
Peter Koroteev

Talk at IPMU
November 4th 2015

Quantum Hydrodynamics 
from Large-N Gauge Theories

1510.00972 with A. Sciarappa

http://www.perimeterinstitute.ca/people/Peter-Koroteev
http://www.perimeterinstitute.ca/


Large-N Gauge Theories

Gauge theories are known to have effective descriptions when the  
number of colors is large U(N) N ! 1

For supersymmetric gauge theories we expect to compute the 
effective large-N theory exactly

There are plenty of examples in the literature



N=2 Gauge Theories
We focus on theories in four and five dimensions with eight 
supercharges which famously have Seiberg-Witten description in IR

At the moment we have plethora of exact results for those theories 
thanks to Nekrasov’s computation of instanton partition functions

Nekrasov’s original woks has been greatly extended in to:
• various supergravity backgrounds (e.g. spheres)
• quiver gauge theories
• five and six-dimensional theories on  
• low dimensional theories

A The ADHM quiver and Bethe Ansatz Equations for ILW 40

1 Introduction and Summary

In recent years plethora of deep and insightful results was obtained while studying physics
of supersymmetric gauge theories in the presence of defects of various types preserving
fractional amount of supersymmetry [1–6]. A typical setup involves a ‘higher’ dimensional
gauge theory in four, five, or six dimensions with eight supercharges living on a manifold
which locally resembles

XD = R4 ⇥ ⌃ , (1.1)

where ⌃ is a manifold of dimension zero, one, or two (usually, a point, a circle, and an
elliptic curve respectively). The precise choice of the space-time geometry depends on the
problem, in particular on which observable is being computed. The majority of recent work
was done on compact manifolds, mostly on spheres [7–15].

The second ingredient of the construction is a d-dimensional BPS defect which is im-
mersed into the spacetime XD such that its stress-energy tensor represents a delta-function
T ⇠ �

(D�d)
T

0. The defect itself supports a ‘lower’ dimensional supersymmetric gauge
theory on its worldvolume. The defect degrees of freedom interact with the degrees of
freedom of the higher dimensional bulk theory, thereby creating a rather complex coupled
D/d-dimensional system. The gauge interactions in the bulk theory and on the defect are
controlled by different couplings, we shall refer to them as Q and t respectively1. Therefore,
bulk-defect and bulk-bulk interactions are controlled by Q. In the decoupling limit, when
Q ! 0, those interactions disappear and we are left with the gauge theory on the defect.

For the purpose of this work, in which we shall focus on the five-dimensional N = 1

⇤

theory with U(n) gauge group, it will be sufficient to study the theory on the following
Euclidean space

X5 = C✏1 ⇥ C✏2 ⇥ S

1
� , (1.2)

where we turned on Omega background along two complex directions with equivariant
parameters ✏1 and ✏2 [16], and where � is radius of the circle. The 5d theory is enriched by
a codimension-two defect which lives in C✏1 ⇥ S

1
� . This setup was studied in great details

in [6], where it was used in quantization of the Seiberg-Witten curve of the 5d theory in
question as well as finding formal solutions of trigonometric and elliptic quantum many-
body systems of Ruijsenaars-Schneider type [17–21].

In this paper we shall capitalize on the results of [6] and study new connections between
gauge theories with defects and other physical systems, as well as the interpretation of
those connections in mathematical terms. Let us first describe our physics agenda, the
mathematical way of stating the new correspondence will be presented later in Sec. 1.2.

1An exact expression in terms of gauge coupling constant ⌧YM depends on the number of dimensions.

– 2 –

We shall study theories with adjoint matter on
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X3 = C✏1 ⇥ S1
�



Three-way approach
N=2 gauge theories

Integrable many-body
systems

Geometric Representation
Theory



Integrable Models
N particles on a line or circle  
with near-neighbor interaction

x1
x2

xN

H1, . . . ,HN

Integrability 

Admits N integrals of motion (hamiltonians)

Example: Trigonometric Ruijsenaars-Schneider model
function of the T [U(n)] theory. In other words, the T [U(n)] partition function is the
common eigenfunction of the quantum trigonometric Ruijsenaars-Schneider Hamiltonians

D

(1)
n,~⌧ (q, t) =

nX

i=1

nY

j 6=i

t⌧i � ⌧j

⌧i � ⌧j
Tq,i . (2.6)

Here ⌧l are the positions of the particles, t is a parameter determining the strength of the
interaction, and Tq,i is a shift operator acting as

Tq,if(⌧1, . . . , ⌧i, . . . , ⌧n) = f(⌧1, . . . , q⌧i, . . . , ⌧n) (2.7)

on functions of the ⌧l variables; we can think of it as Tq,i = e

i�e✏1 ⌧i@⌧i
= q

⌧i@⌧i . In the limit
� ! 0, D

(1)
n,~⌧ reduces to the n-particles trigonometric Calogero-Sutherland Hamiltonian.

The eigenvalue of quantum Hamiltonian D

(1)
n is given by the vacuum expectation valueD

W

U(n)
⇤

E
= S1(µi) = µ1+. . .+µn of the flavor Wilson loop wrapping S

1
� in the fundamental

representation of U(n).
The partition function on Cq ⇥ S

1 coincides (up to a pre-factor) with the holomorphic
blocks Bl [46] of the T [U(n)] theory (l = 1 . . . , n!), which in turn can be obtained by
factorizing the partition function on the squashed three-sphere S

3
b as

ZS3
b
(~µ,~⌧ , t, q) =

n!X

l=1

|Bl(~µ,~⌧ , t, q)|2 (2.8)

after an appropriate identification of e✏1 with the squashing parameter b. Note that the holo-
morphic blocks Bl are infinite series in the FI parameters and have to be thought as formal
eigenstates, as they might not be normalizable. However, when the mass parameters are
specified to certain values the above series expansion truncates to Macdonald polynomials.

2.2 Macdonald Polynomials

The holomorphic block for T [U(2)] theory with FI parameter ⌧1/⌧2 and mass parameters
µ1, µ2, t on Cq ⇥ S

1 reads [6]

B(⌧1, ⌧2;µ1, µ2, t, q) =
⇥q(t

�1/2
⌧1)⇥q(t

1/2
⌧2)

⇥q(µ1⌧1)⇥q(µ2⌧2)
2F1

✓
t, t

µ1

µ2
; q

µ1

µ2
; q; qt

�1 ⌧1

⌧2

◆
, (2.9)

where

⇥q(x) = (q; q)1(x; q)1(q/x; q)1 , (x; q)1 =

1Y

s=0

(1� xq

s
) . (2.10)

The second holomorphic block is obtained from the above expression by interchanging µ1

and µ2. Both blocks satisfy difference equations of trigonometric Ruijsenaars-Schneider
system

D

(1)
q B = (µ1 + µ2)B ,

D

(2)
q B = µ1µ2B , (2.11)
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Integrable Models

❃

❂

❃

❂

❥

❥

❥

✗

✛

coordinate

momentum rational trigonometric elliptic

rational

trigonometric

elliptic

rational Calogero
trigonometric

Calogero

elliptic

Calogero

rational Ruijsenaars
trigonometric

Ruijsenaars

elliptic

Ruijsenaars

dual Calogero dual

Ruijsenaars
Dell system

Figure 2: Action of the coordinate-momentum duality on the Calogero-Ruijsenaars-Dell family.

Hooked arrows mark self-dual systems. The duality leaves the coupling constant ν intact.

Since the theories of this family describes low energy limits of different SUSY gauge theories, this

table describes the dualities between different gauge theories too. Say, perturbative limit of the 4d

theory (trigonometric Calogero) is dual to a special degeneration [148] of the perturbative limit of the

5d theory (rational Ruijsenaars), while full, non-perturbative 5d theory (elliptic Ruijsenaars) is dual

to the perturbative limit of the 6d theory (Dell system).

To conclude our discussion of dualities and Dell systems, we calculate the perturbative prepotential

of the 2-particle Dell system (7.159) and show that it coincides with what is to be expected for the 6d

theory with adjoint matter, supporting the identification of the Dell system with the 6d gauge theory.

Let us start from the full Dell model for 2-particles. Then, it is given by the Hamiltonian (7.159)

parametrized by two independent (momentum and coordinate) elliptic curves with elliptic moduli k

and k̃. As usual, for two particles we can construct the full spectral curve from the Hamiltonian ([37],

see also ss.3.2, s.3.7 and (7.127)),

H(ζ, ξ|k, k̃) = u ( = cn(Q|k) ) (7.191)

It is characterized by the effective elliptic moduli

keff =
kα(q|k̃)

β(q|k, k̃)
, k̃eff =

k̃α(q|k)

β(q|k̃, k)
(7.192)

where the functions α and β are manifestly given in (7.157). Coordinate-momentum duality inter-

changes k ↔ k̃, keff ↔ k̃eff (and q, p↔ Q, P ), while in general SU(N) case, the model describes an

interplay between the four tori: the two bare elliptic curves and two effective Jacobians of complex

dimension g = N − 1.

From our previous discussions it should be clear that the generating differential in 6d theories is

of the form dS = ζdξ, with ξ living on the coordinate torus and ζ – on the momentum torus.

Now we calculate the leading order of the prepotential expansion in powers of k̃ when the bare

spectral torus degenerates into sphere. In the forthcoming calculation we closely follow the line of

s.5.6.

When k̃→ 0, sn(q|k̃) degenerates into the ordinary sine. For further convenience, we shall param-

eterize the coupling constant 2ν2 ≡ sn2(ϵ|k). Now the spectral curve (7.191) acquires the form

109
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Then one evaluates both equations above at roots of unshifted Qi, divides one equation by

another equation in order to get (2.8) from the ratio. Note that the unknown polynomials

eQi drop out. Note that e⌧i+1

� e⌧i in the right hand side of (2.12) drops out as well, and

it may seem redundant at this stage, however, as we shall see momentarily, it turn out to

give a convenient normalization for polynomials eQi.

2.1 Twisted Chiral Ring of T [U(N)] Theory

After setting out the general formulae, now we now restrict the discussion to T [U(N)]. An

immediate simplification is that �j = 0 and so we can set e⌧j = ⌧j . Also we absorb the sign

ambiguity into the FI parameters. In order to provide a recursive argument it is convenient

to introduce the notation Q
0

(�) = 1 and QN (�) = MN�1

(�). Then we have uniformly

⌧j+1

Q�
j
eQ+

j + (�1)�j⌧jQ
+

j
eQ�
j = (⌧j+1

� ⌧j)Qj�1

Qj+1

. (2.14)

1 2 N-1 N

Figure 2. Three dimensional N = 4 quiver theory with gauge group U(1) ⇥ · · · ⇥ U(N � 1) and

flavor symmetry U(N) on the last node, which represents contangent bundle to complete N -flag as

a Nakajima quiver variety.

Thus from the first equation from (2.12) we get

Q
2

=
⌧
2

Q�
1

eQ+

1

� e⌧
1

Q+

1

eQ�
1

⌧
2

� ⌧
1

. (2.15)

In what follows we relabel Q
1

= q
1

and eQ
1

= q
2

. From the above equation it follows that

both q
1

and q
2

are monic polynomials of degree one, therefore we can write them as

qi = u � pi , (2.16)

for some, so far unknown constants pi. The next equation in (2.14) reads

⌧
3

Q�
2

eQ+

2

� e⌧
2

Q+

2

eQ�
2

= (⌧
2

� ⌧
1

)Q
3

Q
2

, (2.17)

which we can solve w.r.t Q
3

. In order to make the notations more uniform we introduce

new polynomial q
3

which satisfies

eQ
2

=
⌧
3

q�
1

q+
3

� ⌧
1

q+
1

q�
3

⌧
3

� ⌧
1

. (2.18)
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3d Theory
           quiver gauge theory on X3 = C✏1 ⇥ S1

�

Theory depends on twisted masses     and FI parameters

The partition function computed by localization

function of the T [U(n)] theory. In other words, the T [U(n)] partition function is the
common eigenfunction of the quantum trigonometric Ruijsenaars-Schneider Hamiltonians
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The eigenvalue of quantum Hamiltonian D

(1)
n is given by the vacuum expectation valueD

W
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⇤

E
= S1(µi) = µ1+. . .+µn of the flavor Wilson loop wrapping S

1
� in the fundamental

representation of U(n).
The partition function on Cq ⇥ S
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3
b as
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b
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after an appropriate identification of e✏1 with the squashing parameter b. Note that the holo-
morphic blocks Bl are infinite series in the FI parameters and have to be thought as formal
eigenstates, as they might not be normalizable. However, when the mass parameters are
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2.2 Macdonald Polynomials

The holomorphic block for T [U(2)] theory with FI parameter ⌧1/⌧2 and mass parameters
µ1, µ2, t on Cq ⇥ S

1 reads [6]

B(⌧1, ⌧2;µ1, µ2, t, q) =
⇥q(t

�1/2
⌧1)⇥q(t

1/2
⌧2)

⇥q(µ1⌧1)⇥q(µ2⌧2)
2F1

✓
t, t

µ1

µ2
; q

µ1

µ2
; q; qt

�1 ⌧1

⌧2

◆
, (2.9)

where

⇥q(x) = (q; q)1(x; q)1(q/x; q)1 , (x; q)1 =

1Y

s=0

(1� xq

s
) . (2.10)

The second holomorphic block is obtained from the above expression by interchanging µ1

and µ2. Both blocks satisfy difference equations of trigonometric Ruijsenaars-Schneider
system

D

(1)
q B = (µ1 + µ2)B ,

D

(2)
q B = µ1µ2B , (2.11)
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µi ⌧i
t = emand N=2* mass

is the eigenstate of the trigonometric Ruijsenaars system!
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N = 2⇤



Generic 3d quiver
For a generic T[U(N)] quiver

This connection can be translated in gauge theoretical terms. While the �ILW sys-
tem corresponds to the ADHM quiver on C ⇥ S

1
� , the n-particle eRS system, as we have

mentioned earlier, has a gauge theory realization as a 5d N = 1

⇤
U(n) theory in Omega

background (1.2) coupled to a 3d T [U(n)] defect on C✏1 ⇥ S

1
� [6]. One may think of U(n)

global symmetry of the 3d theory as being gauged. The eigenfunctions and eigenvalues of
the eRS model correspond to the coupled 5d/3d instanton partition function Z

inst
5d/3d and

to the vacuum expectation values of the Wilson loop in the fundamental representation of
U(n) hWU(n)

⇤ i respectively, in the so-called Nekrasov-Shatashvili limit [39] when ✏2 ! 0.
In this work we will show that in the n ! 1 limit the Wilson loop VEV hWU(n)

⇤ i coming
from this coupled 5d/3d theory reduces to the hTr�i observable of the twisted chiral ring
of the 3d ADHM quiver, thus providing a remarkable connection between these two very
different supersymmetric gauge theories.

Line operators Tk act on instanton/vortex partition functions Z of the 5d/3d theory
by quantum shifts of the 3d Fayet-Iliopoulos parameters3

TkZ =

D
W

U(n)
k

E
Z , (1.3)

where k = 1, . . . , n is the rank of the antisymmetrization of the fundamental representation
of U(n). Thanks to integrability it will be sufficient to look at the fundamental representa-
tion. The partition functions are vectors in some (rather large) Hilbert space of states. In
order to take the large-n limit of (1.3), we need to understand separately large-n behavior
of Wilson operator VEVs hWU(n)

⇤ i and the states.
Let us start with the space of states. In the beginning we count (ramified) instantons

of the 5d U(n) theory. As we will shortly see, the presence of the U(1) factor in the gauge
group will play a crucial role in taking the limit. It will be demonstrated by an explicit
calculation in Sec. 4, as well as using string theory dualities in Sec. 5.4, that at large n

the 5d U(n) theory effectively transforms into a U(1) theory, therefore we expect that the
instanton calculus should be reinterpreted accordingly in terms of Abelian noncommutative
instantons. One of the noncommutativity parameters will be related to the adjoint mass
of the N = 1

⇤ theory, while the other parameter will be the remaining Omega background
velocity ✏1. In five dimensions any instanton solution can wrap S

1
� arbitrary many times, so

one needs to include the entire Kaluza-Klein tower of those solutions. Given a topological
sector k the moduli space of instantons is the Hilbert scheme of k points on C2 [40–42]. The
complete moduli space is therefore the union of those Hilbert schemes over all topological
sectors.

The localization formula for a fundamental Wilson loop in the five-dimensional theory
in (1.2) wrapping S

1
� contains an equivariant character �~�

of the universal bundle over the
instanton moduli space, which accounts for the propagation of a heavy particle along the
circle. We expect the expression for character �~�

to remain finite after the transition and
to depend on the Abelian instanton data. We will be able to prove that as n ! 1 the
Wilson loop VEV, up to a certain normalization, becomes

D
W

U(n)
⇤

E ���
�

⇠ E(�)
1 = 1� (1� q)(1� t

�1
)

X

s

�s

���
�

(1.4)

3The details will follow in the next section.
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In other words, the eigenvalue of tRS Hamiltonian is a VEV of 
background Wilson loop around the compact circle

The Hamiltonians themselves are certain quantizations of the ’t-
Hooft-vortex loops in the corresponding representation

The eigenvalue problem itself can be realized via S-duality wall in 4d 
N=2* theory

We have just constructed a (complex) representation of the
double affine Hecke algebra (DAHA)

[Gaiotto Witten]
[Gaiotto PK]

[Demazure-Luztig]
[Cherednik]
[Oblomkov]

[Bullimore Kim PK]

[Ito Okuda Taki]



• For n = 2 the eigenfunction for the partition (1, 1) and its eigenvalues are

P(1,1)(⌧1, ⌧2; q, t) = ⌧1⌧2 , E

((1,1);2)
tRS = qt+ q (2.19)

while for the partition (2, 0) we have

P(2,0)(⌧1, ⌧2; q, t) = ⌧1⌧2 +
1� qt

(1 + q)(1� t)

(⌧

2
1 + ⌧

2
2 ) , E

((2,0);2)
tRS = q

2
t+ 1 (2.20)

• For n = 3 the partition (1, 1, 0) has eigenfunction

P(1,1,0)(⌧1, ⌧2, ⌧3; q, t) = ⌧1⌧2 + ⌧1⌧3 + ⌧2⌧3 (2.21)

and eigenvalue
E

((1,1,0);2)
tRS = qt

2
+ qt+ 1 (2.22)

while the partition (2, 0, 0) has eigenfunction

P(2,0,0)(⌧1, ⌧2, ⌧3; q, t) = ⌧1⌧2 + ⌧1⌧3 + ⌧2⌧3 +
1� qt

(1 + q)(1� t)

(⌧

2
1 + ⌧

2
2 + ⌧

2
3 ) (2.23)

and eigenvalue
E

((2,0,0);2)
tRS = q

2
t

2
+ t+ 1 . (2.24)

The generic case follows along these lines.
To conclude, the tRS/gauge theory dictionary can be summarized as follows:

quantum tRS model 3d N = 2

⇤
T [U(n)] theory

number of particles n rank 3d flavor group

particle positions ⌧j 3d Fayet-Iliopoulos parameters

interaction coupling t 3d N = 2

⇤ deformation parameter

shift parameter q Omega background e

i�e✏1

eigenvalue E

(�;n)
tRS hWU(n)

⇤ i for flavour U(n) at fixed µa

eigenfunctions P�(~⌧ ; q, t) holomorphic blocks Bl at fixed µa

2.3 Elliptic Generalization

As we have mentioned in the introduction, quantum spectrum for the elliptic Ruijsenaars-
Schneider model can be computed by studying the 5d N = 1

⇤
U(n) theory on C2

e✏1,e✏2 ⇥S

1
� in

the Nekrasov-Shatashvili imit e✏2 ! 0 in presence of codimension-two defect. When the 5d
gauge interactions are turned off, the theory reduces on the defect and we are left with the
3d N = 2

⇤
T [U(n)] theory, which we have discussed above in details. The 5d/3d system can

be also thought of as both theories coupled together by gauging the U(n) flavor symmetry
of T [U(n)] Fig. 2. The mass m for the adjoint field in the 5d N = 2 vector multiplet
breaks supersymmetry from N = 2 to N = 1

⇤ and coincides with the parameter t of the
3d N = 2

⇤ deformation as t ⇠ e

�i�m, while the 3d twisted masses µa represent VEVs of to
the 5d Coulomb branch moduli. In the coupled system, which reproduces the eRS model,
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Gauge/Integrability duality



rational trigonometric elliptic

r
rational CMS
2d N=(2,2)

quiver theory

trigonometric CMS
2d N=(2,2)* 

quiver theory

elliptic CMS
4d N=2* 
2d defect

t rational RS 
(dual trig. CMS)

trigonometric RS
3d N=2* 

quiver theory

elliptic RS
5d N=1*
3d defect

e dual elliptic CMS
dual elliptic RS 
‘dual’ 5d N=1*
‘dual’ 3d defect 

‘Double periodic’ 
model

6d (1,0)* 
4d defect

qp

Classification
[Bullimore, Kim, PK]



Elliptic Generalization

Gauging global symmetry of 3d theory 
by the gauge group of the bulk 5d theory

Then one evaluates both equations above at roots of unshifted Qi, divides one equation by

another equation in order to get (2.8) from the ratio. Note that the unknown polynomials

eQi drop out. Note that e⌧i+1

� e⌧i in the right hand side of (2.12) drops out as well, and

it may seem redundant at this stage, however, as we shall see momentarily, it turn out to

give a convenient normalization for polynomials eQi.

2.1 Twisted Chiral Ring of T [U(N)] Theory

After setting out the general formulae, now we now restrict the discussion to T [U(N)]. An

immediate simplification is that �j = 0 and so we can set e⌧j = ⌧j . Also we absorb the sign

ambiguity into the FI parameters. In order to provide a recursive argument it is convenient

to introduce the notation Q
0

(�) = 1 and QN (�) = MN�1

(�). Then we have uniformly

⌧j+1

Q�
j
eQ+

j + (�1)�j⌧jQ
+

j
eQ�
j = (⌧j+1

� ⌧j)Qj�1

Qj+1

. (2.14)

1 2 N-1 N

Figure 2. Three dimensional N = 4 quiver theory with gauge group U(1) ⇥ · · · ⇥ U(N � 1) and

flavor symmetry U(N) on the last node, which represents contangent bundle to complete N -flag as

a Nakajima quiver variety.

Thus from the first equation from (2.12) we get

Q
2

=
⌧
2

Q�
1

eQ+

1

� e⌧
1

Q+

1

eQ�
1

⌧
2

� ⌧
1

. (2.15)

In what follows we relabel Q
1

= q
1

and eQ
1

= q
2

. From the above equation it follows that

both q
1

and q
2

are monic polynomials of degree one, therefore we can write them as

qi = u � pi , (2.16)

for some, so far unknown constants pi. The next equation in (2.14) reads

⌧
3

Q�
2

eQ+

2

� e⌧
2

Q+

2

eQ�
2

= (⌧
2

� ⌧
1

)Q
3

Q
2

, (2.17)

which we can solve w.r.t Q
3

. In order to make the notations more uniform we introduce

new polynomial q
3

which satisfies

eQ
2

=
⌧
3

q�
1

q+
3

� ⌧
1

q+
1

q�
3

⌧
3

� ⌧
1

. (2.18)

– 8 –

5d U(N) 
N=1*

Qt

Seiberg-Witten curve of the 5d N=1* theory describes phase space 
of the elliptic Ruijsenaars-Schneider model

3d theory describes trigonometric model, so we need a continuous 
parameter which interpolates between two regimes

The way out-couple 3d theory to 5d theory by making its mass 
parameters dynamical



Defects
S1
R

C✏1

C✏2

orthogonal to the defect which can be described as follows
I

|z2|=✏
Aa = 2⇡ma , a = 1, . . . , N , (4.12)

where

ma = (m
1

, · · · , m
1| {z }

n1

, m
2

, · · · , m
2| {z }

n2

, · · · , ms · · · , ms| {z }
n
s

) . (4.13)

There is an additional label � which determines how L is emdedded into U(N). Each �

corresponds to permutation of the monodromy parameters m that are not simply permuta-

tions within each block, that is � 2 W/WL where WL is the Weyl group of L. The number

of such permutations is clearly N⇢ = N !/(n
1

! . . . ns!).

To compute the ramified instanton partition function, we quotient the standard con-

struction of the instanton moduli space we have reviewed earlier in Sec. 4.1 by a Zs -

action where s is the length of the partition ⇢. The Zs - action is embedded inside the

(C⇤)2 ⇥ GL(N, C) symmetry of the instanton moduli space. The component in (C⇤)2 acts

on the complex coordinates by (z
1

, z
2

) ! (z
1

, !z
2

) where !s = 1. The component in

GL(N, C) acts on the vector space W such that it decomposes

W = �s
j=1

Wj , nj = dimC Wj (4.14)

into eigenspaces of the Zs - action. Our convention is that the generator of Zs acts on the

vector space Wj by Wj ! !jWj . In the sector with instanton number k, we must make

an additional choice of the decomposition of the other vector space

V = �s
j=1

Vj dimC Vj = kj

sX

j=1

kj = k . (4.15)

Each of these choices corresponds to a distinct topological sector and hence to a distinct

ramified instanton moduli space M⇢,k1,...,ks . In summary, the ramified instanton moduli

space M⇢,k1,...,ks can be obtained as a Zs quotient of the standard instanton moduli space

MN,k with N =
Ps

j=1

nj and k =
Ps

j=1

kj .

Let us now explain how to compute the answer. The first statement is that each fixed

point ~� of the standard instanton moduli space MN,k is also a fixed point of one and only

one ramified instanton moduli space M⇢,k1,...,ks . The hardest part of the computation is to

identify which sector {k
1

, . . . , ks} a given fixed point ~� contributes to. It is clear that the

total number of boxes in ~� must add up to k =
Ps

j=1

kj . Introduce the following labels for

the Young tableaux

~� = {�j,↵} , j = 1, . . . , s , ↵ = 1, . . . , ns . (4.16)
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Ps

j=1

kj .

Let us now explain how to compute the answer. The first statement is that each fixed

point ~� of the standard instanton moduli space MN,k is also a fixed point of one and only

one ramified instanton moduli space M⇢,k1,...,ks . The hardest part of the computation is to

identify which sector {k
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, . . . , ks} a given fixed point ~� contributes to. It is clear that the

total number of boxes in ~� must add up to k =
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kj . Introduce the following labels for
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with monodromy defect



Wilson loops
Wilson loop wrapping the circle 

In fundamental representation 

tensor representation of U(2). Thus (4.31) provide the desired quantization of the twisted

chiral ring of T [U(2)] theory.

Note that the prefactors in (4.30) is not unique. For example, one may replace the

factor ✓(⌘ ⌧
1

)/✓(µ
1

⌧
1

) by another one ✓(⌧
1

)/✓(µ
1

⌧
1

/⌘) that obeys the same di↵erence equa-

tion. They correspond to factorizations of FI parameters for the 3d theory living on the

surface defect. Clearly we could also multiply both sides by functions independent of ⌧
1

and ⌧
2

. Indeed, the perturbative contributions to the partition function are of this form.

4.4 Wilson Loops

The essential ingredient of our construction is the computation of the vacuum expectation

value of the Wilson loop which wraps the circle. Using the language of equivariant char-

acters we can easily modify formula (4.11) in order to insert the fundamental Wilson loop

operator inside

hW
(1)

i =

P
~�

q|
~�|�

(E)
~�

Q
↵

�
2 sinh

�
w

↵

2

���n
↵

P
~�

q|~�|
Q

↵

�
2 sinh

�
w

↵

2

���n
↵

. (4.32)

The additional character �
(E)
~�

(4.7) in the numerator represents the contributions from a

heavy charged BPS particle propagating around S1. It turns out that the numerator has

the same universal divergence as the denominator in the limit ✏
2

! 0. Thus the expectation

value is finite and we can denote it by

E
(1)

= lim
✏2! 0

hW
(1)

i . (4.33)

Remember that this is the Wilson loop expectation value of U(N) gauge group, which

di↵ers from that of the SU(N) gauge group by the overall U(1) contribution. The overall

U(1) contribution can be interpreted as a contribution from a heavy free BPS particle and

one can compute it using the Wilson loop expectation value of unit charge in the abelian

gauge theory [43]. The U(1) contribution is given by

hWU(1)

(1)

i =
(Q/⌘2, Q)1(⌘2Q/q, Q)1

(Q, Q)1(Q/q, Q)1
. (4.34)

The fundamental Wilson loop expectation value of SU(N) gauge group is then given by

hWSU(N)

(1)

i =
hWU(N)

(1)

i
hWU(1)

(1)

i
(4.35)

with a condition
Q

i µi = 1. For later convenience we define

N
(1)

⌘ lim
✏2!0

hWU(1)

(1)

i�1 , (4.36)

which will be used in the di↵erence equations below.
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U(1) factor needs to be decoupled
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The additional character �
(E)
~�

(4.7) in the numerator represents the contributions from a

heavy charged BPS particle propagating around S1. It turns out that the numerator has

the same universal divergence as the denominator in the limit ✏
2

! 0. Thus the expectation

value is finite and we can denote it by

E
(1)

= lim
✏2! 0

hW
(1)

i . (4.33)

Remember that this is the Wilson loop expectation value of U(N) gauge group, which

di↵ers from that of the SU(N) gauge group by the overall U(1) contribution. The overall

U(1) contribution can be interpreted as a contribution from a heavy free BPS particle and

one can compute it using the Wilson loop expectation value of unit charge in the abelian

gauge theory [43]. The U(1) contribution is given by

hWU(1)

(1)

i =
(Q/⌘2, Q)1(⌘2Q/q, Q)1

(Q, Q)1(Q/q, Q)1
. (4.34)

The fundamental Wilson loop expectation value of SU(N) gauge group is then given by
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i
(4.35)

with a condition
Q

i µi = 1. For later convenience we define
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i�1 , (4.36)

which will be used in the di↵erence equations below.
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(E)
~�

(4.7) in the numerator represents the contributions from a

heavy charged BPS particle propagating around S1. It turns out that the numerator has

the same universal divergence as the denominator in the limit ✏
2

! 0. Thus the expectation

value is finite and we can denote it by

E
(1)

= lim
✏2! 0

hW
(1)

i . (4.33)

Remember that this is the Wilson loop expectation value of U(N) gauge group, which

di↵ers from that of the SU(N) gauge group by the overall U(1) contribution. The overall

U(1) contribution can be interpreted as a contribution from a heavy free BPS particle and

one can compute it using the Wilson loop expectation value of unit charge in the abelian

gauge theory [43]. The U(1) contribution is given by

hWU(1)

(1)

i =
(Q/⌘2, Q)1(⌘2Q/q, Q)1

(Q, Q)1(Q/q, Q)1
. (4.34)

The fundamental Wilson loop expectation value of SU(N) gauge group is then given by
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Let us consider some examples. For U(2) N = 1⇤ theory with a fundamental Wilson

loop around S1 we find the following expectation value

E
U(2)

(1)

= (µ
1

+µ
2

)

"
1 � (1 � ⌘2)(q � ⌘2)

µ
1

µ
2

�
⌘2 + q

�
⌘4 + ⌘2 + q

�� � (µ
1

+ µ
2

)2 ⌘2q

⌘4q (µ
1

q � µ
2

) (µ
2

q � µ
1

)
Q + O(Q2)

#
.

(4.37)

Similarly, the Wilson loop expectation value in the fundamental representation of U(3) is

given by

E
U(3)

(1)

= µ
1

� µ
1

(1 � ⌘2)(q � ⌘2)(µ
1

� ⌘2µ
2

)(µ
1

� ⌘2µ
3

)(⌘2µ
1

� qµ
2

)(⌘2µ
1

� qµ
3

)

⌘6q(µ
1

� µ
2

)(µ
1

� µ
3

)(µ
1

� qµ
2

)(µ
1

� qµ
3

)
Q + O(Q2)

+ (µ
1

, µ
2

, µ
3

permutation) . (4.38)

In order to insert a Wilson loop in the r-th skew symmetry power of the fundamental

representation of U(N) we must modify the computation. It will be discussed elsewhere.

4.5 5d/3d Coupled System

Turning on the parameter Q, the partition function in the presence of the defect is no longer

finite in the limit ✏
2

! 0. The divergence exponentiates and the anomalous dimension is

universal, that is, it is the same divergence without the defect. The saddle point equations

arising from the anomalous dimension will fix the mass parameters µ
1

and µ
2

to be some

discrete solutions. For now we will ignore this issue and concentrate on the normalized

expectation value of the surface defect with unconstrained µ
1

and µ
2

.

As the divergence is universal, the normalized expectation value of the monodromy

defect is well defined in the limit ✏
2

! 0. We introduce the notation

D(±)

[1,1] = lim
✏2!0

Z(±)

[1,1]

Z . (4.39)

The first few terms of the expansion are

D(+)

[1,1] = 1 +

�
⌘2 � 1

�
q
�
⌘2µ

2

� µ
1

�

⌘2(q � 1) (µ
2

q � µ
1

)
z +

�
⌘2 � 1

�
q
�
⌘2µ

1

� µ
2

�

⌘2(q � 1) (µ
1

q � µ
2

)

Q

z
+ · · · ,

D(�)

[1,1] = 1 +

�
⌘2 � 1

�
q
�
⌘2µ

1

� µ
2

�

⌘2(q � 1) (µ
1

q � µ
2

)
z +

�
⌘2 � 1

�
q
�
⌘2µ

2

� µ
1

�

⌘2(q � 1) (µ
2

q � µ
1

)

Q

z
+ · · · .

(4.40)

One may check that the above expressions reduce to the vortex partition functions in the

limit Q ! 0. It is very important that we have a regular expansion in Q
1

and Q
2

and hence

at higher orders in the Q expansion there are negative powers of z = ⌧
2

/⌧
1

. It appears that

D(+) and D(�) are related by interchanging the mass and FI parameters (µ
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, ⌧
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) $ (µ
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, ⌧
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).

As a regular expansion in Q
1

and Q
2

we have checked up to order O(Qn1
1

Qn2
2

) with

n
1

+ n
2

= 5 that the above normalized expectation values obey the following di↵erence
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In the Nekrasov-Shatashvili limit



Difference Equations
Normalize the ramified partition function

Let us consider some examples. For U(2) N = 1⇤ theory with a fundamental Wilson
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Similarly, the Wilson loop expectation value in the fundamental representation of U(3) is

given by
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In order to insert a Wilson loop in the r-th skew symmetry power of the fundamental

representation of U(N) we must modify the computation. It will be discussed elsewhere.

4.5 5d/3d Coupled System

Turning on the parameter Q, the partition function in the presence of the defect is no longer

finite in the limit ✏
2

! 0. The divergence exponentiates and the anomalous dimension is

universal, that is, it is the same divergence without the defect. The saddle point equations

arising from the anomalous dimension will fix the mass parameters µ
1

and µ
2

to be some

discrete solutions. For now we will ignore this issue and concentrate on the normalized

expectation value of the surface defect with unconstrained µ
1

and µ
2

.

As the divergence is universal, the normalized expectation value of the monodromy

defect is well defined in the limit ✏
2

! 0. We introduce the notation
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The first few terms of the expansion are
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Obey the desired set of elliptic difference equations in the NS 
limit!!

equations
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where E
(1)

is the normalized expectation value of a Wilson loop in the fundamental rep-

resentation of U(2) in the limit ✏
2

! 0 which we have computed earlier in (4.37) and

N
(1)

is the inverse of the overall U(1) contribution defined in (4.36). Therefore if we im-

pose the traceless condition
Q

i µi = 1, the eigenvalues of the di↵erence equations are the

fundamental Wilson loop expectation value of SU(2) guage group.

As before, we can define new partition functions
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which obey the same di↵erence equations
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The same non-uniqueness caveats as before holds also here. One should also check that

the perturbative contributions obtained from orbifolding factorize nicely into contributions

from the defect and the bulk. At this point we claim to have found eigenfunctions and

eigenvalues of the two-body elliptic (complexified) Ruijsenaars-Schneider integrable system,

at least as a series expansion.

4.5.1 U(3) N = 1⇤ theory

The generalization to many-body system is straightforward – one needs to compute ramified

instanton partition function of U(N) N = 1⇤ theory in the presence of full ⇢ = [1, . . . , 1] :=

[1N ] monodromy defect. In this section we will present the results for U(3) theory. There

are 3! di↵erent embeddings of the Levi subgroup L = S[U(1)3] into U(3) labelled by �. We

shall focus on a particular embedding � = 1 in what follows.

We are interested in the normalized partition function in the presence of a monodromy

defect in the limit ✏
2

! 1. As discussed in the previous sections, this limit is well defined
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quantum eRS model 5d/3d theory

number of particles n rank 3d flavor group / 5d gauge group

particle positions ⌧j 3d Fayet-Iliopoulos parameters

interaction coupling t 3d N = 2

⇤ / 5d N = 1

⇤ deformation e

�i�m

shift parameter q Omega background e

i�e✏1

elliptic deformation p 5d instanton parameter Q = e

�8⇡2�/g2Y M

eigenvalues E

(�;n)
tRS hWU(n)

⇤ i for 5d U(n) in NS limit at fixed µa

eigenfunctions Z

5d/3d
inst in NS limit at fixed µa

3 Collective Coordinate Realization of Ruijsenaars Systems

In the previous section we discussed in some detail the n-particle quantum trigonometric
and elliptic Ruijsenaars-Schneider models from both the integrable system and gauge theory
point of view. As reviewed there, the gauge theoretic reformulation allows us to explicitly
compute eigenfunctions and eigenvalues of the elliptic Ruijsenaars model, perturbatively in
the elliptic parameter around the trigonometric solution, thanks to our good understanding
of instanton computations in supersymmetric gauge theories.

In this section we will consider these systems in the limit in which the number of
particles is sent to infinity. This is in order to make contact with quantum integrable
systems of hydrodynamic type, in particular with the quantum Intermediate Long Wave
system (ILW) and its finite-difference version (�ILW): these will be described in Sec. 4.
In fact, at the classical level it is known that the dynamics of the classical trigonometric
Calogero-Sutherland model in the n ! 1 limit is equivalent to the classical Benjamin-
Ono (BO) equation (a particular limit of ILW) [48]; similarly, the large n dynamics of
classical elliptic Calogero is given by the classical ILW equation [28]. Although there are
no computations in the literature to the best of our knowledge (especially because of the
little attention received by the �ILW system), if one thinks of the trigonometric and elliptic
Ruijsenaars-Schneider models as finite-difference versions of Calogero-Sutherland, one can
expect similar classical large n relations to hold between trigonometric/elliptic Ruijsenaars
and �BO/�ILW systems.

At the quantum level, the appropriate formalism to study the n ! 1 limit of Calogero
is the collective field theory (or bosonization) approach [49–51]. The essence of this formal-
ism consists in solving the quantum system by regarding the eigenfunctions as functions of
all possible symmetric combinations of the coordinates; it is then easy to consider the large
n limit in terms of this basis of symmetric functions. The quantum trigonometric Calogero
system has been analysed with the collective field method in [52]; although not explicitly
written there, it is easy to recognize that the trigonometric Calogero Hamiltonian written
in collective coordinates coincides with the second conserved quantity of quantum BO. The
more complicated case of quantum elliptic Calogero has been partially analysed in [53, 54].
The collective coordinate description of quantum trigonometric and elliptic Ruijsenaars-
Schneider models has been discussed in mathematical terms in [38]. This is given in terms

– 12 –
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Collective Coordinates
Send the number of particles to infinity

The system can now be described using density functions or velocity 
fields

Classically Large-n elliptic Calogero model turns into intermediate 
long wave (ILW) system

Elliptic Ruijsenaars-Schneider model becomes finite-difference ILW

[Abanov Bettelheim Wiegmann]

EOM become hydrodynamical equations



ILW model

4 Gauge Theory Approach to ILW and �ILW Systems

As we discussed in the previous section trigonometric and elliptic Ruijsenaars-Schneider
systems admit a collective field description in terms of am modes satisfying a deformed
Heisenberg algebra. In [24–26] this collective coordinate representation has been inter-
preted as a realization of the finite-difference version of the Benjamin-Ono and ILW systems
respectively (�BO and �ILW for short); scope of this section is to introduce the main prop-
erties of these hydrodynamic systems. The discussion will necessarily be incomplete, since
to the best of our knowledge the associated integrable equations have received extremely
little attention in the literature; we refer the reader to [24–26] for further details. For the
sake of clarity, before introducing �ILW we will briefly review a few known facts about the
standard ILW system and its relation to Calogero models: see also [28, 29, 48, 58].

As for the Ruijsenaars models, also the quantum ILW (�ILW) system admits a gauge
theory description: this time, the associated supersymmetric gauge theory is (via the so-
called Bethe/Gauge correspondence [30, 31]) the 2d (3d) ADHM quiver, as discussed in
[28, 29]. At the end of this section we will recollect the main points of this correspondence,
focussing on how it is possible to recover the quantum ILW (�ILW) spectrum by studying
the Coulomb branch vacua of the ADHM quiver theory; further details on the ADHM
theory are presented in Appendix A.

4.1 The ILW system

Consider the situation illustrated in Figure 3. We have a system of two fluids of densities
⇢1 < ⇢2 and depths h1 < h2 in a periodic (period L = 2⇡) channel of total depth h = h1+h2.

⇢ = 0

⇢1

⇢2

h1

h2

h

x x+ 2⇡ ⇠ x

wavelength �

Figure 3. The classical periodic Intermediate Long Wave system

The classical periodic Intermediate Long Wave system describes the propagation of
waves in the interface of the two fluids, due to gravitational effects [59]. There are three
possible regimes, according to the value of the ratio � =

h
� with � typical wavelength:

• h ⌧ �, long wave: Korteweg-de Vries (KdV) regime for � ! 0

• h � �, short wave: Benjamin-Ono (BO) regime for � ! 1

• h ⇠ �, intermediate wave: Intermediate Long Wave (ILW) regime for � ⇠ 1
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Describes propagation of waves along the interface of two 1d fluids



Integrable ILW equationThe evolution of the wave profile u(x, t) is determined by the classical ILW partial integro-
differential equation

ut = 2uxx � i�@

2
xu

H (4.1)

with � a parameter depending on the densities ⇢1,2, the depths h1,2 and the standard gravity
constant g. Here u

H is the Hilbert transformed wave-function

u

H
=

1

2⇡

P.V.

Z 2⇡

0
⇣(y � x; ep)u(y)dy , (4.2)

where ⇣ is the Weierstrass zeta function and we defined ep = e

�2⇡�. The zeta function
reduces to the cotangent function in the limit ep ! 0, giving the Benjamin-Ono equation

ut = 2uxx � i�@

2
xu

H
, u

H
=

1

2⇡

P.V.

Z 2⇡

0
cot(y � x)u(y)dy , (4.3)

while in the ep ! 1 limit we recover from (4.1) the KdV equation

ut = 2uux +
�

3

uxxx . (4.4)

The key characteristic of the ILW equation (4.1) is that it is integrable: if we introduce the
Poisson bracket

{u(x), u(y)} = �

0
(x� y) (4.5)

one can show that there exist an infinite number of linearly independent conserved quantities
(Hamiltonians) Il which are in involution with respect to this Poisson bracket

{Il, Im} = 0 . (4.6)

The first conserved quantities read

I1 =

Z 
1

2

u

2

�
dx , I2 =

Z 
1

3

u

3
+ i

�

2

uu

H
x

�
dx , . . . (4.7)

The ILW equation is determined by the Hamiltonian I2 via

ut = {u, I2} . (4.8)

In a sense, integrability for a partial differential equation can be interpreted as an extension
of the usual definition of classical Liouville integrability in the case of a system with an
infinite number of degrees of freedom. What is peculiar with respect to the Liouville case is
that integrability of a partial differential equation implies the existence of an infinite number
of exact solutions, known as n-soliton solutions: very roughly, they are waves whose profile
does not change with time, apart from the instants in which two solitons collide.
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Kernel- Weserstrass function, simplifies in KdV and BO limits 

KdV equation
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Soliton Solutions
n-Solitonic Ansatz

4.1.1 Solitonic Solutions as Particle Systems

The class of n-soliton solutions provide a way to relate integrable partial differential equa-
tions to integrable systems with a finite number n of degrees of freedom; for the ILW case,
the associated system is the n-particle Calogero-Sutherland model. To clarify this point,
let us consider the simple example of the non-periodic (L ! 1) BO system (� ! 1) given
by the equation

ut = 2uxx � i�@

2
xu

H
, u

H
= P.V.

Z 1

0

u(y)

y � x

dy . (4.9)

A n-soliton solution can be written in terms of the pole ansatz

u(x, t) =

nX

j=1

 
i�

x� aj(t)
� i�

x� a

⇤
j (t)

!
, (4.10)

where the poles aj(t) determine the positions of the solitons and a

⇤
j (t) is its complex conju-

gate. Inserting (4.10) into (4.9) one finds that this Ansatz is a solution to the non-periodic
BO equation if and only if the poles dynamics satisfies the equations of motion

äj =

nX

l 6=j

2�

2

(aj � al)
3
. (4.11)

These are the same equations of motion arising from an n-particle classical rational Calogero

system, which is a classical integrable system of n particles on a line interacting via the
Hamiltonian

H(n)
rCS =

1

2

nX

j=1

p

2
j +

nX

l<j

�

2

(al � aj)
2
. (4.12)

A similar analysis is valid for the periodic BO and ILW systems, whose n-solitons are asso-
ciated respectively to the n-particle trigonometric and elliptic Calogero-Sutherland models;
clearly, the pole ansatz in these cases will be an obvious trigonometric or elliptic general-
ization of (4.10).

4.1.2 Quantization

At the quantum level, the quantum ILW or BO equations can be obtained from the solitons
solutions simply by considering the quantum versions of Calogero systems: for example,
the quantum version of (4.13) reads

H(n)
rCS = �1

2

nX

j=1

d

2

da

2
j

+

nX

l<j

�(� � 1)

(al � aj)
2
, (4.13)

and gives rise to the equations of motion

äj =

nX

l 6=j

2�(� � 1)

(aj � al)
3

(4.14)
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Difference BO Trigonometric RS

Difference ILW Elliptic RS

Poles describe propagation of solitons

Our challenge is to effectively describe the quantum spectrum
We need to see what happens with the algebra and the states



Quantization
Expand in Fourier modes

for the vacuum expectation values of the aj . The pole ansatz (4.10) will satisfy the equation

ut = 2uxx � i(� + �

�1
)@

2
xu

H
, u

H
= P.V.

Z 1

0

u(y)

y � x

dy , (4.15)

which is therefore called the non-periodic quantum BO equation. In the same way, the
periodic quantum ILW equation will be given by

ut = 2uxx � i(� + �

�1
)@

2
xu

H (4.16)

with u

H as in (4.2), and similarly for the periodic quantum BO equation. The main differ-
ence between (4.1) and (4.16) is the replacement � ! � + �

�1.

In what follows the quantum ILW system will be obtained from (4.16) after quantization
of Poisson structure (4.5). The idea is the following. One starts by expanding the u(x) field
in Fourier modes:

u(x) =

X

m2Z
m 6=0

ame

imx
. (4.17)

The Poisson bracket (4.5) implies that the Fourier modes am satisfy

{am, a�n} = �im�m,n . (4.18)

We now promote the Poisson bracket to a quantum commutator and the Fourier modes to
quantum operators, thus obtaining the Heisenberg algebra

[am, a�n] = ~m�m,n . (4.19)

Planck constant ~ will be often put to unity in the following. One needs now to understand
what are the quantum Hamiltonians b

Il that characterize the quantum ILW system. In order
to see this we can simply take the normal ordered product of the operators, i.e. b

Il = : Il :.
These operators do not commute under (4.19). We therefore need to add o(~) corrections
in order to ensure commutativity:

b
Il = : Il : +o(~) such that [

b
Il,

b
Im] = 0 . (4.20)

Unfortunately, only the first few quantum Hamiltonians are known for the ILW system; for
example we have

b
I2 =

X

m>0

a�mam , (4.21)

b
I3 = i

� + �

�1

2

X

m>0

m

1 + (�ep)m

1� (�ep)m a�mam +

1

2

X

m,n>0

(a�m�naman + a�ma�nam+n) . (4.22)

The quantum ILW problem can therefore be stated as finding the whole set of commuting
quantum ILW Hamiltonians, as well as their eigenstates and eigenvalues. The solution to
this problem is only known in the BO limit; for the generic ILW system far less is known.
Nevertheless steps towards this direction were made in [28], where it was shown that the
ILW spectrum can be computed (perturbatively in ep ⇠ 0 around the known BO solution) by
studying the Coulomb branch of the 2d ADHM quiver theory. The above correspondence
with the gauge theory will be shortly reviewed in the end of this section.
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0

u(y)

y � x

dy , (4.15)

which is therefore called the non-periodic quantum BO equation. In the same way, the
periodic quantum ILW equation will be given by

ut = 2uxx � i(� + �

�1
)@

2
xu

H (4.16)

with u

H as in (4.2), and similarly for the periodic quantum BO equation. The main differ-
ence between (4.1) and (4.16) is the replacement � ! � + �

�1.

In what follows the quantum ILW system will be obtained from (4.16) after quantization
of Poisson structure (4.5). The idea is the following. One starts by expanding the u(x) field
in Fourier modes:

u(x) =

X

m2Z
m 6=0

ame

imx
. (4.17)

The Poisson bracket (4.5) implies that the Fourier modes am satisfy

{am, a�n} = �im�m,n . (4.18)

We now promote the Poisson bracket to a quantum commutator and the Fourier modes to
quantum operators, thus obtaining the Heisenberg algebra

[am, a�n] = ~m�m,n . (4.19)

Planck constant ~ will be often put to unity in the following. One needs now to understand
what are the quantum Hamiltonians b

Il that characterize the quantum ILW system. In order
to see this we can simply take the normal ordered product of the operators, i.e. b

Il = : Il :.
These operators do not commute under (4.19). We therefore need to add o(~) corrections
in order to ensure commutativity:

b
Il = : Il : +o(~) such that [

b
Il,

b
Im] = 0 . (4.20)

Unfortunately, only the first few quantum Hamiltonians are known for the ILW system; for
example we have

b
I2 =

X

m>0

a�mam , (4.21)

b
I3 = i

� + �

�1

2

X

m>0

m

1 + (�ep)m

1� (�ep)m a�mam +

1

2

X

m,n>0

(a�m�naman + a�ma�nam+n) . (4.22)

The quantum ILW problem can therefore be stated as finding the whole set of commuting
quantum ILW Hamiltonians, as well as their eigenstates and eigenvalues. The solution to
this problem is only known in the BO limit; for the generic ILW system far less is known.
Nevertheless steps towards this direction were made in [28], where it was shown that the
ILW spectrum can be computed (perturbatively in ep ⇠ 0 around the known BO solution) by
studying the Coulomb branch of the 2d ADHM quiver theory. The above correspondence
with the gauge theory will be shortly reviewed in the end of this section.
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Finding quantum spectral is hard in general - use gauge theory for help

E

(2)
4

✏1✏2
=�

✓
✏

2
1

3

+ ✏1✏2 +
4✏

2
2

3

◆
� ep(✏1 + ✏2)✏1(3✏2 + ✏1)

✏2 � ✏1

+ ep2 2(✏1 + ✏2)(�2✏42 + 7✏

3
2✏1 + ✏

2
1✏

2
2 + ✏2✏

3
1 + ✏

4
1)

(✏2 � ✏1)
3

+ o(ep3)
(4.40)

We therefore have two eigenstates, whose constants c1, c2 have to satisfy the relations

c2 = (✏1✏2)
� 1

2

✓
i✏1 + ep2i✏1(✏1 + ✏2)

✏1 � ✏2
+ ep2 2i✏1(✏1 + ✏2)(✏

2
1 � 4✏1✏2 � ✏

2
2)

(✏1 � ✏2)
3

+ o(ep3)
◆
c1

c2 = (✏1✏2)
� 1

2

✓
i✏2 + ep2i✏2(✏1 + ✏2)

✏2 � ✏1
+ ep2 2i✏2(✏1 + ✏2)(✏

2
2 � 4✏1✏2 � ✏

2
1)

(✏2 � ✏1)
3

+ o(ep3)
◆
c1

(4.41)

The remaining constant c1 only enters in the normalization of the eigenstates, and will be
of no importance for our discussion.

Let us notice here that in the Benjamin-Ono limit ep! 0 the eigenstates become

(a

2
�1 + i✏1a2)|0i ,

(a

2
�1 + i✏2a2)|0i .

(4.42)

In the spirit of isomorphism (3.12), the above states can be compared with the � ! 0 limit
of the Macdonald polynomials of (2.18), given by Jack polynomials p

2
1 � ✏1

✏2
p2 and p

2
1 � p2

(eigenfunctions of the trigonometric Calogero-Sutherland system) for partitions (2, 0) and
(1, 1) respectively. It is easy to see that these Jack polynomials coincide with (4.42) under
isomorphism

a�m|0i  ! �i✏2pm . (4.43)

4.3.2 Three soliton configuration

A generic state with k = 3 can be written as

(c1a
3
�1 + c2a�2a�1 + c3a�3)|0i (4.44)

The eigenvalue equation for b
I3

b
I3(c1a

3
�1 + c2a�2a�1 + c3a�3)|0i = E3(c1a

3
�1 + c2a�2a�1 + c3a�3)|0i (4.45)

leads to an equation for eigenvalue E3 with three solutions

E

(1)
3
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= i
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2
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E
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2
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2
2)
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2
1 � 5✏1✏2 + 2✏

2
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+ ep2 2i(20✏
7
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Gauge/ILW
Consider partition    of�

Specify

where D

(1,2)
q are tRS Hamiltonians, they commute between each other. For completeness,

let us mention that the operator (2.6) is the first of a set of n commuting operators, given
by

D

(r)
n,~⌧ (q, t) = t

r(r�1)/2
X

I⇢{1,2,...,n}
#I=r

Y

i2I
j /2I

t⌧i � ⌧j

⌧i � ⌧j

Y

i2I
Tq,i for r = 1, . . . , n (2.12)

In mathematical literature, the operator D

(1)
n,~⌧ is known as the first Macdonald difference

operator; its eigenfunctions, known as Macdonald polynomials, are given by symmetric
polynomials in n variables ⌧l of total degree k 6 n, and are in one-to-one correspondence
with partitions � = (�1, . . . ,�n) of k of length n.

Now we can make the following observation8. For a given partition � we identify
parameters µa as follows

µa = q

�a
t

n�a
, a = 1, . . . , n . (2.13)

Having done so we see that the series expansion of holomorphic block (2.9) truncates and
it turns into a Macdonald polynomial P�(~⌧ ; q, t) corresponding to the partition � as

D

(1)
n,~⌧ (q, t)P�(~⌧ ; q, t) = E

(�;n)
tRS P�(~⌧ ; q, t) (2.14)

with an eigenvalue given by

E

(�;n)
tRS =

nX

j=1

q

�j
t

n�j (2.15)

Thus for k = 2 we get

B(⌧1, ⌧2; t�1/2
q, t

1/2
q) = P (⌧1, ⌧2; q, t) ,

B(⌧1, ⌧2; t�1/2
, t

�1/2
q

2
) = P (⌧1, ⌧2|q, t) . (2.16)

In what follows it is instructive make the following change of variables

pm =

nX

l=1

⌧

m
l , (2.17)

For k = 2 we have two partitions and , corresponding to the Macdonald polynomials
in (2.16)

P =

1

2

(p

2
1 � p2) , P =

1

2

(p

2
1 � p2) +

1� qt

(1 + q)(1� t)

p2 . (2.18)

Most importantly, this expression in terms of power sum symmetric polynomials (2.17) is
the same for any n.

Below we list several examples for degree k = 2 Macdonald polynomials for n = 2 and
n = 3

8See the end of Section 3 of [6].
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k < n

for T[U(n)] theory

Recall that q = e✏ = e~ and t = em

Partition function series truncates to Macdonald polynomials!

where D

(1,2)
q are tRS Hamiltonians, they commute between each other. For completeness,

let us mention that the operator (2.6) is the first of a set of n commuting operators, given
by

D

(r)
n,~⌧ (q, t) = t

r(r�1)/2
X

I⇢{1,2,...,n}
#I=r

Y

i2I
j /2I

t⌧i � ⌧j

⌧i � ⌧j

Y

i2I
Tq,i for r = 1, . . . , n (2.12)

In mathematical literature, the operator D

(1)
n,~⌧ is known as the first Macdonald difference

operator; its eigenfunctions, known as Macdonald polynomials, are given by symmetric
polynomials in n variables ⌧l of total degree k 6 n, and are in one-to-one correspondence
with partitions � = (�1, . . . ,�n) of k of length n.

Now we can make the following observation8. For a given partition � we identify
parameters µa as follows

µa = q

�a
t

n�a
, a = 1, . . . , n . (2.13)

Having done so we see that the series expansion of holomorphic block (2.9) truncates and
it turns into a Macdonald polynomial P�(~⌧ ; q, t) corresponding to the partition � as

D

(1)
n,~⌧ (q, t)P�(~⌧ ; q, t) = E

(�;n)
tRS P�(~⌧ ; q, t) (2.14)

with an eigenvalue given by

E

(�;n)
tRS =

nX

j=1

q

�j
t

n�j (2.15)

Thus for k = 2 we get

B(⌧1, ⌧2; t�1/2
q, t

1/2
q) = P (⌧1, ⌧2; q, t) ,

B(⌧1, ⌧2; t�1/2
, t

�1/2
q

2
) = P (⌧1, ⌧2|q, t) . (2.16)

In what follows it is instructive make the following change of variables

pm =

nX

l=1

⌧

m
l , (2.17)

For k = 2 we have two partitions and , corresponding to the Macdonald polynomials
in (2.16)

P =

1

2

(p

2
1 � p2) , P =

1

2

(p

2
1 � p2) +

1� qt

(1 + q)(1� t)

p2 . (2.18)

Most importantly, this expression in terms of power sum symmetric polynomials (2.17) is
the same for any n.

Below we list several examples for degree k = 2 Macdonald polynomials for n = 2 and
n = 3

8See the end of Section 3 of [6].
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E.g. k=2

Their exact form depends on n

where D

(1,2)
q are tRS Hamiltonians, they commute between each other. For completeness,

let us mention that the operator (2.6) is the first of a set of n commuting operators, given
by

D

(r)
n,~⌧ (q, t) = t

r(r�1)/2
X

I⇢{1,2,...,n}
#I=r

Y

i2I
j /2I

t⌧i � ⌧j

⌧i � ⌧j

Y

i2I
Tq,i for r = 1, . . . , n (2.12)

In mathematical literature, the operator D

(1)
n,~⌧ is known as the first Macdonald difference

operator; its eigenfunctions, known as Macdonald polynomials, are given by symmetric
polynomials in n variables ⌧l of total degree k 6 n, and are in one-to-one correspondence
with partitions � = (�1, . . . ,�n) of k of length n.

Now we can make the following observation8. For a given partition � we identify
parameters µa as follows

µa = q

�a
t

n�a
, a = 1, . . . , n . (2.13)

Having done so we see that the series expansion of holomorphic block (2.9) truncates and
it turns into a Macdonald polynomial P�(~⌧ ; q, t) corresponding to the partition � as

D

(1)
n,~⌧ (q, t)P�(~⌧ ; q, t) = E

(�;n)
tRS P�(~⌧ ; q, t) (2.14)

with an eigenvalue given by

E

(�;n)
tRS =

nX

j=1

q

�j
t

n�j (2.15)

Thus for k = 2 we get

B(⌧1, ⌧2; t�1/2
q, t

1/2
q) = P (⌧1, ⌧2; q, t) ,

B(⌧1, ⌧2; t�1/2
, t

�1/2
q

2
) = P (⌧1, ⌧2|q, t) . (2.16)

In what follows it is instructive make the following change of variables

pm =

nX

l=1

⌧

m
l , (2.17)

For k = 2 we have two partitions and , corresponding to the Macdonald polynomials
in (2.16)

P =

1

2

(p

2
1 � p2) , P =

1

2

(p

2
1 � p2) +

1� qt

(1 + q)(1� t)

p2 . (2.18)

Most importantly, this expression in terms of power sum symmetric polynomials (2.17) is
the same for any n.

Below we list several examples for degree k = 2 Macdonald polynomials for n = 2 and
n = 3

8See the end of Section 3 of [6].
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• For n = 2 the eigenfunction for the partition (1, 1) and its eigenvalues are

P(1,1)(⌧1, ⌧2; q, t) = ⌧1⌧2 , E

((1,1);2)
tRS = qt+ q (2.19)

while for the partition (2, 0) we have

P(2,0)(⌧1, ⌧2; q, t) = ⌧1⌧2 +
1� qt

(1 + q)(1� t)

(⌧

2
1 + ⌧

2
2 ) , E

((2,0);2)
tRS = q

2
t+ 1 (2.20)

• For n = 3 the partition (1, 1, 0) has eigenfunction

P(1,1,0)(⌧1, ⌧2, ⌧3; q, t) = ⌧1⌧2 + ⌧1⌧3 + ⌧2⌧3 (2.21)

and eigenvalue
E

((1,1,0);2)
tRS = qt

2
+ qt+ 1 (2.22)

while the partition (2, 0, 0) has eigenfunction

P(2,0,0)(⌧1, ⌧2, ⌧3; q, t) = ⌧1⌧2 + ⌧1⌧3 + ⌧2⌧3 +
1� qt

(1 + q)(1� t)

(⌧

2
1 + ⌧

2
2 + ⌧

2
3 ) (2.23)

and eigenvalue
E

((2,0,0);2)
tRS = q

2
t

2
+ t+ 1 . (2.24)

The generic case follows along these lines.
To conclude, the tRS/gauge theory dictionary can be summarized as follows:

quantum tRS model 3d N = 2

⇤
T [U(n)] theory

number of particles n rank 3d flavor group

particle positions ⌧j 3d Fayet-Iliopoulos parameters

interaction coupling t 3d N = 2

⇤ deformation parameter

shift parameter q Omega background e

i�e✏1

eigenvalue E

(�;n)
tRS hWU(n)

⇤ i for flavour U(n) at fixed µa

eigenfunctions P�(~⌧ ; q, t) holomorphic blocks Bl at fixed µa

2.3 Elliptic Generalization

As we have mentioned in the introduction, quantum spectrum for the elliptic Ruijsenaars-
Schneider model can be computed by studying the 5d N = 1

⇤
U(n) theory on C2

e✏1,e✏2 ⇥S

1
� in

the Nekrasov-Shatashvili imit e✏2 ! 0 in presence of codimension-two defect. When the 5d
gauge interactions are turned off, the theory reduces on the defect and we are left with the
3d N = 2

⇤
T [U(n)] theory, which we have discussed above in details. The 5d/3d system can

be also thought of as both theories coupled together by gauging the U(n) flavor symmetry
of T [U(n)] Fig. 2. The mass m for the adjoint field in the 5d N = 2 vector multiplet
breaks supersymmetry from N = 2 to N = 1

⇤ and coincides with the parameter t of the
3d N = 2

⇤ deformation as t ⇠ e

�i�m, while the 3d twisted masses µa represent VEVs of to
the 5d Coulomb branch moduli. In the coupled system, which reproduces the eRS model,
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Change of Variables
However, after change of variables

where D

(1,2)
q are tRS Hamiltonians, they commute between each other. For completeness,

let us mention that the operator (2.6) is the first of a set of n commuting operators, given
by

D

(r)
n,~⌧ (q, t) = t

r(r�1)/2
X

I⇢{1,2,...,n}
#I=r

Y

i2I
j /2I

t⌧i � ⌧j

⌧i � ⌧j

Y

i2I
Tq,i for r = 1, . . . , n (2.12)

In mathematical literature, the operator D

(1)
n,~⌧ is known as the first Macdonald difference

operator; its eigenfunctions, known as Macdonald polynomials, are given by symmetric
polynomials in n variables ⌧l of total degree k 6 n, and are in one-to-one correspondence
with partitions � = (�1, . . . ,�n) of k of length n.

Now we can make the following observation8. For a given partition � we identify
parameters µa as follows

µa = q

�a
t

n�a
, a = 1, . . . , n . (2.13)

Having done so we see that the series expansion of holomorphic block (2.9) truncates and
it turns into a Macdonald polynomial P�(~⌧ ; q, t) corresponding to the partition � as

D

(1)
n,~⌧ (q, t)P�(~⌧ ; q, t) = E

(�;n)
tRS P�(~⌧ ; q, t) (2.14)

with an eigenvalue given by

E

(�;n)
tRS =

nX

j=1

q

�j
t

n�j (2.15)

Thus for k = 2 we get

B(⌧1, ⌧2; t�1/2
q, t

1/2
q) = P (⌧1, ⌧2; q, t) ,

B(⌧1, ⌧2; t�1/2
, t

�1/2
q

2
) = P (⌧1, ⌧2|q, t) . (2.16)

In what follows it is instructive make the following change of variables

pm =

nX

l=1

⌧

m
l , (2.17)

For k = 2 we have two partitions and , corresponding to the Macdonald polynomials
in (2.16)

P =

1

2

(p

2
1 � p2) , P =

1

2

(p

2
1 � p2) +

1� qt

(1 + q)(1� t)

p2 . (2.18)

Most importantly, this expression in terms of power sum symmetric polynomials (2.17) is
the same for any n.

Below we list several examples for degree k = 2 Macdonald polynomials for n = 2 and
n = 3

8See the end of Section 3 of [6].
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Macdonald polynomials depend only on k and the partition

where D

(1,2)
q are tRS Hamiltonians, they commute between each other. For completeness,

let us mention that the operator (2.6) is the first of a set of n commuting operators, given
by

D

(r)
n,~⌧ (q, t) = t

r(r�1)/2
X

I⇢{1,2,...,n}
#I=r

Y

i2I
j /2I

t⌧i � ⌧j

⌧i � ⌧j

Y

i2I
Tq,i for r = 1, . . . , n (2.12)

In mathematical literature, the operator D

(1)
n,~⌧ is known as the first Macdonald difference

operator; its eigenfunctions, known as Macdonald polynomials, are given by symmetric
polynomials in n variables ⌧l of total degree k 6 n, and are in one-to-one correspondence
with partitions � = (�1, . . . ,�n) of k of length n.

Now we can make the following observation8. For a given partition � we identify
parameters µa as follows

µa = q

�a
t

n�a
, a = 1, . . . , n . (2.13)

Having done so we see that the series expansion of holomorphic block (2.9) truncates and
it turns into a Macdonald polynomial P�(~⌧ ; q, t) corresponding to the partition � as

D

(1)
n,~⌧ (q, t)P�(~⌧ ; q, t) = E

(�;n)
tRS P�(~⌧ ; q, t) (2.14)

with an eigenvalue given by

E

(�;n)
tRS =

nX

j=1

q

�j
t

n�j (2.15)

Thus for k = 2 we get

B(⌧1, ⌧2; t�1/2
q, t

1/2
q) = P (⌧1, ⌧2; q, t) ,

B(⌧1, ⌧2; t�1/2
, t

�1/2
q

2
) = P (⌧1, ⌧2|q, t) . (2.16)

In what follows it is instructive make the following change of variables

pm =

nX

l=1

⌧

m
l , (2.17)

For k = 2 we have two partitions and , corresponding to the Macdonald polynomials
in (2.16)

P =

1

2

(p

2
1 � p2) , P =

1

2

(p

2
1 � p2) +

1� qt

(1 + q)(1� t)

p2 . (2.18)

Most importantly, this expression in terms of power sum symmetric polynomials (2.17) is
the same for any n.

Below we list several examples for degree k = 2 Macdonald polynomials for n = 2 and
n = 3

8See the end of Section 3 of [6].
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Starting for Fock vacuum |0i

Construct Hilbert space

in terms of the so-called reproduction kernel

Q
(q, t)(⌧, e⌧) =

Y

i,j>1

(t⌧ie⌧j ; q)1
(⌧ie⌧j ; q)1

, (a; q)1 =

Y

s>0

(1� aq

s
) . (3.8)

The statement holds in general: given two bases {u�}, {v�} of ⇤(q, t), they are dual under
(3.6) if and only if

P
� u�(⌧)v�(e⌧) =

Q
(q, t)(⌧, e⌧); in this sense, the form of the inner product

is determined by the form of the kernel function. For our discussion, the most relevant basis
of symmetric functions is given by the Macdonald basis {P�(⌧ ; q, t)}, uniquely determined
by the following conditions

(1) P�(⌧ ; q, t) = m�(⌧) +

X

µ<�

u�µ(q, t)mµ(⌧) with u�µ(q, t) 2 Q(q, t) ,

(2) hP�(⌧ ; q, t), Pµ(⌧ ; q, t)iq,t = 0 for � 6= µ ,

(3.9)

where m�(⌧) are monomial symmetric functions and � > µ() |�| = |µ| with �1+. . .+�i >
µ1 + . . .+ µi for all i. From the functions P�(⌧ ; q, t) we recover the n-variables Macdonald
polynomials as P�(⌧1, . . . , ⌧n; q, t) = P�(⌧1, . . . , ⌧n, 0, 0, . . . ; q, t); these are eigenstates of the
Hamiltonians (2.6), (2.12) and satisfy (2.14).

3.1.1 Free Field Realization

We are now ready to discuss the collective coordinate (or free boson) realization of the tRS
Hamiltonian (2.6). The idea here is to introduce a (q, t)-deformed version of the Heisenberg
algebra H(q, t), with generators am (m 2 Z) and commutation relations

[am, an] = m

1� q

|m|
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a��|0i = a��1 · · · a��l |0ifor each partition



U(1) Instantons
Mathematicians know this space already. They found similar structure 
on quantum K-theory of the moduli space of U(1) (non-
commutative) instantons [Nakjima]

[Schiffmann Vaserot]

Higgs branch of the 3d N=4 ADHM quiver

A The ADHM quiver and Bethe Ansatz Equations for ILW

In this Appendix we will consider the N = 2

⇤ ADHM quiver theory on C⇥S

1
� (or P1⇥S

1
�)

inside the 11d geometry Cq ⇥ Ct ⇥ C ⇥ O(�2)P1 ⇥ S

1
� . The field content of the quiver is

summarized in the table below.

� B1 B2 I J

D-brane sector D2/D2 D2/D2 D2/D2 D2/D6 D6/D2
gauge U(k) Adj Adj Adj k k

flavor U(N)⇥ U(1)

2 1(�1,�1) 1(1,0) 1(0,1) N(0,0) N(1,1)

twisted masses ✏1 + ✏2 �✏1 �✏2 �aj aj � ✏1 � ✏2

R-charge 2 0 0 0 0

Table 1. Matter content of the ADHM Gauged Linear Sigma Model.
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Figure 7. The ADHM quiver.

The superpotential of the theory is given by W = Trk {� ([B1, B2] + IJ)}. In the case
✏1 + ✏2 = 0 the N = 2 vector supermultiplet and the N = 2 adjoint chiral supermultiplet
� combine into an N = 4 vector supermultiplet; on the other hand, when ✏1 + ✏2 6= 0

supersymmetry is broken to N = 2

⇤. The moduli space Mk,N of supersymmetric vacua in
the Higgs branch is obtained by setting to zero the VEV of the adjoint scalar field in the
� supermultiplet and it is given by the solutions of the F and D�term equations, modulo
the action of the gauge group U(k). More explicitly we have

Mk,N =

(
[B1, B2] + IJ = 0 (F -term)
[B1, B

†
1] + [B2, B

†
2] + II

† � J

†
J = ⇠ (D-term)

) ,
U(k) ,

where ⇠ is Fayet-Iliopoulos parameter. This manifold can be immediately identified with
the ADHM moduli space of k instantons for a pure U(N) Yang-Mills theory. In fact,
thinking in terms of a D2/D6 brane system, the k D2 branes wrapped on P1 ⇥ S

1
� can be

understood as a k-instanton for the pure U(N) supersymmetric theory living on the N D6

branes which wrap Cq ⇥Ct⇥P1⇥S

1
� (here q = e

i�✏1 , t = e

�i�✏2). As it is well known in the
context of D(p� 4)/Dp brane systems, the auxiliary 3d theory living on the D2 branes is
precisely our ADHM quiver theory and describes the instanton moduli space Mk,N . When
the radius of the S

1
� circle is sent to zero we go back to the setting of [28] with a system of

k D1 and N D5 branes wrapping respectively P1 and Cq ⇥Ct⇥P1 inside the 10d geometry
Cq ⇥ Ct ⇥ C⇥O(�2)P1 .
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superpotential

Physically 5d theory on 
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1 Introduction and Summary

In recent years plethora of deep and insightful results was obtained while studying physics
of supersymmetric gauge theories in the presence of defects of various types preserving
fractional amount of supersymmetry [1–6]. A typical setup involves a ‘higher’ dimensional
gauge theory in four, five, or six dimensions with eight supercharges living on a manifold
which locally resembles

XD = R4 ⇥ ⌃ , (1.1)

where ⌃ is a manifold of dimension zero, one, or two (usually, a point, a circle, and an
elliptic curve respectively). The precise choice of the space-time geometry depends on the
problem, in particular on which observable is being computed. The majority of recent work
was done on compact manifolds, mostly on spheres [7–15].

The second ingredient of the construction is a d-dimensional BPS defect which is im-
mersed into the spacetime XD such that its stress-energy tensor represents a delta-function
T ⇠ �

(D�d)
T

0. The defect itself supports a ‘lower’ dimensional supersymmetric gauge
theory on its worldvolume. The defect degrees of freedom interact with the degrees of
freedom of the higher dimensional bulk theory, thereby creating a rather complex coupled
D/d-dimensional system. The gauge interactions in the bulk theory and on the defect are
controlled by different couplings, we shall refer to them as Q and t respectively1. Therefore,
bulk-defect and bulk-bulk interactions are controlled by Q. In the decoupling limit, when
Q ! 0, those interactions disappear and we are left with the gauge theory on the defect.

For the purpose of this work, in which we shall focus on the five-dimensional N = 1

⇤

theory with U(n) gauge group, it will be sufficient to study the theory on the following
Euclidean space

X5 = C✏1 ⇥ C✏2 ⇥ S

1
� , (1.2)

where we turned on Omega background along two complex directions with equivariant
parameters ✏1 and ✏2 [16], and where � is radius of the circle. The 5d theory is enriched by
a codimension-two defect which lives in C✏1 ⇥ S

1
� . This setup was studied in great details

in [6], where it was used in quantization of the Seiberg-Witten curve of the 5d theory in
question as well as finding formal solutions of trigonometric and elliptic quantum many-
body systems of Ruijsenaars-Schneider type [17–21].

In this paper we shall capitalize on the results of [6] and study new connections between
gauge theories with defects and other physical systems, as well as the interpretation of
those connections in mathematical terms. Let us first describe our physics agenda, the
mathematical way of stating the new correspondence will be presented later in Sec. 1.2.

1An exact expression in terms of gauge coupling constant ⌧YM depends on the number of dimensions.
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Instanton - KK monopole propagating along the compact circle 

KK modes give different topological sectors
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Elliptic deformation of Heisenberg algebra

4.2 The �ILW System

In [24] the authors introduced and discussed in some detail a finite-difference version of the
classical ILW equation. This reads as follows

@

@t0
⌘(z, t0) =

i

2

⌘(z, t0)P.V.

Z 1/2

�1/2
(��⇣)(⇡(w � z)) · ⌘(w, t0)dw . (4.23)

Here the discrete Laplacian �� is defined as (��f)(x) = f(x+ �)� 2f(x) + f(x� �) and
� is a complex number. It is easy to show that in the limit � ! 0 (4.23) reduces to (4.1),
after an appropriate Galilean transformation on ⌘(z, t0). The finite-difference Benjamin-
Ono limit of this equation has been studied in greater detail in [25, 26], both at the classical
and the quantum level.

Based on our results we expect that the quantum �ILW system to have a deep connec-
tion to the quantum elliptic Ruijsenaars-Schneider model and the elliptic deformation of
the Ding-Iohara algebra which we discussed in Sec. 3. Since classical �ILW Hamiltonians
Hr given in [24] can be exactly reproduced in a certain limit of commuting operators Or

introduced in Sec. 3.2; we propose that our operators Or coincide with quantum �ILW
Hamiltonians bHr. Moreover ⌘(z; pq�1

t) field of (3.26) can be shown to satisfy (4.23) in the
classical limit, where the Hamiltonian generating the time evolution of the system is H1.

Since �ILW reduces to ILW as � ! 0, and given that the time evolution for quantum
�ILW will be given by bH1 = ⌘0, we expect ⌘0 to be a generating function for the ILW
quantum Hamiltonians bIl. This is also in agreement with an observation made in [38],
which relates the � expansion of ⌘0 to the operator of quantum multiplication in the small
quantum cohomology ring of the instanton moduli space Mk,1 [60]. In fact, as it was
discussed in [28], this operator of quantum multiplication coincides with quantum ILW
Hamiltonian bI3.

Let us show how the correspondence between the �ILW system and the elliptic Ruijsenaars-
Schneider model works in practice. First, due to the reasons which will be clear soon, elliptic
deformation parameter p of the Ruijsenaars system and ILW parameter ep = e

�2⇡� need to
be identified as9

p = �ep
p
qt

�1
. (4.24)

Moreover, we shall substitute q and t by e

i�✏1 and e

�i�✏2 respectively in order to make
contact with the gauge theory results of the next section. We now rewrite (3.26) as

⌘(z; pq

�1
t) = exp

 
X

n>0

��nz
n

!
exp

 
X

n>0

�nz
�n

!
, (4.25)

with commutation relations for the �m

[�m,�n] = � 1

m

(1� q

m
)(1� t

�m
)(1� (pq

�1
t)

m
)

1� p

m
�m+n,0 . (4.26)

9In terms of quantum cohomology, parameter � coincides with the Kähler modulus of Mk,1 and is the
same as parameter t which was used in [28].
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[Feigin et.al.]

Using supersymmetry we can effectively describe K-theory of 
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where ⇠ is Fayet-Iliopoulos parameter. This manifold can be immediately identified with
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branes which wrap Cq ⇥Ct⇥P1⇥S
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� (here q = e

i�✏1 , t = e

�i�✏2). As it is well known in the
context of D(p� 4)/Dp brane systems, the auxiliary 3d theory living on the D2 branes is
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According to Nekrasov and Shatashvili we need to find the twisted 
chiral ring of the ADHM gauge theory

we shall explain how the ADHM theory arises in our construction by using string theory
dualities.

When radius of the circle � is small the infrared description of the sigma model is
effectively two-dimensional. The supersymmetric Coulomb branch vacua equations for N =

1 will be (see Appendix A)

sin[

�

2

(⌃s � a)]

kY

t=1
t 6=s

sin[

�
2 (⌃st � ✏1)] sin[

�
2 (⌃st � ✏2)]

sin[

�
2 (⌃st)] sin[

�
2 (⌃st � ✏)]

=

ep sin[

�

2

(�⌃s + a� ✏)]

kY

t=1
t 6=s

sin[

�
2 (⌃st + ✏1)] sin[

�
2 (⌃st + ✏2)]

sin[

�
2 (⌃st)] sin[

�
2 (⌃st + ✏)]

(4.49)

because of the 1-loop contributions coming from the KK tower of chiral multiplets11. Here
✏ = ✏1 + ✏2 and ep = e

�2⇡⇠ with ⇠ Fayet-Iliopoulos parameter of the ADHM theory12. For
simplicity, from now on we will set a = 0. When ⇠ ! 1 (i.e. ep ! 0), the solutions are
labelled by partitions � of k, and are given by

⌃s = (i� 1)✏1 + (j � 1)✏2 mod 2⇡i (4.50)

✏1

✏2

Figure 4. The partition (4,3,1,1) of k = 9

For finite ⇠ we can change variables to �s = e

i�⌃s , q = e

i�✏1 , t = e

�i�✏2 and rewrite
(4.49) as

(�s � 1)

kY

t=1
t 6=s

(�s � q�t)(�s � t

�1
�t)

(�s � �t)(�s � qt

�1
�t)

=

epp
qt

�1
(1� qt

�1
�s)

kY

t=1
t 6=s

(�s � q

�1
�t)(�s � t�t)

(�s � �t)(�s � q

�1
t�t)

.

(4.51)

Perturbatively in small ep, solutions to (4.51) are still labelled by partitions � of k. We
propose (4.51) to be the Bethe Ansatz Equations for quantum �ILW: as in the ILW limit,
the �ILW eigenfunctions will be in one-to-one correspondence with partitions �, and the
eigenvalues of the quantum �ILW Hamiltonians bHr will be related to the local 3d gauge
theory observables hTr�ri evaluated at solutions � of (4.51). In particular, from what we

11Equations (4.49) reduce to the Bethe Ansatz Equations for quantum ILW of [28] when � ! 0.
12As discussed in [28], the Fayet-Iliopoulos parameter ⇠ coincides with the ILW parameter � previously

introduced.
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1 will be (see Appendix A)
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because of the 1-loop contributions coming from the KK tower of chiral multiplets11. Here
✏ = ✏1 + ✏2 and ep = e

�2⇡⇠ with ⇠ Fayet-Iliopoulos parameter of the ADHM theory12. For
simplicity, from now on we will set a = 0. When ⇠ ! 1 (i.e. ep ! 0), the solutions are
labelled by partitions � of k, and are given by

⌃s = (i� 1)✏1 + (j � 1)✏2 mod 2⇡i (4.50)
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Perturbatively in small ep, solutions to (4.51) are still labelled by partitions � of k. We
propose (4.51) to be the Bethe Ansatz Equations for quantum �ILW: as in the ILW limit,
the �ILW eigenfunctions will be in one-to-one correspondence with partitions �, and the
eigenvalues of the quantum �ILW Hamiltonians bHr will be related to the local 3d gauge
theory observables hTr�ri evaluated at solutions � of (4.51). In particular, from what we

11Equations (4.49) reduce to the Bethe Ansatz Equations for quantum ILW of [28] when � ! 0.
12As discussed in [28], the Fayet-Iliopoulos parameter ⇠ coincides with the ILW parameter � previously

introduced.
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FI coupling

A The ADHM quiver and Bethe Ansatz Equations for ILW

In this Appendix we will consider the N = 2

⇤ ADHM quiver theory on C⇥S

1
� (or P1⇥S

1
�)

inside the 11d geometry Cq ⇥ Ct ⇥ C ⇥ O(�2)P1 ⇥ S

1
� . The field content of the quiver is

summarized in the table below.

� B1 B2 I J

D-brane sector D2/D2 D2/D2 D2/D2 D2/D6 D6/D2
gauge U(k) Adj Adj Adj k k

flavor U(N)⇥ U(1)

2 1(�1,�1) 1(1,0) 1(0,1) N(0,0) N(1,1)

twisted masses ✏1 + ✏2 �✏1 �✏2 �aj aj � ✏1 � ✏2

R-charge 2 0 0 0 0

Table 1. Matter content of the ADHM Gauged Linear Sigma Model.

U(k) U(N)
I, J

B

1

, B
2

Figure 7. The ADHM quiver.

The superpotential of the theory is given by W = Trk {� ([B1, B2] + IJ)}. In the case
✏1 + ✏2 = 0 the N = 2 vector supermultiplet and the N = 2 adjoint chiral supermultiplet
� combine into an N = 4 vector supermultiplet; on the other hand, when ✏1 + ✏2 6= 0

supersymmetry is broken to N = 2

⇤. The moduli space Mk,N of supersymmetric vacua in
the Higgs branch is obtained by setting to zero the VEV of the adjoint scalar field in the
� supermultiplet and it is given by the solutions of the F and D�term equations, modulo
the action of the gauge group U(k). More explicitly we have

Mk,N =

(
[B1, B2] + IJ = 0 (F -term)
[B1, B

†
1] + [B2, B

†
2] + II

† � J

†
J = ⇠ (D-term)

) ,
U(k) ,

where ⇠ is Fayet-Iliopoulos parameter. This manifold can be immediately identified with
the ADHM moduli space of k instantons for a pure U(N) Yang-Mills theory. In fact,
thinking in terms of a D2/D6 brane system, the k D2 branes wrapped on P1 ⇥ S

1
� can be

understood as a k-instanton for the pure U(N) supersymmetric theory living on the N D6

branes which wrap Cq ⇥Ct⇥P1⇥S

1
� (here q = e

i�✏1 , t = e

�i�✏2). As it is well known in the
context of D(p� 4)/Dp brane systems, the auxiliary 3d theory living on the D2 branes is
precisely our ADHM quiver theory and describes the instanton moduli space Mk,N . When
the radius of the S

1
� circle is sent to zero we go back to the setting of [28] with a system of

k D1 and N D5 branes wrapping respectively P1 and Cq ⇥Ct⇥P1 inside the 10d geometry
Cq ⇥ Ct ⇥ C⇥O(�2)P1 .
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The Duality
We claim that at large-n

This connection can be translated in gauge theoretical terms. While the �ILW sys-
tem corresponds to the ADHM quiver on C ⇥ S

1
� , the n-particle eRS system, as we have

mentioned earlier, has a gauge theory realization as a 5d N = 1

⇤
U(n) theory in Omega

background (1.2) coupled to a 3d T [U(n)] defect on C✏1 ⇥ S

1
� [6]. One may think of U(n)

global symmetry of the 3d theory as being gauged. The eigenfunctions and eigenvalues of
the eRS model correspond to the coupled 5d/3d instanton partition function Z

inst
5d/3d and

to the vacuum expectation values of the Wilson loop in the fundamental representation of
U(n) hWU(n)

⇤ i respectively, in the so-called Nekrasov-Shatashvili limit [39] when ✏2 ! 0.
In this work we will show that in the n ! 1 limit the Wilson loop VEV hWU(n)

⇤ i coming
from this coupled 5d/3d theory reduces to the hTr�i observable of the twisted chiral ring
of the 3d ADHM quiver, thus providing a remarkable connection between these two very
different supersymmetric gauge theories.

Line operators Tk act on instanton/vortex partition functions Z of the 5d/3d theory
by quantum shifts of the 3d Fayet-Iliopoulos parameters3

TkZ =

D
W

U(n)
k

E
Z , (1.3)

where k = 1, . . . , n is the rank of the antisymmetrization of the fundamental representation
of U(n). Thanks to integrability it will be sufficient to look at the fundamental representa-
tion. The partition functions are vectors in some (rather large) Hilbert space of states. In
order to take the large-n limit of (1.3), we need to understand separately large-n behavior
of Wilson operator VEVs hWU(n)

⇤ i and the states.
Let us start with the space of states. In the beginning we count (ramified) instantons

of the 5d U(n) theory. As we will shortly see, the presence of the U(1) factor in the gauge
group will play a crucial role in taking the limit. It will be demonstrated by an explicit
calculation in Sec. 4, as well as using string theory dualities in Sec. 5.4, that at large n

the 5d U(n) theory effectively transforms into a U(1) theory, therefore we expect that the
instanton calculus should be reinterpreted accordingly in terms of Abelian noncommutative
instantons. One of the noncommutativity parameters will be related to the adjoint mass
of the N = 1

⇤ theory, while the other parameter will be the remaining Omega background
velocity ✏1. In five dimensions any instanton solution can wrap S

1
� arbitrary many times, so

one needs to include the entire Kaluza-Klein tower of those solutions. Given a topological
sector k the moduli space of instantons is the Hilbert scheme of k points on C2 [40–42]. The
complete moduli space is therefore the union of those Hilbert schemes over all topological
sectors.

The localization formula for a fundamental Wilson loop in the five-dimensional theory
in (1.2) wrapping S

1
� contains an equivariant character �~�

of the universal bundle over the
instanton moduli space, which accounts for the propagation of a heavy particle along the
circle. We expect the expression for character �~�

to remain finite after the transition and
to depend on the Abelian instanton data. We will be able to prove that as n ! 1 the
Wilson loop VEV, up to a certain normalization, becomes

D
W

U(n)
⇤

E ���
�

⇠ E(�)
1 = 1� (1� q)(1� t

�1
)

X

s

�s

���
�

(1.4)

3The details will follow in the next section.
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• k = 3, partition (1,1,1)
For the partition � = (1, 1, 1, 0, . . . , 0) we have
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(5.21)

which in the limit n ! 1 becomes

(q + t

�3 � qt

�3
) + p

(1� q)

2
(1� t

3
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qt

3
(1� qt

2
)
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) .

(5.22)

This matches (4.60) for p = �ep
p
qt

�1.

5.3 The Gauge/Hydrodynamics Correspondence

The above computations suggest the validity of conjecture (5.9): it is therefore possible to
recover the �ILW eigenvalues starting from the eRS eigenvalues by taking n ! 1 limit.
This is not surprising from the integrable systems point of view, since �ILW is expected
to arise as a hydrodynamic limit of eRS; nevertheless, this correspondence looks quite non-
trivial from the gauge theory viewpoint in which (5.9) can be rewritten as

1� (1� q)(1� t

�1
)Tr�

��
�
= lim

n!1

h
t

�n+1
(1� t

�1
)

D
W

U(n)
⇤

Ei ���
�
. (5.23)

Here we are proposing an equivalence between an observable in the 3d ADHM theory and
a Wilson loop in the 5d N = 1

⇤
U(n) theory at n ! 1. This indicates an infra-red duality

which relates the two theories in the large n limit. In the next section we shall provide
further evidence for this correspondence. For clarity let us introduce here the corresponding
dictionary:

elliptic RS 3d ADHM theory 3d/5d coupled theory, n ! 1
coupling t twisted mass e

�i�✏2 5d N = 1

⇤ mass deformation e

�i�m

quantum shift q twisted mass e

i�✏1 Omega background e

i�e✏1

elliptic parameter p FI parameter ep = �p/

p
qt

�1 5d instanton parameter Q

eigenstates � ADHM Coulomb vacua 5d Coulomb branch parameters

eigenvalues hTr�i hWU(1)
⇤ i in NS limit e✏2 ! 0

In general, we expect the ADHM local observable hTr�ri to be related to the n ! 1
limit of the 5d Wilson loop hWU(n)

r i in the rank r antisymmetric representation. Also
note that the second Omega background parameter e✏2 does not enter the table due to the
Nekrasov-Shatashvili limit.
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Mathematical Interpretation
Trigonometric RS to BO

the equivariant Chern character of the universal bundle over the 5d U(1) instanton moduli
space. In the formula above q = e

i�✏1 and t = e

�i�✏ with ✏ being a N = 1

⇤ mass. In addition
Coulomb branch scalars in the 5d theory are set to certain values parameterized by partition
�. There is a one-to-one correspondence between � and the eigenstate of difference equation
(1.3). In other words, partition � corresponds to a certain vector in the Fock space, which
we have introduced earlier. Finally, �s in (1.4) are Coulomb VEVs of the U(k) gauge group
of the U(1) instanton quiver gauge theory4.

The correspondence between characters of the two 5d theories can be illustrated for
the unrefined setup, namely when q = t, or, equivalently, when the sum of the first C⇤

equivariant parameter and the adjoint mass vanishes ✏1 + ✏ = 0. The U(n) instanton
computation involves counting of the fixed points under the action of (complexified) global
symmetry C⇤

✏1 ⇥ C⇤
✏ ⇥ GL(n,C), where we have already removed C⇤

✏2 action due to the
Nekrasov-Shatashvili limit ✏2 ! 0 which is always implied in equations like (1.3). Symmetry
C⇤
✏1⇥C⇤

✏ acts on the ADHM data as U(1) transformations of the corresponding adjoint chiral
fields in the ADHM quiver and, as we will see later, for the 5d U(1) ADHM quiver ✏1 and
✏ can be interpreted as twisted masses for those adjoint chirals. The third adjoint chiral,
which we call �, remains massless.

However, in the refined setup, when q 6= t, � acquires mass �✏1 � ✏, thereby breaking
the supersymmetry of the 3d ADHM quiver from N = 4 to N = 2

⇤. This observation will
allow us to give another interpretation of the right hand side of (1.4). Indeed, the ADHM
quiver, as a 3d N = 2

⇤ theory is self-dual under the thee-dimensional mirror symmetry [43].
Therefore, in order to describe 5d instantons, or Higgs branch of the ADHM quiver, we can
study its Coulomb branch and the equations for the supersymmetric vacua of the theory!
Thus we will show that �s

��
�

from (1.4) are obtained as solutions of the (twisted) chiral ring
relations. Recall that twisted chiral rings of 3d sigma models on S

1⇥R2 describe quantum
K-theory of their target manifolds [6, 30, 44]. We can now arrive to the K-theory version of
the results of [28] stating that the quantum K-theory of the ADHM moduli space is in one
to one correspondence with the integrals of motion of the Intermediate Long Wave system.

1.2 Mathematical Summary

It is interesting to formulate our results in a more mathematical language. In [6] it was
shown that the n-particle trigonometric Ruijsenaars-Schneider model computes equivariant
quantum K-theory of the cotangent bundle to complete flag variety T

⇤Fn. In particular,
it was demonstrated that level equations for the integrals of motion of the model form a
set of relations for a polynomial ring of functions which describe KT (T

⇤Fn), where T is
the maximal torus of the global symmetry group U(n)⇥ U(1). In addition, [6] states that
the corresponding K-theoretic Givental J -function is proportional to the vortex partition
function of U(n) 3d N = 2

⇤ theory, which we discussed above. Therefore it is tempting
to conclude that the large-n limit of the quantum K-theory of the cotangent bundle to
complete n-flag is given by the classical part of the equivariant K-theory of gM1

lim

n!1
KT (T

⇤Fn) ' K

cl
q,t

⇣
gM1

⌘
, (1.5)

4The ADHM quiver theory is reviewed in App. A
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where
gM1 =

1M

k=0

M1,k , (1.6)

is the direct sum of the moduli spaces of U(1) instantons over all topological sectors.
As for the elliptic Ruijsenaars-Schneider model, to the best of our knowledge, there is

no known mathematical object which would describe its spectrum. Let us introduce the
following ring5

EQ
T (T

⇤Fn) := C[p±1
i , ⌧

±1
i , Q, t, µ

±1
i ]/IeRS , (1.7)

where IeRS is the ideal generated by the conserved charges of the elliptic Ruijsenaars-
Schneider model. The above structure provides a natural elliptic generalization of KT (T

⇤Fn),
where Q is the ellipticity parameter. We therefore claim that

lim

n!1
EQ
T (T

⇤Fn) ' Kq,t

⇣
gM1

⌘
. (1.8)

1.3 Structure of the Paper

The rest of the paper is organized as follows. First, in Section 2 we will discuss the trigono-
metric and elliptic quantum Ruijsenaars-Schneider models constructed using the supersym-
metric gauge theory language. Then in Section 3 we briefly review the basic notions about
the trigonometric and elliptic Ding-Iohara algebrae which we will need for our purposes,
together with their relation to the Ruijsenaars-Schneider quantum systems. Section 4 ad-
dresses the correspondence between the ADHM theory on C⇥S

1
� , the �ILW system and the

Ding-Iohara algebra. Having understood all the ingredients, we shall conclude in Section 5
by stating, and giving computational evidence for, the proposed correspondence between
�ILW and eRS in the large number of particles limit. Finally, in Section 6 we shall list some
questions which immediately follow from our results and which will hopefully be addressed
in the near future.

2 Gauge Theory Construction of Ruijsenaars models

We start with the construction of quantum trigonometric and elliptic Ruijsenaars-Schneider
models from supersymmetric gauge theories in three and five dimensions respectively.

2.1 3d N = 2

⇤ Theory

As it was argued in [6] the space of supersymmetric vacua of the 3d N = 2

⇤
T [U(n)] quiver

theory on R2 ⇥ S

1 describes the phase space of the n-particle trigonometric Ruijsenaars-
Schneider system. The T [U(n)] theory has gauge group G = ⇥n�1

s=1U(s), with an associated
N = 4 vector multiplet for each factor in G, and N = 4 hypermultiplets in the bifunda-
mental of U(s) ⇥ U(s + 1) with s = 1, . . . , n � 1, where the last group U(n) is intended
as a flavor group. This theory depends on two sets of (exponentiated) parameters: twisted
masses µa, a = 1, . . . , n for the U(n) flavor group and Fayet-Iliopoulos parameters ⌧i with

5In [45] it s suggested that the elliptic Ruijsenaars-Schneider model computes elliptic cohomology of the
target manifold.
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gM1 =

1M

k=0

M1,k , (1.6)
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Open questions

Quantum KdV 

Nonabelian generalization of ILW

What happens for 6d theories at large n?

Physics construction for elliptic cohomology


