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Models for Landscapes

The landscape gains its traction from the problem of the
cosmological constant. At a theoretical level, don’t have
examples of theories with exponentially large numbers of
metastable vacua found through any systematic analysis.

Models:
String theories with fluxes. Many possible types of fluxes,
taking discrete values – many possible “vacuum states"
(Bousso-Polchinski)
Theories with many fields (e.g. Arkani-Hamed,
Dimopoulos, Kachru).
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Flux vacua.

Only framework we have at present in which to meaningfully
address is string theory. Big challenges:

Stabilization of moduli
Need for a controlled expansion

KKLT
Proposal in which all moduli stabilized, possibility to study in a
systematic approximation with large R, approximate
supersymmetry.
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There are many questions one can ask about the KKLT
framework, but not our focus today. Does make the existence of
a landscape at least plausible. Suggests a strategy to
determine statistics of states (esp. Douglas, Denef).
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Well studied examples: Type IIB compactified on Calabi-Yau
spaces (and related F theory constructions). Numbers of three
form fluxes given by various topological numbers (h2,1),
Fi ,̄j k̄ ,Hi ,̄j,k̄ . h2,1 can be quite large (100’s, 1000’s). Total fluxes
constrained, but can also be large. Combination (N types of
fluxes, M values) give of order NM possibilities.

In these cases, also many light fields if fluxes turned off (fluxes
paired with “moduli"). Most are massive (not moduli) in
presence of fluxes, but still many light fields if radii are large,

V = N
M2

R6 (1)

in string units. Require R � (
√

NM)1/3.
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Multiple Fields

Through much of this talk, study theories with many fields as
models for a landscape, We see some overlap of the two ideas
in the IIB flux vacua. More comments later.

Consider a field theory with N fields. Suppose, first,

V (φi) =
∑

vi(φi) (2)

If, say, vi typically has m stationary points, then mN stationary
points of V . Expect of order 2−N stable.

E.g. if m=3, 2 minima, 1 maximum, 3N → 2N .
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Classical Stability

Now couple the fields (Easther et al). If couplings between all
fields substantial, scalar mass matrix a random matrix with all
elements chosen from identical, independent (say Gaussian)
distributions. Then probability that all eigenvalues positive
behaves as

P(µ2
i > 0) = e−cN2

. (3)

This is a dramatic suppression. If bounded potentials, of order
one minimum. If unbounded, some sort of runaway likely.

If, instead, there is some sort of locality in the index space (µ2
ij

in some sense sparse), suppression is only e−aN .
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Quantum Stability

Even if the system is classically stable, there is an issue of
quantum stability. A particular vacuum, say with small c.c., is
not the lowest energy state. It may be surrounded by a large –
exponentially large – number of negative energy states. Decays
to every state must be suppressed.

Without supersymmetry, we will shortly see this leads to a huge
suppression of the chances of stability. Some general principle
needed if the very idea of a landscape is to make sense.
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Plan for the rest of the talk

1 Non-supersymmetric model for quantum stability: Greene,
Kagan, Masoumi, Mehta, Weinberg et Xiao

2 Supersymmetry and Stability
3 Returning to classical stability: Marsh McAlister, Wrase,

“Wasteland of Random Supergravities" (also Bachlechner)
4 Puzzles in the Supersymmetric case
5 Failures of unitarity and their resolution
6 A sensible, if not friendly, landscape
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Tunneling in Theories with Many Fields

Greene et al landscape model: N scalar fields, φi , potential
V (φi). Expand about presumed minimum:

V =

∑
i

µ2
i φ

2
i +

∑
ijk

γijkφiφjφk +
∑
ijkl

λijklφiφjφkφ`

 (4)

µ2
i , γijk ,λijkl random variables,

0 < µ2
i < M2; −M < γijk < M; −1 < λijk < 1. (5)

M is some fixed mass which will scale out of our problem.
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Ask what fraction of states have bounce action for all possible
bounce solutions greater than some fixed, large number B0.
This assumption is self consistent. If all tunneling amplitudes
are small, all bounce actions are large, the semiclassical
analysis is justified. Ignore gravity for the moment.

Greene et al: computer simulations. Searched for stationary
points of the action. Looked for nearby critical points with low
barriers. Applied a crude model for the bounce action. Up to
N = 10.
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1 The distance to the nearest stationary point behaves as

φtop ≈ 0.5N−1.15 : (6)

2 The height of the lowest stationary point behaves as:

Vtop ≈ 0.2N−3.16 (7)

3 The lowest bounce action scales as:

B ≈ N−2.7. (8)

These scalings are similar for both cubic and quartic potentials.
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Try to understand these results by simple statistical reasoning.

For large N, typically one has a few µ2
i ∼

1
N . First assume that

the smallest bounce action (and lowest barrier and shortest
distance to tunnel) are obtained in a straight line (in field space)
in one of these direction. Call i = 1 the direction with smallest
µ2. Let’s assume, first, that the lowest bounce action is
obtained by a straight line trajectory in the 1 direction. The
important cubic and quartic couplings are then γ111 ≡ γ,
λ1111 ≡ λ and these will typically be of order 1. In this case, the
cubic term dominates, and

φtop =
2
3
µ2

γ
Vtop = − 4

27

(
µ6

γ2

)
, (9)

with corrections of order 1/N.
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Need to correct for the possibility that the cubic and quartic
couplings fluctuate downward, in which case one of the larger
masses may dominate. A more careful analysis gives, for the
median values of φtop, for large N:

φtop = .924 N−1 (10)

and

Vtop = 0.284N−3. (11)

This is compatible with the results of Greene et al up to
corrections of order 1/N.
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Scaling of the Bounce Action

Greene et al make a crude approximation, by analogy with the
thin wall approximation:

B =
π2

2
σR3 (12)

σ is a one dimensional bounce action and R is taken as
N-independent. Given the N scaling of the barrier height and
width,

σ ∝
∫

dφ
√

V ∼ N−5/2 (13)

roughly as they find.
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Knowing that the tunneling trajectories are dominated by small
µ2, we can do a more systematic calculation of the large N
tunneling behavior. Interested in

V = µ2φ2 − γφ3 (14)

Scaling arguments give

φ(r) =
µ2

γ
φ0(rµ), (15)

where φ0 is the bounce for the potential V = φ2 − φ3, and the
bounce action scales as µ2/γ2. Sarid has studied this problem
numerically, obtaining

B = 2.376× 2π2µ
2

γ2 . (16)
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The median bounce action at large N:

Bmed =
97.5

N
(17)

So if N = 100, for example, the exponential of the typical
bounce action is O(1).
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Seek the probability that the lowest action satisfies

B > B0 (18)

for some constant B0.

P(B > B0) = P(w > w0) =


w0 < 1

(
1− w0

3

)N

w0 > 1
(

2
3
√

w0

)N
(19)

where B ≡ 2.376× 2π2w . Requiring that the B0 give a lifetime
for the shortest tunneling amplitude longer than the age of the
universe (not in our past last cone) gives w0 > 5.7. To get some
feeling for numbers, taking N = 100, this is a suppression of
order 10−56.
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Implications of Quantum Instability

So we see that the requirement to avoid decay is that all
masses be larger than some minimal value, µ2

0. This is stronger
than the requirement of classical stability. It can lead to further
e−bN2

or e−bN suppression depending on the assumptions
about the distribution of masses (to which we will return).
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Stability with Supersymmetry

With exact supersymmetry in flat space, the vacuum is stable.
This can be understood as a consequence of the existence of
global supercharges, obeying the familiar algebra:

{Qα, Q̄β̇} = 2Pµ(σµ)αβ̇ (20)

As a result, there are no tachyons and no tunneling (Weinberg,
1981).
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Stability with slightly broken supersymmetry

Classical stability: With (slightly) broken supersymmetry, expect
only a few states with masses of order m3/2 potentially
tachyonic.

Quantum stability: expect tunneling still vanishes or highly
suppressed. Two classes of trajectories: directions with fields
much more massive than m3/2, and directions with masses of
order m3/2. For the former, for a broad class of models
(Festuccia, Morisse, M.D.), one has a general formula:

Γ ∝ e
−2π2

(
M2

p
m2

3/2

)
(21)

For the latter, anything is possible, but as for classical stability,
only a few trajectories must be suppressed; don’t expect e−aN

type suppression of stability.
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Approximate Supersymmetry

How might approximate supersymmetry arise in a landscape?

Douglas and Denef considered the likelihood in classes of flux
vacua, one had approximate supersymmetry, simply as a result
of random choices of flux (we’ll call this “tuned
supersymmetry"). Found low scale unlikely, roughly

P(F ) ∼ |F |6 (22)

Result understood in terms of a low energy theory with a light
field (goldstino), with a uniform distribution of superpotential
parameters (as complex numbers) (Z Sun, M.D.)

W = W0 + γZ + µZ 2 + . . . (23)

So supersymmetry rare as a random phenomenon. In this
context, can’t provide a natural explanation of the hierarchy.
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A different possibility: exponential separation of susy scale
(dynamical supersymmetry breaking). Supersymmetry a good
symmetry at some high energy scale; low energy theory breaks
supersymmetry

F = Me
− 8π2

g2(M) (24)

In this case, if g2 roughly uniformly distributed, roughly equal
probability of susy breaking per decade. (Not necessarily a
prediction of low energy supersymmetry breaking).

Our stability discussion suggests that theses states might be
special.
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A Puzzle With Stability (work in progress)

McAlister et al, studied states with approximate supersymmetry,
and N massive fields in the context of tuned supersymmetry.
Here “massive" means heavy compared to any scale of
supersymmetry breaking. Found an exponential suppression of
classical stability, i.e. only an order e−cN fraction of the states
identified by Douglas and Denef are classically stable.

Rather surprising. Expect there is one (or at most a few) light
fields. Z : the “Goldstino supermultiplet". (With assumption of
uniform distribution of parameters, multiple light fields very
unlikely). Low energy theory: superpotential and Kahler
potential, with a small number of parameters (random numbers,
one would expect more or less uniformly distributed). Why so
sensitive to the number of heavy fields?
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Not difficult to isolate the origin of the problem. Suppose we
have a superpotential, including the heavy fields:

W = XF +
N∑

i=1

(
1
2

m2
i ΦiΦi + γiX 2Φi

)
. (25)

Integrating out the massive fields generates a correction to the
Kahler potential:

δK =
N∑

i=1

|γ2
i ||X †X |2

m2
i

. (26)

This leads to a correction to the mass of X . One finds:

m2
X = −

N∑
i=1

|γi |2

4m2
i
.
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This contribution, is a sum of a large number of terms, each of
which is negative so potentially problematic. If each term is
chosen independently from an identical, N-independent,
distribution, for large N this grows linearly with N. To avoid a
tachyon, it is necessary that nearly every term fluctuate to a low
value; this leads to an e−aN suppression.
Unitarity and perturbativity, however, restrict the possibilities.
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Unitarity

Consider the process X + X → X + X (where here X denotes
the scalar in the multiplet) at energies high compared to the
masses of the N φi ’s. Then the potential includes:

V (X ) =
N∑

i=1

|γi |2|X |4. (27)

The cross section, for energies large compared to the masses
of the N fields, behaves as

σ(X + X → X + X ) =
(
∑N

i=1 |γi |2)2

s
. (28)
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With these assumptions, this violates partial wave unitarity for
large N by a factor N2. So require some modification.
Before considering flux landscapes and landscape models
more generally, it is interesting to consider what happens in
critical string theories with large numbers of fields.
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A string computation

While we are not able to compute large numbers of couplings
directly in a state with many fluxes turned on, we can do
something much simpler to explore correlations of couplings.
We can consider critical strings, compactified in such a way that
there are large numbers of fields, and place bounds on sums of
squared-couplings of the types encountered above. We will see
no evidence for growth of such sums.

Assuming this is general, we will draw some conclusions about
classical stability in the landscape.
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Study compactification of the heterotic string on a Calabi-Yau
space with large Euler number. While there is not a systematic
large N computation (as is also true for most landscape
constructions) we can still reasonably ask whether large
numbers appear in perturbative computations. This would
imply, in a manner analogous to our landscape discussion, that
a valid perturbation theory would require a large radius or very
small g (by powers of N).
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Take famous case of quintic in CP4 101 27’s (corresponding to
101 complex structure moduli) Compute the cubic terms in the
superpotential. Of order 105 independent 273 couplings.

Can readily bound certain combinations of couplings. Consider
a four point function of vertex operators:

〈Va(z1)Vb(z2)Va(z3)Vb(z4)〉 (29)

If the leading term in the operator product expansion of Va and
Vb is:

G(z1, z2, z3, z4)ab = Va(z1)Vb(z2) = cabc
Vc

|z1 − z2|2
, (30)
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If we take z1 → z2, z3 → z4, then

G(z1, z2, z3, z4)ab =

∑N
c=1 c2

abc
|z1 − z3|2|z1 − z2|2|z3 − z4|4

(31)

So if we can estimate or bound the four point function, we can
bound the couplings of the fields a,b to other fields.
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Study Green’s function involving two fermions and two bosons.
For definiteness and because of its simplicity, we work in the
fermionic formulation for the gauge degrees of freedom, and in
the R-NS formulation for the right moving fermions. Then the
spatial coordinates can be grouped as y i , y ī , xµ, where the i , ī
are complex indices for the six dimensional Kahler manifold,
and µ are four dimensional Minkowski indices. The left moving
fermions are λi , λī , λa, where the a’s are O(10) indices.
Space-time spinor operators can be taken as S0

α,Si
α,S0̄

α,S ī
α,

where α are four dimensional spinor indices. The 0 and 0̄
indices correspond to the covariantly constant spinor. At large
radius, the theory is nearly free, and these operators reduce to
their free field forms.
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Bosonizing the right moving fermions,

ψi = eiφi (32)

for the fermions with indices in the compact space, whereas for
the ψ’s with Minkowski indices

(ψ1 + iψ2) = eiξ1 (ψ3 + iψ4) = eiξ2 . (33)
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S0 = ce
i
2 (φ1+φ2+φ3)e

i
2 (±χ1±χ2) S0̄ = ce−

i
2 (φ1+φ2+φ3)e

i
2 (±χ1±χ2)(34)

where in the first case there are an even number of plus signs,
the second an odd number. The Si ’s are given by

Si
α = ce

i
2 (φ1+φ2−φ3)e

i
2 (±χ1±χ2) S ī

α = ce−
i
2 (φ1+φ2−φ3)e

i
2 (±χ1±χ2)(35)

(this is S3, S3̄; other values of the index are obtained by
changing the placement of the minus sign in the first exponent).
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Decomposing the 27 into representations of O(10)× U(1),

27 = 16−1/2 + 101 + 1−2 (36)

the boson vertex operators for particles in the 1 can be taken to
be :

VB = λīλj̄ψkχ
(α)

k ī j̄
(37)

and its complex conjugate.
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χ
(α)

k ī j̄
is a harmonic (2,1) form. It is related to the corresponding

fluctuation in the metric, δgαij through

δg(α)
ij = χ

m̄(α)

k̄ l̄
Ωk̄ l̄ n̄gjm̄gi n̄. (38)

where Ωijk is the covariantly constant three form. We will write
the fermion vertex operator, for particles in the 10
representation, as:

VF = εiαλ
aλiSj

αδg
(α)
ij . (39)
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We consider the scattering of one fermion corresponding to the
(α)’th 2,1 form with a scalar corresponding to the β’th 2,1 form,
to produce the same fermion and boson (elastic scattering).
This arises from the cubic terms in the superpotential,

γαβγΦαΦβΦγ . (40)

The coefficient of

1
|z1 − z3|4|z1 − z2|2|z3 − z4|2

(41)

is

A =

∫
d6yδg(α)

ij δg(β)
kl

(
δg∗(α)ijδg∗(β)kl − δg∗(α)ikδg∗(β)jl

)
(42)
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The δg’s are normalized to unity. As a result, the integral does
not show growth with the number of complex structure moduli
(h2,1 of the manifold). On the other hand

A =
∑

k

|γijk |2, (43)

which is now of order 1 rather than of order N.

Michael Dine Stability in the Landscape



Lessons

While not a direct calculation in actual flux vacua, strong
evidence that with large numbers of fields, couplings are
correlated; it is simply not true that all possible couplings are
independent of the number of fields. Supports the notion of
some sort of locality in index space.
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Unitarity/Perturbativity More Generally

Requiring that in the effective field theory with N fields
(non-supersymmetric) corrections to amplitudes not grow with
N, yields for couplings of type λ(n)φn, assuming uniform
scalings.

λ(n) ∼ N−n/2. (44)

For terms γ(n)Φn in a superpotential in the supersymmetric
case,

γ(n) ∼ N−
n−1

2 . (45)
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Returning to tuned Supersymmetry

For tuned supersymmetry these scalings imply:
1 The N massive fields have masses of order 1/

√
N

2 Before integrating out these fields to obtain the effective
theory for Z , the leading term in the Kahler potential
dominates, and one has a "Polonyi" model.

3 Integrating out the massive fields yields an order 1
correction to the mass of Z (as opposed to N,

√
N, etc.

(We have checked that the statistics of the mass matrix for
the φi ’s does not enhance this term).

So we do not expect a strong suppression of stability in this
case (though recall that such states are unlikely in any case).
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Flux Landscapes: Scaling with R

We have seen that in order to have large numbers of fields, one
requires:

R � (
√

NM)1/3 (46)

This also leads to suppression of couplings. In the interaction of
complex structure moduli, each additional field (in the IIB case)
adds an additional 1/R factor.

λ(n) ∼ R−4−n (47)

It is possible that R has to be somewhat larger in order to
obtain a sensible unitary structure at low energies.
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It appears a tall order to obtain vast numbers of states at large
R. So whether N fields are, indeed, a good model for a
landscape would seem an open question.
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One Guide: Behavior with R

For small R (R of order the fundamental scale) typically not N
special states in flux compactifications. Results of large R
analysis should be compatible. Not clear what would play the
role of the parameter N. Possible applications:

1 No supersymmetry: very high degree of suppression, since
don’t expect any enhancement with N at small R (not clear
what would be the parameter which plays the role of N).

2 Approximate (tuned) supersymmetry: Already very rare,
without accounting for stability. Small R: again not clear
what would play the role of N in accounting for suppression
of stability. Results above suggest that there might be no
such suppression.

3 Exponential hierarchies (dynamical supersymmetry
breaking): no light scalar fields partnered with Goldstino,
so problem of stability does not arise.
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So we tentatively conclude, for non-supersymmetric states:
1 Classical stability of non-supersymmetric states is subject

to at least exponential suppression with the number of
fields, and possibly much more.

2 In the framework of flux landscapes, even this analysis
requires the existence of vast numbers of stationary points
at large R. All of this suggests that there is of order one
potentially metastable state per choice of flux – or less, if
potential unbounded below or subject to runaway.

3 Quantum stability of non-supersymmetric states differing in
flux is likely to give rise to further exponential suppression.
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For supersymmetric states:
1 Approximate supersymmetry leads to order one chance of

classical and quantum stability. This seems to be the case
even if supersymmetry is tuned.

2 From this we might conclude (now much more tentatively)
that some degree of supersymmetry is likely among states
in any would-be landscape.
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