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I have two	goals today.

The	narrower	goal	is	to	tell	you	some	properties	of frozen	singularities in
M-theory	and	F-theory.

This	involves	a	fun	relation	between Kodaira’s	classification	of	singular
elliptic	fibrations and commuting	triples	in	simply-laced	groups.
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I know	that’s	completely	greek	to	most	of	you.

Don’t	worry, I won’t	continue	in	this	manner...

at	least	during	the	first	third	of	the	talk!
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The	broader	goal	is	to	tell	you	that	the consistency	of	string/M/F theory
is	supported	by	various mathematical	accidents, of	which	the	narrower
goal	is	one.

What	do	I mean	by	a mathematical	accident, to	start	with?
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Consider	the	following	simple	question:

• Pick n ≥ 3.
• Construct	a	convex	polyhedron,
using	only	regular n-gons	of	the	same	size.

• When	is	this	possible?

Of	course	we	know	the	answer	...
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It’s	only	possible	with

• n = 3 (with	4, 8	or	20	faces)
• n = 4 (with	6	faces), or
• n = 5 (with	12	faces)!

That	there	is	no	other	regular	polyhedron	is
the final	entry of	Euclid’s Elements	of	Geometry.

Yes	it’s	a	logical	consequence, but	to	me	it	feels	like	an accident.
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Here	is	a	page	from	a	manuscript	of
Euclid’s	Elements, made	in	888AD in
Constantinople.

It	is	amazing	that	we	can	have	a	look
at	the	digitized	version	for	free.

Available	at http://www.claymath.
org/euclids-elements.
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This	mathematical	accident	fascinated	many	physicists
(= natural	philosophers)	in	the	past.

Ancient	Greeks	thought	of	a	correspondence
between five	elements	of	the	universe and five	regular	solids:

Fire Earth Air Water Aether
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This	is	Kepler’s	depiction	of	this	correspondence,
in	his Harmonice	Mundi:

Again, freely	available	online	at
https://archive.org/details/ioanniskepplerih00kepl
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Kepler	also	tried	to	be	more	quantitative:
He	thought	that	a	regular	polyhedron	would	fit
between	each	consecutive	planetary	orbits.

This	drawing	is	from	his Mysterium	Cosmographicum
(taken	from	Wikipedia)
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Let’s	check. He	put	the	polyhedra	in	the	order

, , , ,

from	inside	to	the	outside.
The	ratios	of	the	circumradius	and	the	inradius	are, respectively,

√
3,

√
15 − 6

√
5,

√
15 − 6

√
5, 3,

√
3

which	are	numerically

1.73, 1.26, 1.26, 3, 1.73.

The	distances	from	the	sun	to	Mercury, Venus, Earth, Mars, Jupiter	and
Saturn	are

57.9, 108.2, 149.6, 227.9, 778.6, 1433.5

times 106 km. Taking	the	ratio, we	get

1.87, 1.38, 1.52, 3.41, 1.84

Not	terribly	bad.
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By	now, we	know	neither	of	the	two	sets	of	ideas	was	right.

In	fact	they	turned	out	to	be bullsh*ts.

Nonetheless, platonic	solids	still	fascinate	me.
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So, I just	explained	the	prototypical	example
of	mathematical	accidents.

• Pick n ≥ 3.
• Construct	a	polyhedron	using	only	regular n-gons	of	the	same	size.
• When	is	this	possible?

There	are	just	a	finite	number	of	solutions,

each	of	which	is	full	of	character, and	quite	interesting!
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Let	me	give	another	example. The	structure	of	the	question	is	similar.

Stated	in	theoretical	particle	physics	jargon, it	goes	as	follows:

• Consider 10d	supersymmetric theory,
• consisting	of	the gravity	field, the gauge	field with	gauge	group G
and	their	superpartners.

• When	is	this	possible	(in	the	sense	that	the	model	is	anomaly	free)?

There	are	just	two	solutions:
G = E8 × E8 or G = SO(32).

(Note	to	mathematicians	in	the	audience:
when	I refer	to	a	Lie	group, in	fact	I’m	referring	to	a	Lie	algebra. )
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Let	me	restate	this	in	a	way	understandable	to	mathematicians:

• Take	a	12-dimensional	space X, and	consider	a G-bundle P over	it.
Let R,F be	the	curvature	2-forms	of TX and P , respectively.

• Consider	the	12-form

I =
1

2
Â(R) trg eF

∣∣∣
12

−
1

128

[
31

360
trR6 −

7

135
trR4 trR2 +

1

162
(trR2)3

]

• For	which	semisimple	group G does	this	always	factorize	as
(4-form)× (8-form) ?

There	are	just	two	solutions:
G = E8 × E8 or G = SO(32).

So	this	is	a mathematical	accident.
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For	those	in	the	audience	who	is	more	inclined	to	physics,
let	me	explain	(very	remote, possible)	significance	of	this	question
to	the	real	world, before	getting	further.

There	are	four	fundamental	forces	in	nature	:

• Gravitational	force.
Things	go	down, since	Earth	pulls	them.

• Electromagnetic	force.
The	source	of	most	of	interactions	around	us.

• ‘Weak’	force.
Mediates β decay. ∼50	decays	of	K40 per	sec. per	kg

• ‘Strong’	force.
Binds	quarks	into	protons	and	neutrons.
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They	are	described	by	the	following	mathematical	objects:

Gravitational	force. Metric.
Electromagnetic	force. U(1) gauge	field.

‘Weak’	force. SU(2) gauge	field.
‘Strong’	force. SU(3) gauge	field.

The	gauge	groups	in	principle	can	be	any	of
U(1), SU(N), SO(N), Sp(N), G2, F4, E6, E7, E8,
and	their	combinations.

A basic, unanswered	question	in	physics	is	why	we	have
G = U(1) × SU(2) × SU(3), rather	than	something	else.
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If the	universe	is 10d instead	of 4d, and
if we	furthermore	have supersymmetry,
the	mathematical	accident	we	just	discussed	forces	us	to	have	either
G = E8 × E8 or G = SO(32).

If	only	a	similar	miracle	happens	in	4d, we	would	understand
why	we	have U(1) × SU(2) × SU(3) !
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By	the	way, the	list	of	all	compact	Lie	groups	itself,
is	a mathematical	accident to	me.

• Consider	a	Lie	algebra	over R
• which	has	a	positive-definite	inner	product,
(to	have	a	positive-definite	kinetic	term	for	the	gauge	fields)

• What	are	the	possibilities?

Answer:

U(1), SU(N), SO(N), Sp(N), G2, F4, E6, E7, E8,
or	combinations	thereof.
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The	most	basic	case	is SU(2):

[J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2

The	general	case	is	classified	by	how SU(2) embeds	into	them. For
example, for SU(4):

( )
A blob	represents	an SU(2); edges	show	their	interrelations	.
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Only	certain	diagrams, therefore	Lie	algebras, are	allowed:

SU(n)

SO(2n) Sp(2n)

SO(2n+1)

E6

E7

E8

G2

F4

Four	infinite	series and five	exceptions. Again, an	accident.
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I explained	that	an	anomaly-free	10d	supersymmetric	system	requires
either E8 × E8 and SO(32) .

The	same	two	choices, E8 × E8 and SO(32) arise
in	a	different	mathematical	accident.

• Consider	a	16-dimensional	lattice Λ ≃ Z16 ⊂ R16.
• Suppose v · w ∈ 2Z for	any	two	vectors	in Λ, (even)
and	the	unit	cell	has	volume	1. (self-dual)

• When	is	it	possible?

The	answer	is	that Λ is	either

• Λ = (root	lattice	of E8) ⊕ (root	lattice	of E8)	, or
• (weight	lattice	of SO(32)) ⊂ Λ ⊂ (root	lattice	of SO(32)).
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So	there	are	two	mathematical	questions:

• Anomaly-free	10d	supergravity	+	gauge	systems
• rank-16	even-self	dual	lattices

that	have	exactly	the	same	answer: E8 × E8 or SO(32).

Is	there	a	deeper	meaning?
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There	is	a	version	of	superstring	theory	called heterotic	string	theory.

It	is	consistent	only	when

• the	spacetime	is 10	dimensional
• the	gauge	group	is	associated	to	a rank-16	even	self-dual	lattice

So, there	are	two	versions:
E8 × E8 heterotic	string, and SO(32) heterotic	string.
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A heterotic	string	theory	automatically	gives	rise	to	a	system

• which	is 10d	supersymmetric
• and	contains	the gravity	field, the gauge	field with	gauge	group G
and	their	superpartners,

• and	anomaly	free.

These	conditions, as	I already	said, also	lead	to	the	choices
G = E8 × E8 or SO(32).

25	/	76



So, two	mathematical	accidents	accidentally	give	the	same	answer.
Without	this, heterotic	string	theory	falls	apart.

10d gravity 
+ gauge field

heterotic string
gauge group is from rank-16

even self-dual lattice

gauge group should be s.t.

factorizes

E8 × E8

SO(32)
or

E8 × E8

SO(32)
or

!!!

physics mathematics
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heterotic

I just	introduced heterotic	string.
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heterotic

type IIA

type IIB

There	are	also	type	IIA and	type	IIB string,
all	of	which	are	related	in	various	ways.
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heterotic

M theory

F theory

IIA has	a	better	version	called	M,	and	IIB has	a	better	version	called	F.
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heterotic

type IIA

type IIB

If	we	come	back	to	just	IIA and	IIB,
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type IIA

type IIB

Mathematical version of this
is called the mirror symmetry, 
and has been intensively studied
by mathematicians.
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heterotic

type IIA

type IIB

But	I’d	like	to	emphasize	that	all	three	should	be	equally	important.
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heterotic

M theory

F theory

But	I’d	like	to	emphasize	that	all	three	should	be	equally	important.
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For	example, consider

heterotic M theory

There	are	again	many	mathematical	accidents	involved.
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The	basic	statement	is	that

heterotic	on X7 × T 3 = M on X7 × K3.

• Heterotic	strings	are	10	dimensional
• M theory	is	11	dimensional
• T 3 is	the	3d	torus
• K3 is	a	nice	compact	4-dimensional	space
• 10 − 3 = 7 = 11 − 4
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The	mathematical	existence	of	the K3 itself, I say,
is	a	mathematical	accident.

It’s	difficult	to	explain	what	is	a K3 to	those	who	don’t	know	already.

It’s	unnecessary	to	explain	to	those	who	already	know.

So	I won’t	explain, except	that	it’s	a	very	nice	space.
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K3 is	named	by	André	Weil, in	honor	of Kähler, Kummer and Kodaira,

and	after	the	beautiful	mountain	K2
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Let	us	come	back	to	the	relation

heterotic	on X7 × T 3 = M on X7 × K3.

We	know	that	heterotic	strings	have	two	versions, E8 ×E8 and SO(32).

How	are	they	reflected	in	terms	of K3?

Answer: K3 can	have	singularities	of	type E8 × E8 or SO(32).

37	/	76



K3 is	real	4-dimensional, and	locally	looks	like R4 ≃ C2.

It	can	develop	singularities	of	the	form

C2/Γ

where Γ is	a finite	subgroup

Γ ⊂ SU(2).

Recall
SU(2)

2:1−→ SO(3).

So	such	a Γ is	essentially	specified	by	a	finite	subgroup	of SO(3).
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The	finite	subgroups	of SO(3) are	exhausted	by

Zn dihedral tetrahedral octahedral icosahedral

, ,

SU(n) SO(2n) E6 E7 E8

and	known	to	correspond	to	the	Lie	groups	as	shown.

Regular	polyhedra	are	somehow	linked	to E6, E7 and E8.

Again, a mathematical	accident.
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Take	the	symmetry	group	of

,

and	consider	it	inside SU(2). The	irreducible	representations	are

1, 2, 3, 4, 5, 6; 2′, 4′; 3′′

where 2 is	the	one	coming	from	the SU(2) action	on C2.

Now	consider	the	tensor	product	decomposition	after	multiplying	by 2:

2 ⊗ 4 = 3 ⊕ 5, 2 ⊗ 6 = 5 ⊕ 4′ ⊕ 3′′

etc. Draw	these	relations	as

1 2 3 4 5 6 4! 2!

3!!

which	is	the	Dynkin	diagram	of E8!
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Then, in	the	relation

heterotic	on X7 × T 3 = M on X7 × K3,

Choosing	the E8 × E8 heterotic	string	corresponds	to
choosing	a K3 having	two	singularities	associated	to

, .

Namely, let ΓE8 be	the	binary	icosahedral	group ⊂ SU(2),
and	the K3 should	have	two	singularities	of	the	form C2/ΓE8 .
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The	point	is	that	when	M-theory	is	considered	on	a	spacetime	with	a
singularity	locally	of	the	form C2/ΓG

where ΓG is	the	finite	subgroup	of SU(2) according	to

Zn dihedral tetrahedral octahedral icosahedral

, ,

SU(n) SO(2n) E6 E7 E8

we	get	a	gauge	field	with	gauge	group G.
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So, if	M theory	really	describes	the	physical	world,
what	ancient	Greek	philosophers	and	Kepler	tried	to	do
might	not	have	been	completely	misguided.

Or	maybe	we	string	theorists	are	as	misguided	as	they	were.

Hopefully	experimenters	in	the	future	will	tell.
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–	intermission	–
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We	were	talking	about	the	relation

heterotic	on T 3 = M on K3.

Let	us	see	the	mapping	in	more	detail.
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On	the	heterotic	side, the	necessary	data	are:

• A real	constant ϕ, 1 parameter.
• Flat	metric	on T 3. 6 parameters.
• An	exact	two-form B on T 3. 3 parameters.
• Flat E8 × E8 bundle	on T 3.
Assuming	that	the	holonomies	are	in	the	Cartan,
2 × 3 × 8 = 48 parameters.

1 + 6 + 3 + 48 = 58 parameters	in	total.
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On	the	M-theory	side, we	need

• hyperkähler	metric	on K3, 58 parameters.
• an	exact	3-form C, 0 parameters.

The	moduli	space	of	hk	metrics	on K3 is	known	to	be	parameterized	by
a	symmetric	space

R × [O(3, 19;Z) \O(3, 19;R)/O(3,R) ×O(19,R)]

It	is	known	that	the	heterotic	side	is	the	same, too.
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When	the E8 × E8 bundle	is	trivial,
the	stabilizer	(or	equivalently	the	unbroken	gauge	group)	is
E8 × E8 itself.

So	the	corresponding K3 should	have	two E8 singularities:

E8

E8

T3 × R
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Each E8 singularity	has 3 × 8 hyperkähler	deformations

E8

T3 × R

deform!

giving	the	holonomies	on	the	heterotic	side,
which	also	have 3 × 8 parameters
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So	far	so	good. Or	so	it	seems.

But	this	is	too	quick!

On	the	heterotic	side, the	necessary	data	are:

• A real	constant ϕ, 1	parameter.
• Flat	metric	on T 3, 6	parameters.
• An	exact	two-form B on T 3. 3	parameters
• Flat E8 × E8 bundle	on T 3.

Assuming	that	the	holonomies	are	in	the	Cartan,
2 × 3 × 8 = 48 parameters.

But not all	flat	bundles	have	holonomies	in	the	Cartan.
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Borel, Friedman	and	Morgan	says	in	this	monograph	in	2002	that	...
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The	moduli	space	of	flat E8 bundles	on T 3 has	the	form

M =
⊔

r∈Q/Z

Mr

where

r =
n

d
mod 1, d = 1, 2, 3, 4, 5, 6; gcd(n, d) = 1.

Here r labels	the	Chern-Simons	invariant	of	the	bundle.

M0 is	the	component	coming	from	three	holonomies	in	the	Cartan. The
rank	of	the	stabilizer	is	8, and	the	maximal	stabilizer	is E8. Similarly:

d 1 2 3 4 5 6

rank	of	stab. 8 4 2 1 0 0
max. stab. e8 f4 g2 su(2) fin. fin.
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When	the E8 bundle	on T 3 is	in M0, the	K3	is

E8

E8

T3 × R

What	happens	when	the	bundles	are	from Mr with r ̸= 0?
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The	maximal	stabilizer	(or	unbroken	gauge	group)	is	smaller.
Correspondingly, there	should	be	less	freedom	to	deform	the	singularity.
For	example, for Mr=1/6, you	can’t	just	deform	at	all.

E8

E8

T3 × R

Known	to	be	measured	by∫
S3/ΓE8

C =

∫
T 3

C = r.

[de	Boer-Dijkgraaf-Hori-Keurentjes-Morgan-Morrison-Sethi,
hep-th/0103170]
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In	general, given	a	singularity	of	the	form C2/ΓG,

G

we	can	take
r :=

∫
S3/ΓG

C =
n

d
mod 1

where n is	an	integer	appearing	in	the	node	of	the	Dynkin	diagram	of
type G and gcd(n, d) = 1.

When r ̸= 0, this partially	freezes the	singularity,
and	change	the	gauge	group	appearing	here.
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The	gauge	group H that	appears	here

G

with	a	given r is	determined	as	follows:

• Take	a	flat G bundle P over T 3 whose	Chern-Simons	invariant	is r
• Let GP be	the	stabilizer	(or	the	unbroken	gauge	group)	of P
• Then H is	the Langlands	dual of GP .

In	particular, H is not a	natural	subgroup	of G.
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For	example:

When G = SO(2k + 8), we	can	take r = 1/2.
The	corresponding	triple	is	in SO(7), given	e.g. by

diag(+ + + − − − −)

diag(+ − − + + − −)

diag(− + − + − + −)

The	stabilizer	is SO(2k + 1), whose	Langlands	dual	is Sp(2k).
This	is	the	gauge	group	appearing	with	this	singularity	in	M theory.
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As	another	example,

When G = E7, we	can	take r = 1/2. The	corresponding	triple	is	still
the	same	one	in SO(7), given	e.g. by

diag(+ + + − − − −)

diag(+ − − + + − −)

diag(− + − + − + −)

In	fact	these	three	elements	are	in G2 ⊂ SO(7).
And	there	is	a	maximal	subgroup G2 × Sp(6) ⊂ E7.

The	stabilizer	is Sp(6), whose	Langlands	dual	is SO(7).
This	is	the	gauge	group	appearing	with	this	singularity	in	M theory.
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What	I’ve	told	you	so	far	was	all	known	around	the	turn	of	the	century!
In	the	remaining −5 minutes, let	me	tell	you	something	new, from	my
latest	paper:
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In	this	diagram

heterotic

M theory

F theory
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So	far	I only	talked	about

heterotic

M theory
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Let	me	talk	a	bit	about

M theory

F theory
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The	data	specifying	an	F-theory	configuration	are

• 10d	spacetime B

• a	map τ : B 7→ (upper	half	plane)/SL(2,Z), allowing	singularities

A point	on (upper	half	plane)/SL(2,Z) specifies	a	2d	torus	(or
equivalently	an	elliptic	curve), so	it	determines	an	elliptic	fibration

E → B.

People	often	refer	to	this	situation	as	“F-theory	on E”, but	this	becomes
very	confusing, particularly	when	the	frozen	singularities	are	involved.
So	I’ll	call	the	setup	as	“F-theory	on B”.
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Anyway, there	is	a	4d	space	of	the	form E → B = C
with	an SL(2,Z) monodromy g at	the	origin:

g
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There’s	a	singularity	of	the	form C2/ΓG at	the	origin:

G

The	correspondence	between g and G was	found	by	Kodaira.
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1st	example: Kodaira’s III∗

g =

(
0 −1
1 0

)
↔ G = E7

2nd	example: Kodaira’s I∗
0

g =

(
−1 0
0 −1

)
↔ G = D4
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Question: consider	M-theory	on

R7 ×
G

.

Note	that 7 + 4 = 11.

What	is	the	corresponding	F-theory	setup?
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Long-known	answer: F-theory	on

R7 × S1 ×
g

.

Note	that 7 + 1 + 2 = 10.
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Question	I asked	in	the	recent	paper: consider	M-theory	on

R7 ×
G

with	non-zero
r =

∫
S3/ΓG

C =
n

d

freezing	the	singularity.

What	is	the	corresponding	F-theory	setup?
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Answer: F-theory	on R7×S1 ×
gd

 /Zd

where	the Zd action	is	the	combination	of

• 1/d rotation	of S1, and
• n/d rotation	of C.

(Note	that 7 + 1 + 2 = 10.)
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Or	equivalently,

R7 ×

1
23

4
5 6

g

gg

g

g g

2
34

5
6 1

identify after
1/6 rotation

when d = 6, say.
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An	example: M-theory	on

R7 ×
G

where G = E7 and

r =

∫
S3/ΓG

C =
1

2
.

The SL(2,Z) monodromy	is g =

(
0 −1
1 0

)
, Kodaira’s III∗.
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This	is	equivalent	to	F-theory	on R7×S1 ×
gd

 /Zd

with d = 2, where	the Z2 action	is	the	combination	of
1/2 rotation	of S1 and 1/2 rotation	of C.

Now g2 =

(
−1 0
0 −1

)
is	Koraira’s I∗

0 , and

the	corresponding	singularity	is D4.

The 1/2 rotation	acts	as	an	outer-automorphism	on D4.

The	gauge	group	is	the	invariant	part, which	is SO(7).
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This	is	consistent	with	another	determination	of	the	gauge	group
associated	to

R7 ×
G

where G = E7 and

r =

∫
S3/ΓG

C =
1

2
.

Namely, the	triple	with	the	Chern-Simons	invariant	is	in G2.
E7 contains	a	maximal	subgroup	of	the	form G2 × Sp(6).
Therefore	the	stabilizer	is Sp(6), whose	Langlands	dual	is SO(7).
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Summarizing, we	have

G, r = 1/d 

g gd

Kodaira

G!
Kodaira

H

G-triple with CS = r G!! H
stabilizer Langlands

inv. part

of outer auto.

dual

always
agree!

F

M

This	is	again	a mathematical	accident,
without	which	string/M/F theory	falls	apart.
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Big	summary	of	the	whole	talk:

• Mathematical	accidents are	essential
to	the consistency	of	string/M/F theory.

• Many	such	examples	are	known.
• Some	were	recognized	30	years	ago,
such	as	the	one	leading	to	heterotic E8 × E8 and SO(32)

• Some	were	noticed	just	last	month,
such	as	the	one	I just	talked	about.

• There	will	be	more.

76	/	76


