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Introduction

Clots of gravity

One of the most exciting predictions of Einstein’s General Relativity(GR) is that there
exist Black Holes: objects whose gravitational fields are so strong that no body or
signal can break free and escape.

Occupy special position in observational astrophysics, theoretical efforts at
unification of forces etc.

Reveal profound relationships between gravitation, quantum theory and
thermodynamics.

Many fundamental ideas like Holographic principle, string dualities etc are related
to the study of black holes.

Black Holes provide a very useful context where quantum gravitational effects are
calculable and highly precise tests are possible. They lead to non-trivial tests of
nonperturbative consistency of string theory as a theory of quantum gravity.

Black Holes are the extreme examples of the dynamical nature of space-time(
expressed by metric tensor) in General Relativity.
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Introduction

Properties

Light Imprisoned

Black Holes can occur as end products of complete gravitational collapse.
Theoretically, they are solutions to equations of general relativity.

Black Holes have a singularity, covered by an imaginary surface, Event Horizon
which serves as a causal boundary.

Schwarzschild Black Holes : ds2 = (1 − rh
r
)dt2 + (1 − rh

r
)−1dr2 + r2dΩ2

2

Spherically symmetric,non-rotating. Radius of event horizon rh = 2GM/c2. For
an object to be black hole, rh ≫ λc where λc is the compton wavelength.

Surface gravity κ is the force required by a faraway observer to hold a unit mass

at the horizon. For Schwarzschild BH, κ = c4

4GM
.
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Introduction

Black Hole thermodynamics

Classical black holes satisfy several theorems which are tantalizingly like laws of
thermodynamics

Laws of Thermodynamics

Zeroth Law: T constant throughout body in thermal equilibrium

First Law: dE = TdS + workterms

Second Law: Change in Entropy δS ≥ 0 in any process.

Third Law: Impossible to achieve T = 0 in physical processes

Laws of Black Hole Mechanics

Zeroth Law:Surface gravity κ is constant over the horizon of a stationary black
hole.

First Law: dM = κ
8πG

dA + ωhdJ + ΦedQ

Second Law: Change in the area of the event horizon δA ≥ 0 always increases in
any classical process.

Third Law:It is impossible to achieve κ = 0 in finite number of steps.
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Semi-classical Black Holes

Black Holes and Second Law of Thermodynamics

One can violate second law of thermodynamics in observable universe by throwing
stuff into black holes.

Based on analogy of black holes with laws of thermodynamics, Beckenstein
proposed to save second law by assigning black hole an entropy proportional to
area.

Hawking coupled quantum matter to a classical black hole and showed that they
emit black body radiation at a temperature T = hκ

2πc
. For Schwarzschild BH,

T ≈ 6 × 10−8(Msun/M)K

Given the black hole temperature, first law of BH mechanics assigns an entropy

SBH = Ac3

4hG
to black hole. Stotal = Smatter + SBH obeys the second law.

In conventional statistical mechanics, entropy of a system has a microscopic
explanation. S = ln(dmicro). Here dmicro is the number of (quantum) microstates
available to the system for a given set of macroscopic charges like energy, total
electric charge etc. Huge entropy of the black hole implies that it should have

large number of microstates. For M = Msun, no. of d.o.f is ∼ 101078
!

Yogesh K. Srivastava Work with Dileep Jatkar and Ashoke Sen Shaving the Black Hole



Prologue
String Theory

Precision counting of microstates
Black Hole Hair

Analysis of the BMPV BH Entropy
Analysis of the 4D BH Entropy

Hair modes in Supergravity
Regularity of Hair Modes

Conclusion

Introduction
Black Holes in String theory

Outline
1 Prologue

Introduction
2 String Theory

Introduction
Black Holes in String theory

3 Precision counting of microstates
4 Black Hole Hair
5 Analysis of the BMPV BH Entropy

Microscopic Description
Macroscopic Description
Hair Removal

6 Analysis of the 4D BH Entropy
Microscopic Description
Macroscopic description
Hair Removal

7 Hair modes in Supergravity
BMPV Black Hole Hair
Fermionic Deformations
Deformations of 4-dimensional black holes

8 Regularity of Hair Modes
9 Conclusion
Yogesh K. Srivastava Work with Dileep Jatkar and Ashoke Sen Shaving the Black Hole



Prologue
String Theory

Precision counting of microstates
Black Hole Hair

Analysis of the BMPV BH Entropy
Analysis of the 4D BH Entropy

Hair modes in Supergravity
Regularity of Hair Modes

Conclusion

Introduction
Black Holes in String theory

String theory posits that the fundamental degrees of freedom are string-like
extended objects(closed and open) instead of point like elementary particles
Different elementary particles arise as different oscillation modes of string.
Graviton arises as one such oscillation.

Quantization leads to extra spatial dimensions( 10 dimensions when quantization
is done in flat space).
Newton’s constant G ∼ g2

s l8s in 10 dimensions where gs and ls are string coupling
and string length respectively. Basic string interaction is splitting and joining of
strings and is controlled by gs (perturbative description possible when gs ≪ 1 ).
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Introduction
Black Holes in String theory

String Theory and Supersymmetry

String theory has supersymmetry and in (extended) supersymmetric theories,
massive states satisfy BPS bound M ≥ Q.

States saturating BPS bound belong to short multiplet, preserve some
supersymmetries and are stable. BPS relation doesn’t change as moduli (like
string coupling) are varied and the dimension of the multiplet( hence the
counting of BPS states) also doesn’t change.

As long as joining of multiplets doesn’t happen, one can follow BPS states from
weak to strong coupling.

String theory contains other extended objects of various dimensionalities also.
Important ones are D-branes which are non-perturbative objects with M ∼ 1

gs
. At

weak coupling they are described by surfaces on which open strings can end.

Fig 3a Fig 3b
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Black Holes in String theory

Breakthrough

Breakthrough came in 1996 when Strominger and Vafa considered a charged black
hole made of D-branes.

Charged Black Holes are astrophysically not very viable but are theoretically
interesting since they satisfy a bound M ≥ Q.

Black Holes with zero temperature are called extremal and are often, but not
always, supersymmetric. BPS blackholes are stable, even quantum-mechanically.
Since they cease to Hawking radiate, the notion of degeneracy is also better
defined.

In string theory, black holes made of strings and D-branes are strong coupling
analogs of BPS states. One can calculate their entropy by adiabatically varying
the coupling

Start with an extremal black hole and calcualte it’s entropy S = A
4G

. Then
imagine reducing the coupling gs to a regime where one obtains a weakly coupled
system of strings and branes and one can count the number of BPS states.

For a wide variety of extremal and near-extremal black holes in various
dimensions,we get a perfect match between the macroscopic and microscopic
entropy calculations. Not only the entropies but rate of radiation and slight
deviations from thermal spectrum also match.
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Introduction
Black Holes in String theory

Moduli

Black holes appear when string theory is compactified to lower dimensions and
when branes are wrapped on non-trivial cycles of the compact manifold (so that
final configuration is point like).

In string theory, parameters of a consistent string background are determined by
the vacuum expectation of scalar fields.

These parameters (called moduli) include various coupling constants,shape and
size of compactification manifold, expectation values of Wilson lines of gauge
fields around non-trivial cycles etc.

These moduli appear as part of the black hole solutions, which turn out to exist
for generic values of asymptotic values of these moduli.

If black hole entropy depended on these continuous parameters(moduli) then it
would be problematic for a microscopic interpretation of entropy as logarithm of
the no. of microstates.
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Introduction
Black Holes in String theory

Attractors

It turns out that the entropy of an extremal black hole is determined by the
behavior of the solution at the horizon of the black hole and not at infinity.

Moduli field vary with the radius in such a way that their values at the horizon
are completely determined by the discrete quantities like charges, regardless of
their values at infinity.

Hence, the differential equations for radial dependence of moduli have attractor
solution..

Existence of an attractor is necessary for a microscopic description of black hole
entropy to be possible. Since string coupling is one of the moduli, this guarantees
that entropy wouldn’t depend on it and hence can be matched between strong
and weak coupling regimes.
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Agenda

In string theory, Beckenstein-Hawking formula is only an approximate formula
(valid when string theory reduces to classical general relativity).

It works well when charges carried by black hole are large and hence the curvature
at the horizon is small. On the microscopic side also, the large charge limit allows
us to use simple approximation techniques to calculate the degeneracy.

Can we do better? We need to have methods to calculate both macroscopic (black
hole) entropy and microscopic (statistical) degeneracy beyond the leading order.

Yogesh K. Srivastava Work with Dileep Jatkar and Ashoke Sen Shaving the Black Hole



Prologue
String Theory

Precision counting of microstates
Black Hole Hair

Analysis of the BMPV BH Entropy
Analysis of the 4D BH Entropy

Hair modes in Supergravity
Regularity of Hair Modes

Conclusion

Helicity Trace

In string theoretic approach to black holes, one typically computes an index, rather
than degeneracy on the microscopic side. For dyonic black holes that we consider,
helicity trace is the index. It is protected in the sense that it does not change
continuously as we vary the asymptotic moduli.

For a black hole that breaks 4n supersymmetries, we define

B2n =
1

(2n)!
Tr(−1)2h(2h)2n (3.1)

where h is the helicity(eigenvalue of the diagonal generator of the little group) and
the trace is over bosonic and fermionic states of the representation (fixed charge).

For each pair of broken supersymmetries, we have a pair of fermion zero modes
which give a bose-fermi pair of degenerate states after quantization. Witten index
Tr(−1)2h on such a pair of states will vanish unless we prevent it by inserting
factors of 2h.

In order that a given state gives a non-vanishing contribution to this index, the
number of supersymmetries broken by the state must be less than or equal to 4n.

In the classical limit, index matches with the Beckenstein-Hawking formula for
the degeneracy.
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In full quantum string theory, black hole entropy formula is modified due to
stringy and quantum corrections.
Typically in string theory, a black hole is characterized by multiple charges.
Quantum corrections and stringy corrections are characterized by different
combination of charges. Depending on the value of charges, either stringy
corrections or quantum corrections or both may be important.
General Relativity is governed by an action which involves derivatives of the
relevant field-metric tensor

I =
1

16πG

Z √
gRabcdgacgbd (3.2)

String Theory predicts extra terms (stringy corrections) involving higer derivatives
in the action,apart from the two derivative action.

I =
1

16πG

Z √
g

“
Rabcdgacgbd + c1(Rabcdgacgbd )2 + c2RabcdRabcd + ..

”
(3.3)

If we adjust the charges so that we can ignore quantum corrections then we have
an exact formula, due to Wald, which gives entropy

SBH = 2π

Z

S2
ǫµνǫρλ

∂L
∂Rµνρλ

d2Ω (3.4)

This can be compared with microscopic results and it agrees in all cases studied
so far.
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Microscopic Approach

Count the states in the quantum hilbert space of string theory with the same
charges and mass as the black holes. In general, quite complicated, but
sometimes we can do exact counting.

Degeneracy of states in string theory is,in many cases, given by fourier
coefficients of modular forms. For states with just electric charge Q ( these are
half BPS in N = 4 theories), the degeneracy Ω(Q) = c(Q2/2) where

Z(q) =
1

q
Q

n(1 − qn)24
=

X

N

c(N)qN (3.5)

Ω(Q) =

I
dσ

e−πiQ2σ

η24(σ)
(3.6)

where η(σ) is the Dedekind eta-function and q = e2πiσ.

For 4D dyonic black holes( with both electric and magnetic charges) in N = 4
theories, degeneracy given in terms of fourier coefficients of Siegel Modular form

Z(q, p, y) =
1

Φ(q, p, y)
=

X
c(N,M,L)qNpMyL (3.7)

Ω(Q,P) = c(Q2/2,P2/2,Q · P) (3.8)

Yogesh K. Srivastava Work with Dileep Jatkar and Ashoke Sen Shaving the Black Hole



Prologue
String Theory

Precision counting of microstates
Black Hole Hair

Analysis of the BMPV BH Entropy
Analysis of the 4D BH Entropy

Hair modes in Supergravity
Regularity of Hair Modes

Conclusion

Matching

So the general approach for dyonic black hole entropy calculations in string theory is
following:

Calculate the entropy from the effective action including subleading corrections.
Classical corrections to A/4G are given by Wald’s formula. For quantum
corrections, Ashoke Sen’s Quantum entropy function is one proposal.

Compute the degeneracy from the asymptotic expansion of the fourier coefficients
of Siegel Modular form for large charges.

Compare these two completely different computations and see if they match. For
N = 4 strings, we find matching with great precision to several subleading orders.
Even many exponentially suppressed terms can be matched.
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Expectations

Best hope to have an exact relation of the form dmacro = dmicro is for extremal black
holes. In many cases, dmicro (rather an index) is exactly known. The macroscopic
entropy of an extremal black hole is determined completely by its near horizon
geometry.

Arguments

The Beckenstein-Hawking entropy of a BH is proportional to the area of its event
horizon. Wald’s modification to include higher-derivative corrections still uses
only horizon data (classical lagrangian density in the near-horizon region).
Quantum Entropy function also is on near-horizon geometry only.

For extremal black holes, an infinite throat separates the horizon from the rest of
the black hole spacetime.

Conclusion: Two different black holes with identical near-horizon geometries should
have identical macroscopic and microscopic degeneracies.
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A trivial counter-example

Due to attractor mechanism, near-horizon geometry is independent of asymptotic
values of moduli. But microscopic degeneracy jumps across the walls of marginal
stability as we vary the asymptotic moduli.

Resolution is provided by the existence of multicentered black holes with same set
of charges as single-centered black holes.

As we cross a wall of marginal stability, some of these multicentered black holes
cease to exist and hence cause a jump in the degeneracy.

Reformulation : String Theory in the near-horizon geometry captures information
about microscopic degeneracy of single centered black holes only.
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A non-trivial Counter-example

The postulate that two BHs with identical near horizon geometry will have identical
degeneracies seems to be violated by the following example:

(1) BMPV Black Hole

Microscopic description - A D1-D5 system of IIB on K3 × S1 × 5D flat
spacetime, carrying momentum along S1 and equal angular momentum in two
planes transverse to the D5-brane.

Macroscopic description - A 5D rotating black hole.

VERSUS

(2) Four-dimensional Rotating Black Hole

Microscopic description - BMPV moving in a Kaluza-Klein monopole background
whose microscopic degenaracies are different from just BMPV due to modes on
taub-nut and relative motion between BMPV and taub-nut.

Macroscopic description - A 4D black hole with same near horizon geometry as
BMPV.
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Puzzle and Resolution

Two black holes have same near horizon geometries but different microscopic
degeneracy in subleading order.

Proposed Resolution

Microscopic degeneracy computation captures contribution from d.o.f. living
outside the horizon as well. These outside d.o.f are called ”hair”.

For 2 BHs with identical near horizon geometry, we should get identical
degeneracy after we remove these ”hair d.o.f.”. For single-centered black holes,
dmicro = dhair ∗ dhorizon = dmacro

For supersymmetric black holes, hair can identified as classical, supersymmetric,
normalizable deformations of the black hole solution with support outside the
horizon. One can then do geometric quanitzation over this space of solutions to
get dhair .

Yogesh K. Srivastava Work with Dileep Jatkar and Ashoke Sen Shaving the Black Hole



Prologue
String Theory

Precision counting of microstates
Black Hole Hair

Analysis of the BMPV BH Entropy
Analysis of the 4D BH Entropy

Hair modes in Supergravity
Regularity of Hair Modes

Conclusion

Microscopic Description
Macroscopic Description
Hair Removal

Outline
1 Prologue

Introduction
2 String Theory

Introduction
Black Holes in String theory

3 Precision counting of microstates
4 Black Hole Hair
5 Analysis of the BMPV BH Entropy

Microscopic Description
Macroscopic Description
Hair Removal

6 Analysis of the 4D BH Entropy
Microscopic Description
Macroscopic description
Hair Removal

7 Hair modes in Supergravity
BMPV Black Hole Hair
Fermionic Deformations
Deformations of 4-dimensional black holes

8 Regularity of Hair Modes
9 Conclusion
Yogesh K. Srivastava Work with Dileep Jatkar and Ashoke Sen Shaving the Black Hole



Prologue
String Theory

Precision counting of microstates
Black Hole Hair

Analysis of the BMPV BH Entropy
Analysis of the 4D BH Entropy

Hair modes in Supergravity
Regularity of Hair Modes

Conclusion

Microscopic Description
Macroscopic Description
Hair Removal

Microscopic Components

We describe a quarter BPS state with 12 out of 16 SUSYs broken. The microscopic

description involves Q5 D5-branes wrapped on K3× S1 and Q1 D1-branes wrapped on
S1 carrying −n units of momentum along S1 (with n > 0) and J units of angular
momentum.

We take Q5 = 1 without any loss of generality as the result depends through the
combination Q5(Q1 − Q5).

We denote the SO(4) rotation group of 5D space-time by SU(2)L × SU(2)R .

We identify the angular momentum J with twice the diagonal generator of
SU(2)L .

We denote by h the eigenvalue of the diagonal generator of SU(2)R .

We choose the convention that left-chiral spinors of SO(1, 1) carry
(J = 0, 2h = ±1) and right-chiral spinors of SO(1, 1) carry (J = ±1, h = 0).
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Partition Function

We define partition function of 5D black hole with quantum numbers (n,Q1, J)in
terms of helicity trace d5D (n,Q1, J) = Tr

`
(−1)2h+J (2h)2

´
/2! as

Z5D (ρ, σ, v) =
X

n,Q1,J

d5D (n,Q1, J) exp [2πi{(Q1 − 1) σ + (n − 1) ρ+ vJ}]

The −1 in Q1 − 1 is because D5 brane on K3 carries −1 unit of D1 charge.
The −1 in n − 1 is because charge at infinity and horizon differ due to
chern-simons coupling in the action.

Explicit calculation gives

Z5D (ρ, σ, v) = e−2πiρ−2πiσ
Y

k,l,j∈zz
k≥1,l≥0

“
1 − e2πi(σk+ρl+vj)

”−c(4lk−j2)

×

8
<
:

Y

l≥1

(1 − e2πi(lρ+v))−2 (1 − e2πi(lρ−v))−2 (1 − e2πilρ)4

9
=
;

×(−1) (eπiv − e−πiv )2

(5.9)
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First line above is due to relative motion of the D1-D5 system (elliptic genus of
symmetric products of K3’s) while rest is the contribution of centre of mass modes of
D1-D5 system.

C.O.M contribution

Ground state of D1-D5 system breaks four translational symmetries and 8 susys.This
gives 4 goldstone bosons and 8 goldstinos. BPS condition freezes all right moving
excitations except the zero modes. Centre of mass contribution then consists of
following :

1. 4 left moving bosons carrying J = ±1 .

2. 4 left-moving fermion zero modes (J = 0, 2h = ±1) (soak up (2 h)2/2! in helicity
trace ) and 4 right-moving (J = ±1, 2h = 0) fermion zero-modes from the SUSYs
broken by D1 − D5 ground state.

3. After soaking the zero modes, helicity trace reduces to Witten index for 4
left-moving fermionic fields
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Classical Solution

Since the microscopic counting does not distinguish between hair and horizon d.o.f.
we need the macroscopic description.

Metric

The solution has following 6D metric :

dS2 =
“
1 +

r0

r

”−1
[−dt2 + (dx5)2 +

r0

r
(dt + dx5)2 +

+
eJ
4r

(dt + dx5) (dx4 + cos θ dφ)]

+
“
1 +

r0

r

”
ds2

flat

Here, we set all scalar fields to fixed values with their asymptotic values equal to
attractor values.

eΦ = λ , r0 =
λ(Q1 − Q5)

4V
=
λQ5

4
=

λ2|n|
4R2

5V
, J̃ =

Jλ2

2R5V
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Hair Degrees of Freedom

ZERO MODES

Since Black hole breaks translational symmetry and 12 out of 16 SUSY’s, we expect
following zero modes on black hole world-volume.

4 bosonic zero modes from 4 broken translational symmetries.

4 left-chiral fermion zero modes (which soak up (2 h)2/2! in the helicity trace)
and 8 right-chiral fermionic zero modes which, when quantized, give a factor
(exp πiv − exp−πiv)4.

LEFT-MOVING FIELDS

Given a zero mode, we explore if it is possible to lift it to a full fledged field in (1 + 1)
dimensions spanned by the coordinates (t, x5).

g++ and g+i components of the metric which violate (1 + 1) dimensional Lorentz
invariance don’t give rise to g++ or g+i component and the left-moving fields ϕ,
for which ∂−ϕ = 0 do not couple to g−− or g−i , continue to describe solutions
to linearized e.o.m. around the black hole background.

So black-hole world-volume has 4 left-moving bosonic fields and fermion fields.
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Partition Function for Hair d.o.f.

Bosonic modes turn out to be singular at the horizon. So we don’t count those. The
total contribution to the partition function from the degrees of freedom living outside
the horizon is thus :

Zhair
5D (ρ, σ, v) = (eπiv − e−πiv )4

×
Y

l≥1

(1 − e2πilρ)4

so that we have the relation

Zhor
5D (ρ, σ, v) = Z5D/Z

hair
5D

= −e−2πiρ−2πiσ (eπiv − e−πiv )−2
Y

k,l,j∈zz
k≥1,l≥0

“
1 − e2πi(σk+ρl+vj)

”−c(4lk−j2)

8
<
:

Y

l≥1

(1 − e2πi(lρ+v))−2 (1 − e2πi(lρ−v))−2

9
=
; . (5.10)
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Microscopic Components

Partition Function

We define the partition function of the 4D BH with quantum numbers (n,Q1, J)
in terms of the sixth helicity trace d4D (n,Q1, J) = Tr((−1)2h+J (2h)6)/6! as :

Z4D (ρ, σ, v) =
X

n,Q1,J

d4D (n − 1,Q1, J) exp [2πi{(Q1 − 1) σ + (n − 1) ρ+ vJ}]

We have n − 1 in the argument of d4D because charge measured at horizon and
infinity agree for 4D black hole.

Explicit computation gives

Z4D(ρ, σ, v) = −e−2πiρ−2πiσ−2πiv
Y

k,l,j∈zz
k,l≥0,j<0 for k=l=0

“
1 − e2πi(σk+ρl+vj)

”−c(4lk−j2)

The e−2πiρ factor is due to ground state of the Taub-Nut carrying −1 unit of
momentum along S1 (due to higher derivative terms)
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4D BH Solution

The 4D BH is obtained by placing the 5D BMPV BH at the center of Taub-NUT
space. The metric is given by

dS2 =
“
1 +

r0

r

”−1 h
−dt2 + (dx5)2 +

r0

r
(dt + dx5)2

+
eJ
4

„
1

r
+

4

R2
4

«
(dx4 + cos θ dφ)(dt + dx5)

#
+

“
1 +

r0

r

”
ds2

TN

It has the same near horizon geometry (metric) as the BMPV BH.

Black hole admits a normalizable two form, inherited from Taub-Nut

ω = − r

4r + R2
4

sin θdθ ∧ dφ+
R2

4

(4r + R2
4 )2

dr ∧ (dx4 + cos θdφ)
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Hair Degrees of Freedom

ZERO MODES

3 bosonic zero modes from 3 broken translational symmetries.

4 left-chiral and 8 right-chiral fermionic zero modes from 12 broken spacetime
SUSYs which soak up (2 h)6/6! in the helicity trace.

Black hole solution admits a normalizable closed two-form. Any 2-form along this
gives rise to a scalar mode.

a 1 scalar from NS-NS 2-form field

b 1 scalar from R-R 2-form field

c 22 scalars from 19 left-chiral and 3 right chiral 2-form fields from the 4-form field
with self-dual field strength reduced on the 22 internal cycles of K3.

By arguments similar to 5D black hole case, right movers are frozen but left-movers
are full fields on worldvolume.

Hair 4D

3 + 21 = 24 left-moving scalars

4 left-moving fermionic fields
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Partition Function for Hair d.o.f.

Four fermionic modes cancel the contribution from four of the bosonic modes. So only
20 bosons contribute.

Hair Partition function

The total contribution to the partition function from the degrees of freedom living
outside the horizon is :

Zhair
4D (ρ, σ, v) =

∞Y

l=1

“
1 − e2πilρ

”−20

Using the relation

Z4D = Zhor
4D × Zhair

4D
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Partition Function for Horizon d.o.f.

The partition function obtained for the horizon d.o.f. of the 4D BH is :

Zhor
4D (ρ, σ, v) = Z4D/Z

hair
4D

= −e−2πiρ−2πiσ (eπiv − e−πiv )−2
Y

k,l,j∈zz
k≥1,l≥0

“
1 − e2πi(σk+ρl+vj)

”−c(4lk−j2)

8
<
:

Y

l≥1

(1 − e2πi(lρ+v))−2 (1 − e2πi(lρ−v))−2

9
=
;

where is the last step we have used c(−1) = 2, c(0) = 20.

which is the SAME as that obtained for the BMPV BH.
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Transverse Oscillations of BMPV

Garfinkle-Vachaspati technique

Given a space-time with metric GMN satisfying the supergravity equations and a null,
killing and hypersurface orthogonal vector field kM , i.e., satisfying the following
properties

kMkM = 0, kM;N + kN;M = 0, kM;N =
1

2
(kMA,N − kNA,M )

for some scalar function A, one can construct a new exact solution of the equations of
motion by defining

G ′
MN = GMN + e−ATkMkN

where the function T satisfies

∇2T = 0 , kM∂MT = 0

The new metric G ′
MN

describes a gravitational wave on the background of the original
metric provided the matter fields, if any, satisfy some conditions.
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Applying the transformations to BMPV metric, we get

ds2 = ψ−1(r)
˘
dudv + (ψ − 1 + T (v , ~w))dv2 + χi (r)dvdwi

¯
+ ψ(r)dwi dwi

where r = (wiwi )/4 and T (v , ~w) satisfies the flat four dimensional Laplace equation:

∂w i ∂w i T (v , ~w) = 0

Matter fields remain unchanged. Demanding asymptotic flatness and regularity, we get

transverse oscillations metric

ds2 = ψ−1(r)
h
dudv +

n
ψ − 1 + ~f (v) · ~w

o
dv2 + χi (r)dvdwi

i
+ ψ(r)dwi dwi

This doesn’t look asymptotically flat but can be made by coordinate transformation.
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Fermionic Deformations

Gravitino

Since the black hole solution breaks 12 of the 16 space-time supersymmetries, there
are 12 fermionic zero modes.

Four of these lift to full left moving fields on the two dimensional world volume of
black hole.

The linearized equation of motion of Ψα
M

and χαr in the background where all the
scalars are constants and χαr are set to zero are

ΓMNPDNΨα
P − H̄kMNPΓN

bΓk
αβΨβ

P
= 0,

HsMNP ΓMNΨα
P = 0

Since background is self-dual, HsMNP = 0, second equation is automatically solved.
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To solve, gravitino equation, we make the ansatz

Ψα
M = 0 for M 6= v

Gauge condition
ΓMΨα

M = 0 → ΓvΨα
v = 0

We also have projection condition

∂uΨ
α
v = 0 , eΓ0 eΓ1 Ψα

v = Ψα
v

Gravitino Solution

Solving the gravitino equation,we get following solutions

Ψv = ψ−3/2 η(v , θ, φ) for bΓ1 η = −η ,
Ψv = ψ−1/2 η(v , θ, φ) for bΓ1η = η

where η(v , θ, φ) is an SO(5,1) spinor and also an SO(5) spinor. Only the first solution
preserves supersymmetry.
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Bosonic deformations representing transverse oscillations

Fermionic deformations are exactly same as for BMPV in flat space. So we only
discuss bosonic deformations. Deformations describing the oscillation of the black hole
in the three transverse non-compact direction.

Garfinkle-Vachaspati in 4D

ds2 = ψ−1(r)
h
du dv +

“
ψ(r) − 1 + eT (v , ~y , x4)

”
dv2 − 2eζ dv

i
+ ψ(r) ds2

TN

Here

eT (v , ~y , x4) ≡ eT (v , ~y) = ~g(v) · ~y ,
Z 2πR5

0
gi (v)dv = 0

where (g1(v), g2(v), g3(v)) are three arbitrary functions.
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Oscillations of the 2-form fields

Taub-NUT space has a self-dual harmonic form ωTN given by

ωTN = − r

4r + R2
4

sin θdθ ∧ dφ +
R2

4

(4r + R2
4 )2

dr ∧ (dx4 + cos θdφ)

Metric Perturbation due to 2-form

We now switch on a deformation of the form

δ(ds2) = ψ−1(r)
“

eS(v , ~y , x4)
”

dv2, δHs = hs (v) dv ∧ ωTN

where hs (v) are arbitrary functions Following solution describes a normalizable
deformation of the metric, outside the horizon:

eS(v , ~y , x4) =
C(v)r

2R2
4 (4r + R2

4 )
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Killing spinors and Fermion-Zero Modes

Besides the hair modes described above, both black holes carry twelve fermionic zero
modes associated with the broken supersymmetry generators.

Fermion Zero modes in SUGRA

We take a local supersymmetry transformation whose parameter approaches a
constant spinor other than the Killing spinor at infinity and vanishes at the
horizon, and apply it to the original black hole solution to generate a fermionic
zero mode.

Since there are 12 independent supersymmetry transformations whose parameters
do not approach a Killing spinor at infinity, this generates 12 fermion zero modes.

The Killing spinor equation in the BMPV black hole and BMPV black hole in the
Taub-NUT space, obtained by setting δΨα

M
= 0, is

DMǫ−
1

4
H̄ i

MNPΓNP bΓi ǫ = 0

where H̄ i
MNP

for 1 ≤ i ≤ 5 are self-dual field strengths of 2-form fields in six
dimensions.
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Killing spinors

We find the following solutions:

ǫ = ψ(r)−1/2 e iφ/2 ǫ1θ, ǫ = ψ(r)−1/2 e−iφ/2 ǫ2θ

where ǫ1θ = (cos θ/2 , sin θ/2)T and ǫ2θ = (cos θ/2 , − sin θ/2)T . Killing spinors for
both flat space and TN are same in our conventions.

TN Killing spinors

The Taub-NUT space has SU(2) holonomy, which by convention is identified
with SU(2)L subgroup of its SO(4) tangent space symmetry.

Fermions in the Taub-NUT space transform as (2, 1) + (1, 2) under
SO(4) = SU(2)L × SU(2)R . Thus half of the fermions are neutral under SU(2)L
and hence behave as free fermions as far as the Taub-NUT space is concerned.

In our conventions, SU(2)L singlets are left moving with respect to SO(1, 1) and
SU(2)R singlets are right moving. Since Killing spinors corresponds to unbroken
supersymmetry, which in our convention are left moving spinors of SO(1, 1), they
are singlet of the Taub-NUT holonomy group SU(2)L .

As a result the Killing spinors are unaffected when we replace flat space by the
Taub-NUT space.
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Non-Singular coordinates for the Black Hole

We have studied BMPV and 4d black holes in Schwarzschild-type or isotropic
coordinates. In these coordinates, there is a coordinate singularity at the horizon , at
r → 0 and u, v → ∞. Are the hair modes regular at the horizon?

The original BMPV metric may be expressed as

ds2 = ψ−1(dudv+Kdv2)+ψ
`
r−1dr2 + 4 r dΩ2

3

´
, dΩ2

3 ≡ 1

4

`
(dx4 + cos θdφ)2 + dΩ2

2

´
,

(8.11)
where,

ψ = 1 +
r0

r
, K = ψ − 1 . (8.12)

We will now do the following coordinate transformation:

V = −√
r0 exp(− v

√
r0

), W =
1

R
exp(

v

2
√

r0
), U = u +

R2

2
√

r0
+ 2v , (8.13)

R ≡ 2

r
r0

“
1 +

r0

r

”
. (8.14)

Note that the region outside the horizon has V < 0.
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In these new coordinates the metric becomes

ds2

4r0
= W 2dUdV + dV 2r0W

4Z−3(24 + 128
√

r0VW 2 + 192r0V
2W 4)

−dVdW 4
√

r0WZ−3(3 + 12
√

r0VW 2 + 16r0V
2W 4) + W−2Z−3dW 2 + Z−1dΩ2

3

Here Z = 1 + 4
√

r0VW 2. It is now easy to see that the metric is regular at the future
horizon V = 0. In fact the metric components are polynomials in V and therefore
they are analytic functions of V . Thus all derivatives of the metric components, and
hence the Riemann tensor, remain finite at the horizon for finite W .
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Regularity Analysis

Steps

Usually to show regularity, one calculates the curvature invariants. But for our
case, curvature invariants before and after adding deformations are all same!!
Still there is possibility of null singularities.

A way to characterize such singularities is to calculate Riemann tensor in a frame
which is parallely propagated along a geodesic. This quantity occurs in geodesic
deviation equation.

For complicated metrics like ours, finding geodesics is difficult. Thankfully, for
checking curvature singularities, it suffices to use a frame continuous across the
horizon and calculate Riemann tensor in that frame.

For all the modes, we can find non-singular coordinates such that modes are
continuous at the horizon.

When we calculate Riemann tensor, we find that transverse oscillations of 5d
BMPV black hole lead to divergence in some componenets of Riemann tensor.
It’s counterpart in 4d, the relative motion between BMPV and taub-nut is also
singular.
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Conclusion

Removing the divergent modes from 4d and 5d black hole hair counting, we get
the exact matching of partition function associated with horizon d.o.f

Future Directions: Hair modes in other systems? Connection with fuzzballs?
Geometric Quantization of these modes ?

To conclude : The equality of Zhor
4D and Zhor

5D shows that the microscopic and
macroscopic degeneracies associated with the near horizon degrees of freedom of the
4D and the 5D black holes are identical.
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