝑆𝑆
𝜇𝜇 = −�𝑇𝑇 𝜈𝜈

𝜇𝜇 �𝑣𝑣𝜈𝜈 + 𝑃𝑃 �𝑣𝑣𝜈𝜈 = ℰ𝜇𝜇 + 𝑃𝑃 �𝑣𝑣𝜇𝜇



Second law of thermodynamics

Since fluid equaitons give

0 = 3𝜕𝜕𝑡𝑡𝑟𝑟0𝑧𝑧+3 + 3𝑣𝑣𝑖𝑖𝜕𝜕𝑖𝑖𝑟𝑟0𝑧𝑧+3 + 𝑧𝑧 + 3 𝑟𝑟0𝑧𝑧+3𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖

−𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 −
𝑧𝑧 𝑧𝑧 + 3
2 𝑧𝑧 − 1

𝜕𝜕𝑖𝑖(𝑟𝑟02𝑧𝑧𝜕𝜕𝑖𝑖𝑟𝑟0)

Divergence of the entropy current becomes 

𝜕𝜕𝜇𝜇𝐽𝐽𝑆𝑆
𝜇𝜇 =

1
4𝐺𝐺

𝜕𝜕𝑡𝑡𝑟𝑟03 + 𝜕𝜕𝑖𝑖 𝑟𝑟03𝑣𝑣𝑖𝑖 −
𝑧𝑧

2 𝑧𝑧 − 1
𝑟𝑟0𝑧𝑧𝜕𝜕𝑖𝑖𝑟𝑟0

Divergence of the entropy current is non-negative

2nd law of thermodynamics

𝜕𝜕𝜇𝜇𝐽𝐽𝑆𝑆
𝜇𝜇 = 2𝜋𝜋

𝜂𝜂
𝑟𝑟0𝑧𝑧
𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 +

𝑧𝑧2

8𝐺𝐺 𝑧𝑧 − 1
𝑟𝑟0𝑧𝑧−1 𝜕𝜕𝑖𝑖𝑟𝑟0 2 ≥ 0

divergence of the entropy current becomes 

0 = 𝜕𝜕𝑡𝑡ℰ + 𝑣𝑣𝑖𝑖𝜕𝜕𝑖𝑖ℰ + ℰ + 𝑃𝑃 𝜕𝜕𝑖𝑖𝑣𝑣𝑖𝑖 −
1
2
𝜂𝜂𝜎𝜎𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜕𝜕𝑖𝑖 𝜅𝜅𝜕𝜕𝑖𝑖𝑇𝑇



Kovtun-Son-Starinets bound

In our case, the entropy density is 

𝑠𝑠 = 𝐽𝐽𝑆𝑆0 =
1
4𝐺𝐺

𝑟𝑟03

Entropy density and shear viscosity satisfy the following condition

𝜂𝜂
𝑠𝑠
≥

1
4𝜋𝜋

𝜂𝜂 =
1

16𝜋𝜋𝜋𝜋
𝑟𝑟03

Shear viscosity is

In the fluid/gravity model of Lifshitz, it saturate the KSS bound

𝜂𝜂
𝑠𝑠

=
1
4𝜋𝜋



Conclusion
• We have considered fluid/gravity correspondence for the Lifshitz black 

hole geometry. 
• Naïve ansatz gives the stress-energy tensor which satisfy the 

conservation law of the Newton-Cartan theory. 
• Energy conservation and continuity equations agree with those for 

ordinary non-relativistic fluids. 
• The Navier-Stokes equation is different from ordinary one, but in terms 

of the gauge field, it agrees with that in the Newton-Cartan theory. 

• If we take 𝒜𝒜 = 𝑣𝑣𝑖𝑖𝑑𝑑𝑥𝑥𝑖𝑖 − 1
2
𝑣𝑣2𝑑𝑑𝑑𝑑, the constraints agrees with the ordinary 

non-relativistic fluid equations. 
• Entropy current is defined from the horizon area and satisfies the local 

thermodynamic relation and second law. 
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