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MOTIVATION



CLASSIC STELLAR EVOLUTION (SE)
one-dimensional, spherically symmetric
sequence of hydrostatic profiles
evolution driven by nuclear burning
parametrized treatment of 
convection, convective boundary mixing, all kinds of
instabilities, …
rotation only possible for certain classes of profiles



 
spherical symmetry
no dynamical effects
turbulence model with free
parameters

no enforced symmetry
full equations of fluid dynamics
turbulence from first principles



A MATTER OF TIMESCALES
hydrodynamics occurs on the free-fall timescale 

thermal structure changes on the Kelvin-Helmholtz timescale 

nuclear burning occurs on the nuclear timescale 
 

= 27 minτff,⊙

= 2 × aτKH,⊙ 107

= a ≈ ≈τnuc,⊙ 1011 103 τKH 1015 τff

no hydrodynamics simulation over significant part of stellar
lifetime



SO WHAT CAN WE DO?
simulate only a small fraction of an evolutionary phase

to see if the 3D structure is consistent with SE code
to adjust prescriptions in SE code

simulate phases that are reasonably short
short-lived instabilities
improve treatment in SE code
very late burning stages 
3D progenitors for supernovae?



LOW MACH NUMBER
HYDRODYNAMICS



WHAT?
Mach number M = =u

c

fluid velocity
speed of sound



Flows in the stellar interior are usually at low Mach numbers.

speed of sound c = ∝γ
p

ρ

−−−√ T
μ

−−√

WHY?



EULER EQUATIONS
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NONDIMENSIONALIZATION
Replace all quantities with unitless number times reference

quantity

ρ = ,ρ̂ρr

p = ,p̂pr

…

NONDIMENSIONAL EULER EQUATIONS



NONDIMENSIONAL EULER EQUATIONS
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∂ẑ
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ρ̂ûXi

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
Ĝ
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THE ROE SCHEME
Flux at interface

= (F( ) + F( ) − | |( − ))Fi+1/2
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 physical flux upwind term

: flux Jacobian  at Roe average stateAroe ( )∂F
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ASYMPTOTIC ANALYSIS
in primitive variables V = (ρ, u, v, w, p, X)T

flux Jacobian Roe matrix∂F
∂U
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GRESHO VORTEX



GRESHO VORTEX
STANDARD ROE SCHEME
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PRECONDITIONED ROE SCHEME
(Miczek+, 2015)

=PV

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

1

0

0

0

0

0

nx
ρδMr

c

1

0

0

ρcδnx Mr

0

ny
ρδMr

c

0

1

0

ρcδny Mr

0

nz
ρδMr

c

0

0

1

ρcδnz Mr

0

0

−nx
δ

ρcMr

−ny
δ

ρcMr

−nz
δ

ρcMr

1

0

0

0

0

0

0

1

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
δ = − 1

1
min(1, max(M, ))Mcut



ASYMPTOTIC ANALYSIS
PRECONDITIONED ROE SCHEME (MICZEK+, 2015)

in primitive variables V = (ρ, u, v, w, p, X)T

flux Jacobian ( |PA|P−1 )roe
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GRESHO VORTEX
Mach

prec.
Roe

Roe

10−1 10−2 10−3



GRESHO VORTEX
KINETIC ENERGY



KELVIN–HELMHOLTZ INSTABILITY



OTHER APPROACHES
modify underlying equations
e.g. anelastic approximation, Maestro, …

works well for flows with only low Mach numbers

intermediate Mach numbers ( ) or mixed case needs the
full Euler equations

∼ 10−1



THE TOOL
SEVEN-LEAGUE HYDRO (SLH) CODE
F. MICZEK, F. K. RÖPKE, P. V. F. EDELMANN

ALEJANDRO BOLAÑOS, ARON MICHEL, JONAS BERBERICH,
FLORIAN LACH



FEATURES
solves the compressible Euler equations in 1-, 2-, 3-D
explicit and implicit time integration
flux preconditioning to ensure correct behavior at low Mach numbers
other low Mach number schemes (e.g. AUSM -up)
works for low and high Mach numbers on the same grid
hybrid (MPI, OpenMP) parallelization (works up to 100 000 cores)
several solvers for the linear system: 
BiCGSTAB, GMRES, Multigrid, (direct)
arbitrary curvilinear meshes
using a rectangular computational mesh
gravity solver (monopole, Multigrid)
radiation in the diffusion limit
general equation of state
general nuclear reaction network

+



THE GRID

0:00

Cartesian grids are badly
adapted to spherical
stars
Spherical grids have
singularities (center, axis)
Map Cartesian
computational grid to
curvilinear grid
Code stays simple,
geometry encoded in
metric terms

IMPLICIT HYDRODYNAMICS



IMPLICIT HYDRODYNAMICS
explicit implicit

time step constraint for stability 

 
sound crosses one cell per step

time step constraint
for accuracy 

 
fluid crosses one cell
per step

Δ ≤ CFL CFLtexplicit
Δx

|u+c| ≈
u≪c Δx

c Δ ≤ CFLtimplicit
Δx
|u|

Implicit time steps are larger by a factor of .
At each step a non-linear system has to be solved using
Newton–Raphson.
We need iterative linear solvers to invert the huge Jacobian.
In SLH implicit time-stepping is more efficient for .

1/M

M ≲ 0.1



COMPUTATIONAL EFFORT
size of matrix:   
(  for  grid)
non-zero entries:   
(  for  grid)
density of Jacobian:   
(  for  grid)
storage of sparse Jacobian in memory: 21 TiB (  grid)
Iterative solvers, Krylov subspace methods

n × n = (5NxNyNz)2

n ≈ 4 × 1010 20483

13 × ×52 NxNyNz

≈ 3 × 1012 20483

13/( )NxNyNz

≈ 1.5 × %10−7 20483

20483



SCALING ON LARGE HPC SYSTEMS
JUQUEEN 

Jülich Supercomputing Center, Jülich, Germany 
458 752 cores IBM PowerPC® A2, 1.6 GHz



SCALING ON LARGE HPC SYSTEMS
SuperMUC Phase 2 

Leibniz Computing Center, Garching, Germany 
86 016 cores Intel Haswell architecture



DYNAMICAL SHEAR
collaborators: 

Raphael Hirschi (Keele) and Cyril Georgy (Geneva) 
Friedrich Röpke (HITS), Leonhard Horst (Würzburg)



STARS WITH ROTATION
rotating stars are oblate
not 1D problem anymore
assume isobaric shells of constant  and composition 
(shellular rotation)
slightly changed equations of stellar structure 
still in 1D (1.5D simulation)

Ω



SOME SHORTCOMINGS
shellular structure is not certain
some latitutes could be convective, others stable
shear is introduced as diffusion coefficient
shear criterion is resolution dependent (finite difference of )Ω

SOME STABILITY CRITERIA



SOME STABILITY CRITERIA
Convective Stability (Ledoux criterion) 

Brunt–Väisälä frequency 
unstable if 
including rotation (Solberg–Høiland criterion) 

Dynamical Shear 

Richardson number  

unstable if 

= ( − ∇ + )N 2 gδ

HP
∇ad

φ

δ
∇μ

< 0N 2

= ( − ∇ + ) + sin ϑN 2 gδ

HP
∇ad

φ

δ
∇μ

1
ϖ3

d( )Ω2ϖ4

dϖ

Ri = N 2

(∂u/∂z)2

Ri > R =ic
1
4



Maeder (2009)



DYNAMICAL SHEAR

image credit: Maeder (2009), originally Talon (1997)



THE QUEST FOR A GOOD INITIAL MODEL
should become shear unstable in stellar evolution code
should not show other instabilities at the same time
ideally similar time scale in stellar evolution and hydro code

A LOT OF WORK BY R. HIRSCHI

 ZAMS star, 40% crit. rotation
core O burning phase
Ne burning shell
convectively stable
Ri unstable

20 M⊙

SIMULATION WITH GENEC



SIMULATION WITH GENEC





SIMULATIONS WITH SLH
2D equatorial plane
more than 6 hours of physical time
special mapping of GENEC data to keep convective stability



1:36



EVOLUTION OF ANGULAR MOMENTUM



EVOLUTION OF ANGULAR MOMENTUM



EVOLUTION OF MEAN ATOMIC MASS



EVOLUTION OF MEAN ATOMIC MASS



EVOLUTION OF RICHARDSON NUMBER



EVOLUTION OF RICHARDSON NUMBER





3:16



EVOLUTION OF RICHARDSON NUMBER



EVOLUTION OF RICHARDSON NUMBER





FIRST 3D WORK
by Leonhard Horst

not straightforward to
map model to 3D
strict shellular rotation
cannot always be upheld,
while keeping a stable
model
some modifications to 
profile to get a stable
model in the equatorial
plane

Ω

Ā

2:54



CONVECTIVE
OVERSHOOTING IN

POP III STARS
collaborators: 

Alexander Heger (Monash), Friedrich Röpke (HITS)



SETTING
zero metallicity initial model
core He burning produced already significant amount of 
H burning shell with 
convective core grows, reaches H burning shell

C12

X C) =(12 10−9



 star ( ) during core He burning250 M⊙ Z = 0



STRUCTURE



STRUCTURE (20 000 YEARS LATER)



3D BOX (2013)
 grid for about 4 days1283

0:00

Mach number 14N energy release



3D WEDGE (2014)
 grid5123

0:22



NEXT STEPS
start simulation right before overshooting reaches H shell
include core using cubed sphere



CONCLUSIONS
In many aspects stars should be treated as 3D, dynamical
objects.
SE codes are still needed to cover evolutionary timescale.
Low Mach numbers require special numerical methods.
Fully implicit, 3D hydro is possible and scales well to large
supercomputers.
We can now look at many poorly understood phenomena
from stellar evolution in greater detail using hydro
simulations.


