STARS ON DEATH ROW

EVOLUTION AND FATE OF 8 - 10 SOLAR-MASS STARS

SAMUEL JONES

HEIDELBERG INSTITUTE FOR THEORETICAL STUDIES

WED 20 JAN 2016

KAVLI IPMU

STELLAR EVOLUTION

A CRASH COURSE

NUCLEAR POWER

H & He BURNING

Image Credit: David Taylor

 $H \rightarrow He$

p-p chain

If the star is massive enough (> 0.8 solar masses):

 $He \rightarrow C \& O$

Triple-α
¹²C (α, γ) ¹⁶O

Image credit: Persson, Magnus Vilhelm (2013)

PLANETARY NEBULAE

& WHITE DWARFS

CO white dwarf (WD)

THERMONUCLEAR SUPERNOVAE

Image credit: NASA/CXC/SAO

THERMONUCLEAR SUPERNOVAE

Carbon ignition in high density, degenerate CO white dwarfs

But how is carbon ignited? Hot spots? Compression?

SN la SINGLE DEGENERATE SCENARIO

Image credit: David A. Hardy/AstroArt.org

SN la MERGER SCENARIO

Image credit: GSFC/D. Berry

SN Ia DOUBLE DETONATION SCENARIO

MASSIVE STARS

Artist's impression of Rigel

Image Credit: Adam Burn

NUCLEAR POWER

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	14 N	0.02	107	4 H → ⁴He
He 🖈	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 ⁴ He → ¹² C ¹² C(α,γ) ¹⁶ O
C*	Ne, Mg	Na	8.0	10³	¹² C + ¹² C
Ne */	O, Mg	AI, P	1.5	3	²⁰ Ne(γ,α) ¹⁶ O ²⁰ Ne(α,γ) ²⁴ Mg
O	Si, S	CI, Ar, K, Ca	2.0	0.8	16O + 16O
Si,S	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

Image credit: Alexander Heger

Star develops an 'iron' core

COLLAPSE OF THE IRON CORE

Silicon burns into 'iron' in a shell until the iron core exceeds the critical mass that can be supported by its degenerate electron gas: the effective Chandrasekhar limit

If the electron fraction Y_e (i.e. the number of electrons) decreases, the effective Chandrasekhar mass decreases

CORE-COLLAPSE SUPERNOVAE

THE SHORT VERSION

The core collapses until the central ~0.5 solar-masses of material reach **nuclear saturation density** (~10¹⁴ g/cc)

The infalling material **bounces**, launching a **shock wave**

The shock wave stalls under ram pressure from more infalling material. During this time, material accretes onto the proto-neutron star

Something (probably neutrino-driven convection) deposits enough energy behind the shock front to **revive** it, stopping the accretion and **blowing up the star**

CORE-COLLAPSE SUPERNOVAE

STELLAR EVOLUTION

A CRASH COURSE

WHAT HAPPENS TO 8-10 SOLAR-MASS STARS?

Image Credit: NASA, ESA, J. Hester, A. Loll (ASU)

Image credit: NASA/Andrew Fruchter (STScI)

WHAT HAPPENS TO 8-10 SOLAR-MASS STARS?

WHAT HAPPENS TO 8-10 SOLAR-MASS STARS?

ELECTRON-CAPTURE SUPERNOVAE

Image credit: Alexander Heger

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	14 N	0.02	107	4 H → ⁴ He
He 🔽	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 ⁴ He → ¹² C ¹² C(α,γ) ¹⁶ O
C*	Ne, Mg	Na	8.0	10 ³	12C + 12C
Ne */	O. Ma	Al. P	1.5	3	²⁰ Ne(γ,α) ¹⁶ O

Nuclear burning is curtailed due to combined effects of neutrino losses and degeneracy, leaving an **ONe core**

3. An ONe WD is formed, but later accretes from a binary companion and collapses to a neutron star

SUPER-AGB STAR

Two general classical scenarios:

1. The H envelope is ejected, producing a planetary nebula and an ONe white dwarf

2. The core grows due to accumulation of ash from the burning shells, eventually exceeding the effective Chandrasekhar limit and collapsing to a neutron star

At about 3e9 g/cc, ²⁴Mg begins to capture electrons,

inducing a contraction

But it is ²⁰Ne + 2e-, activated at about 1e10 g/cc that releases enough energy to ignite an oxygen deflagration wave in the centre Miyaji+ (1980); Nomoto (1984,1987)

The energy release from burning competes with electron capture on the ash; in the classical picture the electron captures win and the star's core collapses

Wanajo+ (2011)

Doherty+ (2015)

ECSNe from single stars may be limited to a rather narrow initial mass range

The H envelope recurrently reaches into the core and reduces its mass

however

ECSNe may be more frequent in binary stars.

COMMON ENVELOPE PHASE

Ohlmann+ (2016 in press)

60-70% of these stars are in close binary systems (Sana+ 2012, Dunstall+, in press)

NUCLEAR PHYSICS DETAILS

URCA PROCESS AND ELECTRON CAPTURES

²⁰Ne ELECTRON CAPTURE

RAPID HEATING

1D SIMULATIONS

AIC of ONe white dwarf Schwab+ (2015)

- The mass loss rates for these stars are not well known (e.g. Poelarends+ 2008)
- Hydrodynamic instabilities triggered by iron opacities (e.g. Lau+ 2012) or energy deposition by H ingestion in to Heburning convection zones (Jones+ 2015) may lead to ejection of the envelope before it reaches critical mass
- Degenerate stars are extremely sensitive to nuclear physics input; the deflagration ignition density is critical
- In the only simulations of the O deflagration, both **neutron** stars and WDs were both possible outcomes (Isern+ 1991)
- Impact of binarity on the occurrence of ECSNe unclear

OUTSTANDING PROBLEMS

WHY DO WE CARE?

storiesbywilliams.com

IMF

SNII PROGENITOR MASS DISTRIBUTION IN M31 Jennings+ (2012)

Assuming a Salpeter IMF, 8—10 solar-mass stars constitute 26 % of all massive stars. Probably more.

Anti-correlation of Ag and Pd with Sr and Y (s-process)

Anti-correlation of Ag and Pd with Eu (r-process)

Silver and Palladium are made in a different site/process to 'standard' s- and r-process elements

NUCLEOSYNTHESIS

ORIGIN OF SILVER AND PALLADIUM

Hansen+ (2012)

NUCLEOSYNTHESIS

ABUNDANCE RATIOS OF HALO STARS

Cescutti+ (2014)

Parametrised GCE models reproduce the data equally well assuming EC or MRD SNe host r-process

Proof that 8—12 solar-mass stars could produce r-process has yet to surface, yet so has evidence to the contrary

Sample size (14) too low

NS mass set during accretion phase before SN shock revival

Shock revival triggered by core structure of progenitor, which has no discrete jump

But do ECSNe even produce neutron stars?

NEUTRON STARS

"BIMODAL" STATISTICAL PROPERTIES

Schwab+ (2010)

Bimodal distribution of spin periods

Bimodal distribution of orbital eccentricities

Two populations claimed to be neutron stars formed by EC and iron core-collapse SNe

This again depends on core structure, which is not discrete

Be/X-ray binaries

"BIMODAL" STATISTICAL PROPERTIES

Knigge+ (2011; Nature)

1D SIMULATIONS

O DEFLAGRATION

O IGNITED DUE TO γ-DECAY OF ²⁰O

Takahashi+ (2013)

Confirms Nomoto (84, 87): **O-deflagration** leads to core collapse

Still **no treatment** for conductive flame propagation

Ignition density significantly higher than found by Schwab+ (2015)

O DEFLAGRATION

O IGNITED DUE TO γ-DECAY OF ²⁰O

Takahashi+ (2013)

Electron-capture rates from Juodagalvis+ (2010)

> No consistent betadecay and positroncapture rates?

Results are the sum of several modelling and physics assumptions that all contribute towards a core collapse event

RAYLEIGH-TAYLOR?

O DEFLAGRATION

MULTI-DIMENSIONAL SIMULATIONS

Work-in-progress @ HITS

LEAFS code (Reinecke+ 1999, Röpke & Hillebrandt 2005, Röpke 2005, 2006)

Isothermal ONe core/WD in HSE with **central density** 10^{9.9} g / cc (Schwab+ 2015)

Centrally-confined ignition: 300 'bubbles' within 50 km sphere, $< 5 \times 10^{-4} \, \rm M_{\odot}$ inside initial level set

NUCLEAR REACTIONS

DELEPTONISATION OF NSE ASH

NKK: Nabi & Klapdor-Kleingrothaus

LMP: Langanke & Martinez-Pinedo (2001)

ODA: Oda+ (1994)

FFN: Fuller, Fowler & Newman (1985)

ANA: Analytical rates; Gamow-Teller strength B = 4.6 (Arcones+ 2010)

NUCLEAR REACTIONS

DELEPTONISATION OF NSE ASH

NKK: Nabi & Klapdor-Kleingrothaus

LMP: Langanke & Martinez-Pinedo (2001)

ODA: Oda+ (1994)

FFN: Fuller, Fowler & Newman (1985)

ANA: Analytical rates; Gamow-Teller strength B = 4.6 (Arcones+ 2010)

3D 4π: 128³

FLAME SURFACE

scale: 3.66E+03 km time: 9.02E-01 s

3D 4π : 128³

COLLAPSE? BOUND REMNANT?

3D 4π: 256³

FLAME SURFACE

scale: 3.49E+02 km time: 3.00E-01 s

$3D 4\pi: 256^3$

EXPLOSION? NO REMNANT?

$3D 4\pi: 512^3$

FLAME SURFACE

scale: 1.71E+04 km time: 1.50E+00 s

$3D 4\pi: 512^3$

EXPLOSION? NO REMNANT?

3D 4π: 512³

THERMONUCLEAR EXPLOSION?

Scale: 1500 km

Time: 0.7 s

⁵⁶Ni

DIAGNOSTICS

PRELIMINARY RESULTS

Bound ONeFe WD remnants?

id.	res.	$\log_{10}(\rho_c^{\text{ini}})$ (g cm ⁻³)	CC (Y/N)	$M_{\rm rem}$ $M_{\rm rem}^{\rm Ni}$	$M_{\rm ej}$ $M_{\rm e}^{\rm l}$	$\langle Y_{\rm e,rem} \rangle$	$M_{ m Ch}^{ m eff}$
				(M_{\odot})		,	
G13	256^{3}	9.90	N	0.653 0.168	0.735 0.23	36 0.491	1.385
G14	512^{3}	9.90	N	0.462 0.137	0.929 0.34	49 0.490	1.379
G15	256^{3}	9.90	Y	1.231 0.217	0.158 0.04	14 0.493	1.392
J01	256^{3}	9.95	N	0.606 0.157	0.798 0.23	54 0.490	1.378
J02	256^{3}	9.95	Y	1.297 0.227	0.100 0.02	21 0.493	1.392
J03	512^{3}	9.95	Y				

Table 1. Summary of the 3D O-deflagration simulations. a initial central density of ONe core at ignition of O-deflagration.

Coulomb Corrections are critical input

Remarkably similar result to Isern+ (1991)

SUMMARY

The final fate and chemical yield from 8-10 solar-mass stars is still unclear

ECSNe and AIC of ONe Wds postulated to explain many astrophysical observations, including:

- Abunudance anti-correlations
- Site for r-process
- "bimodal" NS mass distribution
- Bimodal BeX orbital eccentricity
- · Low L transients

In recent 2-3 years we have refined:

Nuclear physics input Progenitor models Deflagration simulations

I declare the question of whether 8-10 solar-mass stars and AIC of ONe WDs make core-collapse or thermonuclear supernovae to be reopened