MODELING DYNAMIC PHASES IN STELLAR EVOLUTION USING MULTIDIMENSIONAL HYDRODYNAMICS SIMULATIONS

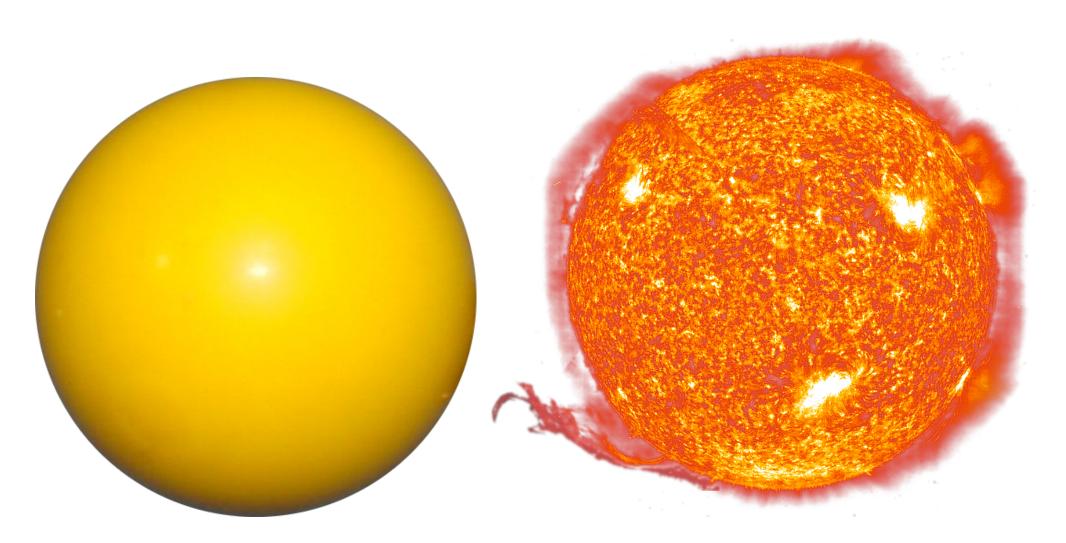
Philipp Edelmann

Heidelberg Institute for Theoretical Studies, Germany

MOTIVATION

CLASSIC STELLAR EVOLUTION (SE)

- one-dimensional, spherically symmetric
- sequence of hydrostatic profiles
- evolution driven by nuclear burning
- parametrized treatment of convection, convective boundary mixing, all kinds of instabilities, ...
- rotation only possible for certain classes of profiles



- spherical symmetry
- no dynamical effects
- turbulence model with free parameters

- no enforced symmetry
- full equations of fluid dynamics
- turbulence from first principles

A MATTER OF TIMESCALES

- hydrodynamics occurs on the free-fall timescale $au_{
 m ff,\odot}=27\,{
 m min}$
- thermal structure changes on the Kelvin-Helmholtz timescale $au_{
 m KH,\odot}=2 imes10^7\,{
 m a}$
- nuclear burning occurs on the *nuclear timescale* $au_{
 m nuc,\odot} = 10^{11} {
 m a} pprox 10^3 \, au_{
 m KH} pprox 10^{15} \, au_{
 m ff}$

no hydrodynamics simulation over significant part of stellar lifetime

SO WHAT CAN WE DO?

- simulate only a small fraction of an evolutionary phase
 - to see if the 3D structure is consistent with SE code
 - to adjust prescriptions in SE code
- simulate phases that are reasonably short
 - short-lived instabilities

improve treatment in SE code

very late burning stages3D progenitors for supernovae?

LOW MACH NUMBER HYDRODYNAMICS

WHAT? Mach number $M = \frac{u}{c} = \frac{\text{fluid velocity}}{\text{speed of sound}}$

WHY?

Flows in the stellar interior are usually at low Mach numbers.

speed of sound
$$c=\sqrt{\gamma \frac{p}{\rho}} \propto \sqrt{\frac{T}{\mu}}$$

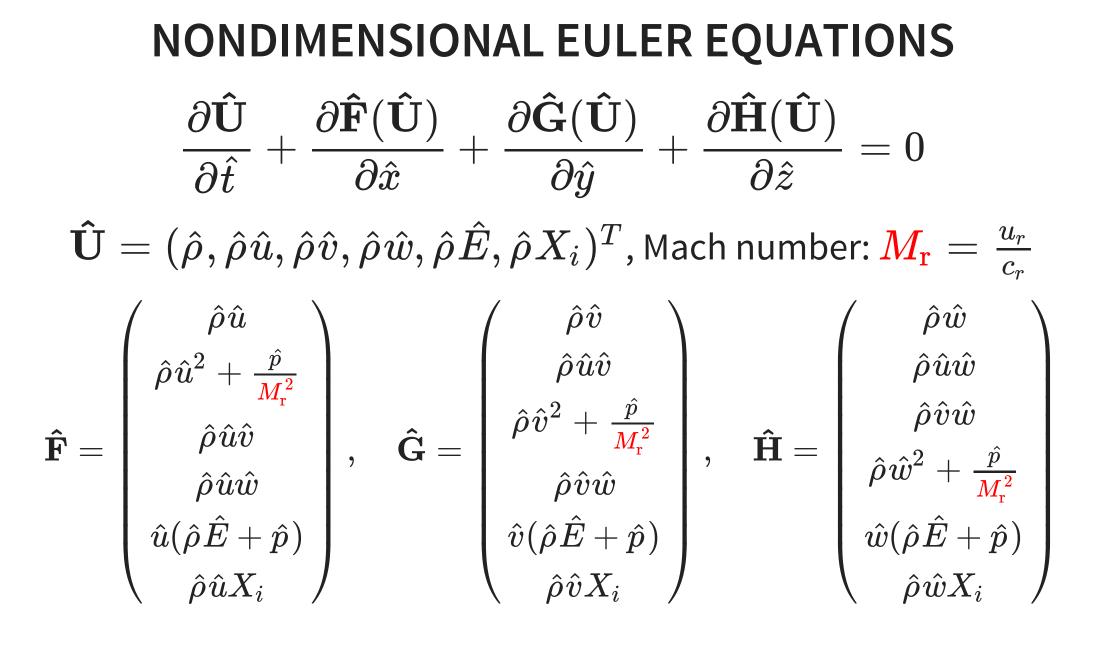
$$\begin{split} \mathbf{EULER} \ \mathbf{EQUATIONS} \\ \frac{\partial \mathbf{U}}{\partial t} &+ \frac{\partial \mathbf{F}(\mathbf{U})}{\partial x} + \frac{\partial \mathbf{G}(\mathbf{U})}{\partial y} + \frac{\partial \mathbf{H}(\mathbf{U})}{\partial z} = 0 \\ \mathbf{U} &= (\rho, \rho u, \rho v, \rho w, \rho E, \rho X_i)^T \\ \mathbf{U} &= (\rho, \rho u, \rho v, \rho w, \rho E, \rho X_i)^T \\ \begin{pmatrix} \rho u \\ \rho u^2 + p \\ \rho u v \\ \rho u w \\ u(\rho E + p) \\ \rho u X_i \end{pmatrix}, \quad \mathbf{G} &= \begin{pmatrix} \rho v \\ \rho u v \\ \rho v v \\ \rho v w \\ \rho v w \\ v(\rho E + p) \\ \rho v X_i \end{pmatrix}, \quad \mathbf{H} = \begin{pmatrix} \rho w \\ \rho w \\ \rho w w \\ \rho w w \\ \rho w^2 + p \\ w(\rho E + p) \\ \rho w X_i \end{pmatrix} \end{split}$$

NONDIMENSIONALIZATION

Replace all quantities with unitless number times reference quantity

$$egin{aligned} &
ho = \hat{
ho}
ho_{
m r}, \ &
ho = \hat{p} p_{
m r}, \end{aligned}$$

• • •

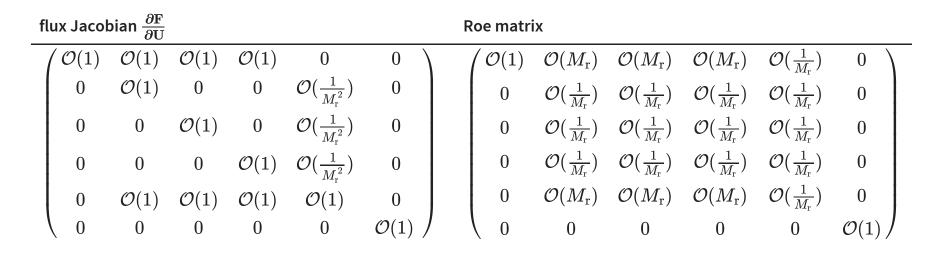


THE ROE SCHEME

Flux at interface

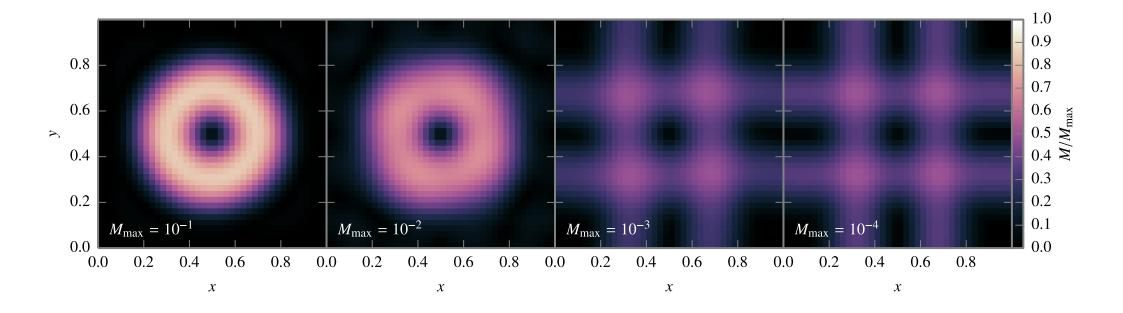
$$\begin{split} \mathbf{F}_{i+1/2} &= \frac{1}{2} \Big(\mathbf{F}(\mathbf{U}_{i+1/2}^L) + \mathbf{F}(\mathbf{U}_{i+1/2}^R) - |A_{\mathrm{roe}}| (\mathbf{U}_{i+1/2}^R - \mathbf{U}_{i+1/2}^L) \Big) \\ & \text{physical flux} & \text{upwind term} \\ A_{\mathrm{roe}} \text{: flux Jacobian} \left(\frac{\partial \mathbf{F}}{\partial \mathbf{U}} \right) \text{ at Roe average state} \end{split}$$

ASYMPTOTIC ANALYSIS in primitive variables $\mathbf{V} = (\rho, u, v, w, p, X)^T$



GRESHO VORTEX

STANDARD ROE SCHEME



PRECONDITIONED ROE SCHEME

(Miczek+, 2015)

$$\begin{split} \mathbf{F}_{i+1/2} &= \frac{1}{2} \left(\mathbf{F}(\mathbf{U}_{i+1/2}^{L}) + \mathbf{F}(\mathbf{U}_{i+1/2}^{R}) - (\boldsymbol{P}^{-1}|\boldsymbol{P}A|)_{\text{roe}}(\mathbf{U}_{i+1/2}^{R} - \mathbf{U}_{i+1/2}^{L}) \right) \\ P_{\mathbf{V}} &= \begin{pmatrix} 1 & n_{x} \frac{\rho \delta M_{\text{r}}}{c} & n_{y} \frac{\rho \delta M_{\text{r}}}{c} & n_{z} \frac{\rho \delta M_{\text{r}}}{c} & 0 & 0 \\ 0 & 1 & 0 & 0 & -n_{x} \frac{\delta}{\rho c M_{\text{r}}} & 0 \\ 0 & 0 & 1 & 0 & -n_{y} \frac{\delta}{\rho c M_{\text{r}}} & 0 \\ 0 & 0 & 0 & 1 & -n_{z} \frac{\delta}{\rho c M_{\text{r}}} & 0 \\ 0 & n_{x} \rho c \delta M_{\text{r}} & n_{y} \rho c \delta M_{\text{r}} & n_{z} \rho c \delta M_{\text{r}} & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \\ \delta &= \frac{1}{\min(1, \max(M, M_{\text{cut}}))} - 1 \end{split}$$

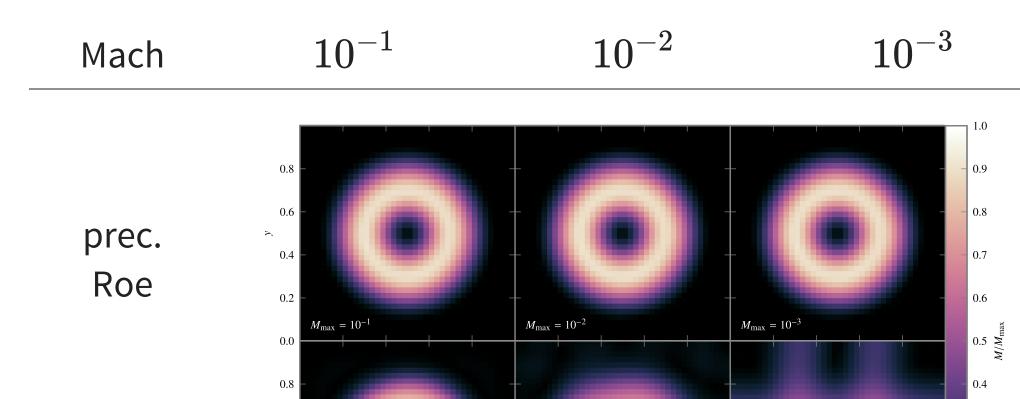
ASYMPTOTIC ANALYSIS

PRECONDITIONED ROE SCHEME (MICZEK+, 2015)

in primitive variables $\mathbf{V} = (
ho, u, v, w, p, X)^T$

flux Jacobian							(P	$^{-1} PA$	$)_{roe}$				
	$\int \mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	0	0	($\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	0)
	0	$\mathcal{O}(1)$	0	0	$\mathcal{O}(rac{1}{{M_{ m r}}^2})$	0		0	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(rac{1}{{M_{ m r}}^2})$	0
	0	0	$\mathcal{O}(1)$	0	$\mathcal{O}(rac{1}{{M_{ m r}}^2})$	0		0	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(rac{1}{{M_{ m r}}^2})$	0
	0	0	0	$\mathcal{O}(1)$	$\mathcal{O}(rac{1}{M_{ m r}^2})$	0		0	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(rac{1}{{M_{ m r}}^2})$	0
	0	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	0		0	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	$\mathcal{O}(1)$	0
	0	0	0	0	0	$\mathcal{O}(1)$		0	0	0	0	0	$\mathcal{O}(1)$

GRESHO VORTEX



 $M_{\rm max} = 10^{-2}$

0.2

0.4

0.6

х

0.8

0.8

0.6

0.4 *x*

0.0

0.3

0.2

0.1

0.0

 $M_{\rm max} = 10^{-3}$

0.2

0.4

0.6

х

0.8

0.0

Roe

0.6

0.4

0.2

0.0

0.0

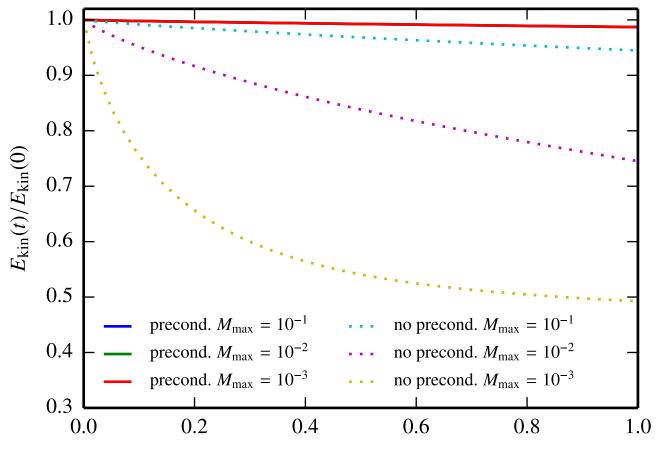
 $M_{\rm max} = 10^{-1}$

0.2

 $\boldsymbol{\mathcal{V}}$

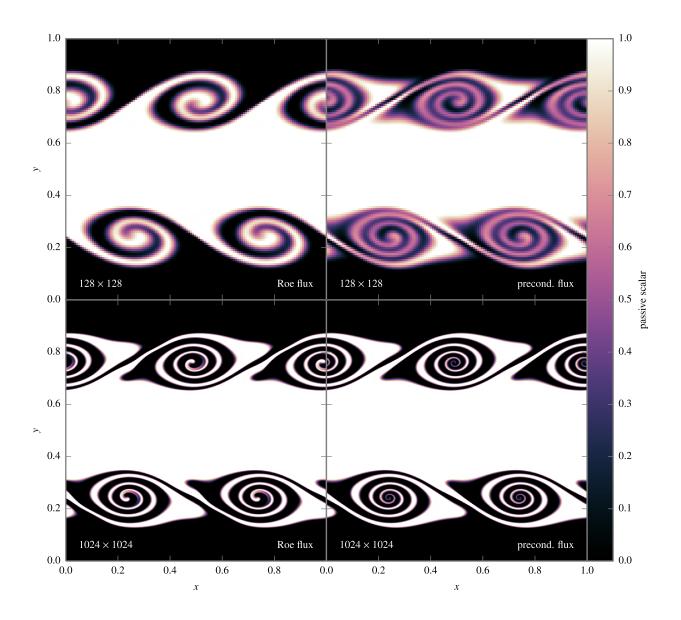
GRESHO VORTEX

KINETIC ENERGY



t

KELVIN-HELMHOLTZ INSTABILITY



OTHER APPROACHES

- modify underlying equations
- e.g. anelastic approximation, Maestro, ...

works well for flows with only low Mach numbers

intermediate Mach numbers ($\sim 10^{-1}$) or mixed case needs the full Euler equations

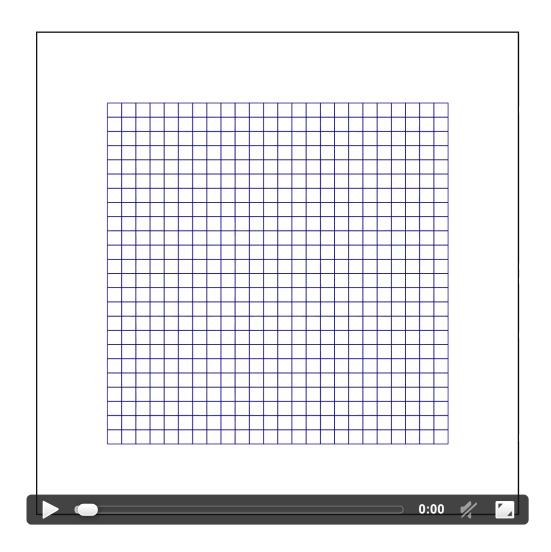
THE TOOL SEVEN-LEAGUE HYDRO (SLH) CODE F. MICZEK, F. K. RÖPKE, P. V. F. EDELMANN ALEJANDRO BOLAÑOS, ARON MICHEL, JONAS BERBERICH, FLORIAN LACH

FEATURES

- solves the compressible Euler equations in 1-, 2-, 3-D
- explicit and implicit time integration
- flux preconditioning to ensure correct behavior at low Mach numbers
- other low Mach number schemes (e.g. AUSM⁺-up)
- works for low and high Mach numbers on the same grid
- hybrid (MPI, OpenMP) parallelization (works up to 100 000 cores)
- several solvers for the linear system: BiCGSTAB, GMRES, Multigrid, (direct)
- arbitrary curvilinear meshes using a rectangular computational mesh
- gravity solver (monopole, Multigrid)
- radiation in the diffusion limit
- general equation of state
- general nuclear reaction network

THE GRID

- Cartesian grids are badly adapted to spherical stars
- Spherical grids have singularities (center, axis)
- Map Cartesian computational grid to curvilinear grid
- Code stays simple, geometry encoded in *metric* terms



IMPLICIT HYDRODYNAMICS

explicit

implicit

time step constraint for stability $\Delta t_{ ext{explicit}} \leq ext{CFL} rac{\Delta x}{|u+c|} \stackrel{u \ll c}{pprox} ext{CFL} rac{\Delta x}{c}$ sound crosses one cell per step

time step constraint
for accuracy
$$\Delta t_{ ext{implicit}} \leq ext{CFL} rac{\Delta x}{|u|}$$

fluid crosses one cell
per step

- Implicit time steps are larger by a factor of 1/M.
- At each step a non-linear system has to be solved using Newton–Raphson.
- We need iterative linear solvers to invert the huge Jacobian.
- In SLH implicit time-stepping is more efficient for $M \lesssim 0.1.$

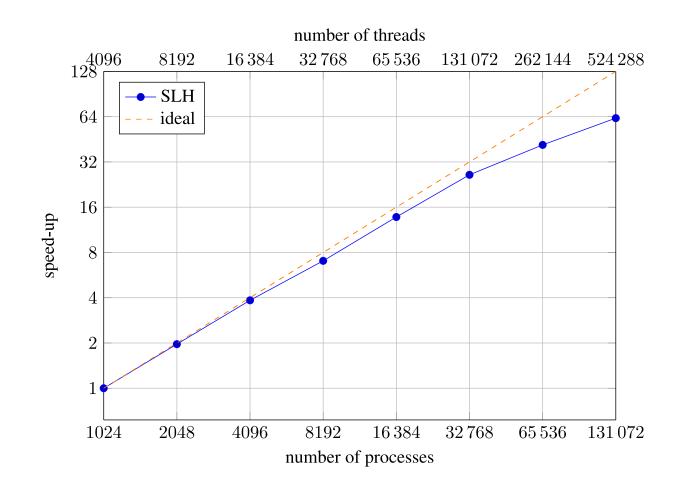
COMPUTATIONAL EFFORT

- size of matrix: $n imes n=(5N_xN_yN_z)^2$ $(npprox 4 imes 10^{10}$ for 2048^3 grid)
- non-zero entries: $13 imes 5^2 imes N_xN_yN_z$ ($pprox 3 imes 10^{12}$ for 2048^3 grid)
- density of Jacobian: $13/(N_xN_yN_z)$ $(pprox 1.5 imes 10^{-7}\,\%$ for 2048^3 grid)
- storage of sparse Jacobian in memory: 21 TiB (2048^3 grid)
- Iterative solvers, Krylov subspace methods

SCALING ON LARGE HPC SYSTEMS

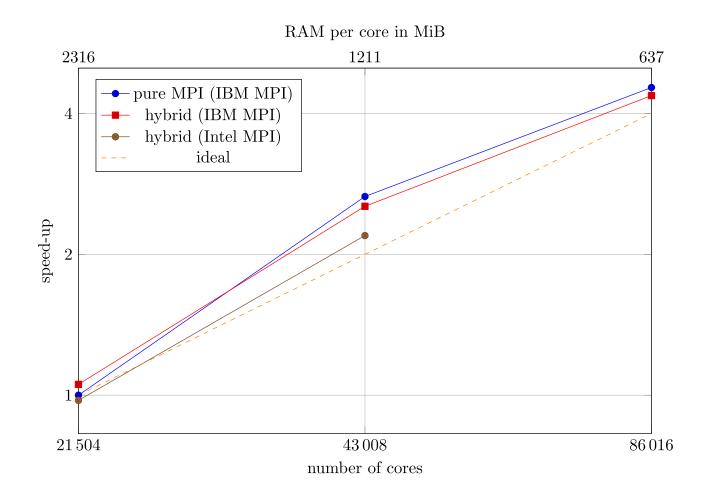
JUQUEEN

Jülich Supercomputing Center, Jülich, Germany 458 752 cores IBM PowerPC® A2, 1.6 GHz



SCALING ON LARGE HPC SYSTEMS

SuperMUC Phase 2 Leibniz Computing Center, Garching, Germany 86 016 cores Intel Haswell architecture



DYNAMICAL SHEAR

collaborators:

Raphael Hirschi (Keele) and Cyril Georgy (Geneva) Friedrich Röpke (HITS), Leonhard Horst (Würzburg)

STARS WITH ROTATION

- rotating stars are oblate
- not 1D problem anymore
- assume isobaric shells of constant Ω and composition (shellular rotation)
- slightly changed equations of stellar structure still in 1D (1.5D simulation)

SOME SHORTCOMINGS

- shellular structure is not certain
- some latitutes could be convective, others stable
- shear is introduced as diffusion coefficient
- shear criterion is resolution dependent (finite difference of Ω)

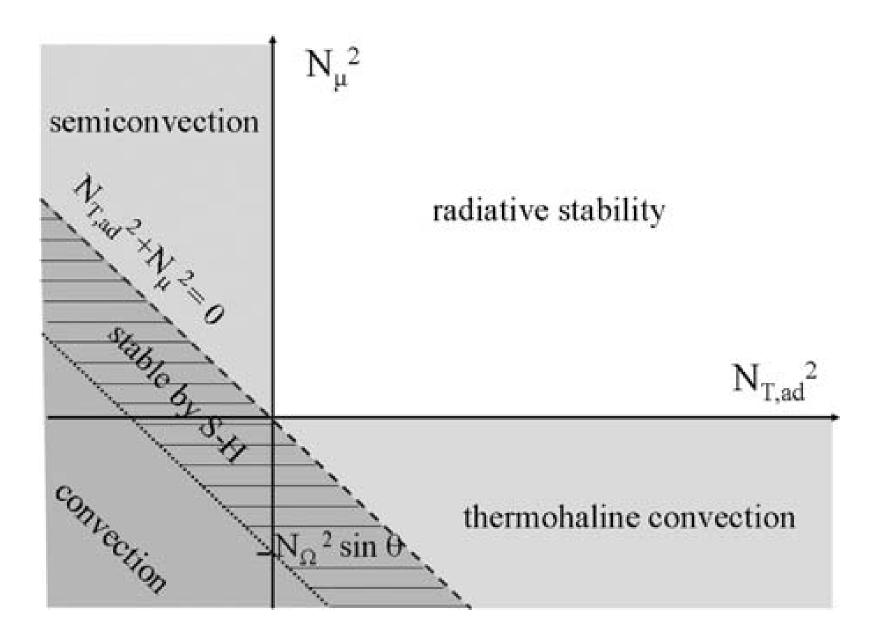
SOME STABILITY CRITERIA

- Convective Stability (Ledoux criterion) Brunt–Väisälä frequency $N^2=rac{g\delta}{H_P}ig(
 abla_{
 m ad}abla+rac{arphi}{\delta}
 abla_\muig)$ unstable if $N^2<0$
- including rotation (Solberg–Høiland criterion)

$$N^2 = rac{g\delta}{H_P}ig(
abla_{
m ad} -
abla + rac{arphi}{\delta}
abla_\muig) + \sinartheta rac{1}{arpi^3} rac{d(\Omega^2 arpi^4)}{darpi}$$

• Dynamical Shear

Richardson number $Ri = rac{N^2}{\left(\partial u / \partial z
ight)^2}$ unstable if $Ri > Ri_c = rac{1}{4}$



Maeder (2009)

DYNAMICAL SHEAR

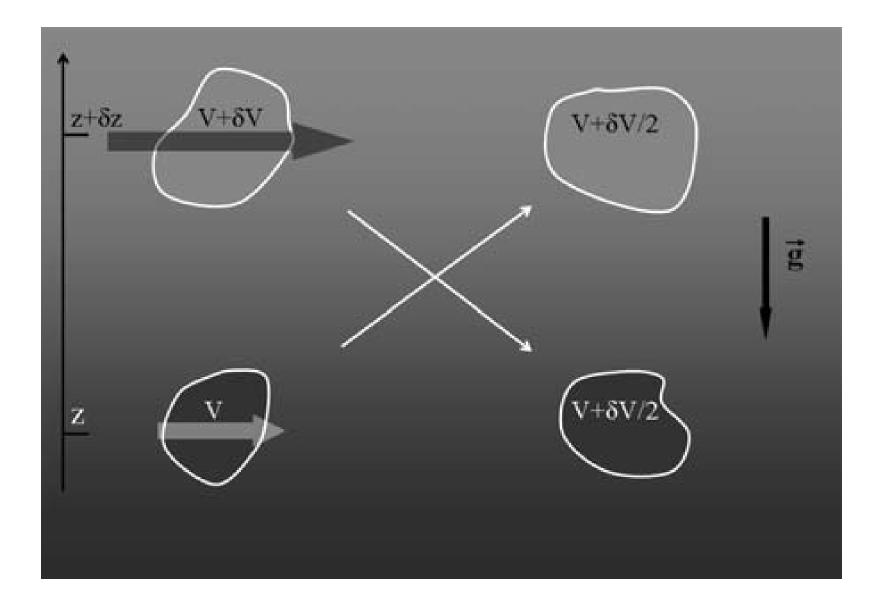


image credit: Maeder (2009), originally Talon (1997)

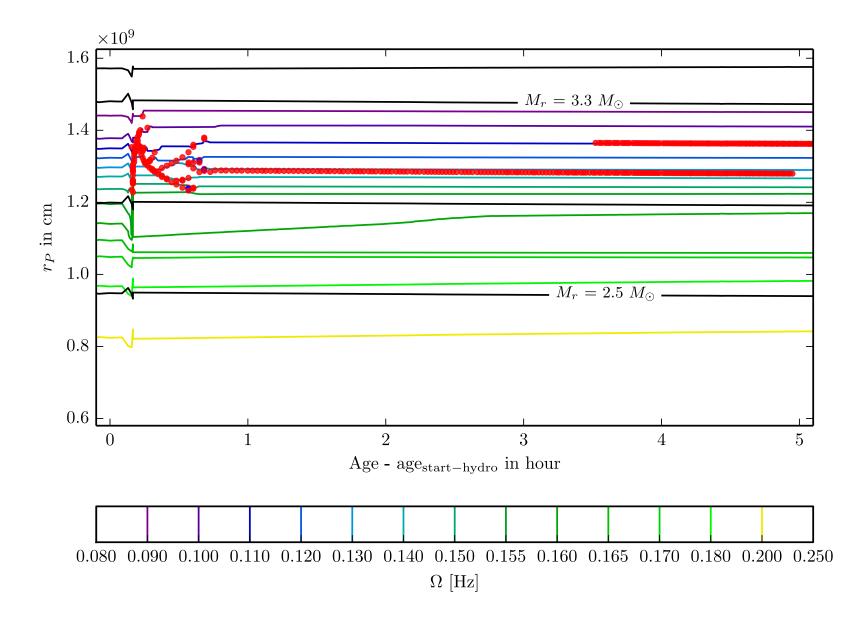
THE QUEST FOR A GOOD INITIAL MODEL

- should become shear unstable in stellar evolution code
- should not show other instabilities at the same time
- ideally similar time scale in stellar evolution and hydro code

A LOT OF WORK BY R. HIRSCHI

- + $20\,M_{\odot}$ ZAMS star, 40% crit. rotation
- core O burning phase
- Ne burning shell
- convectively stable
- Ri unstable

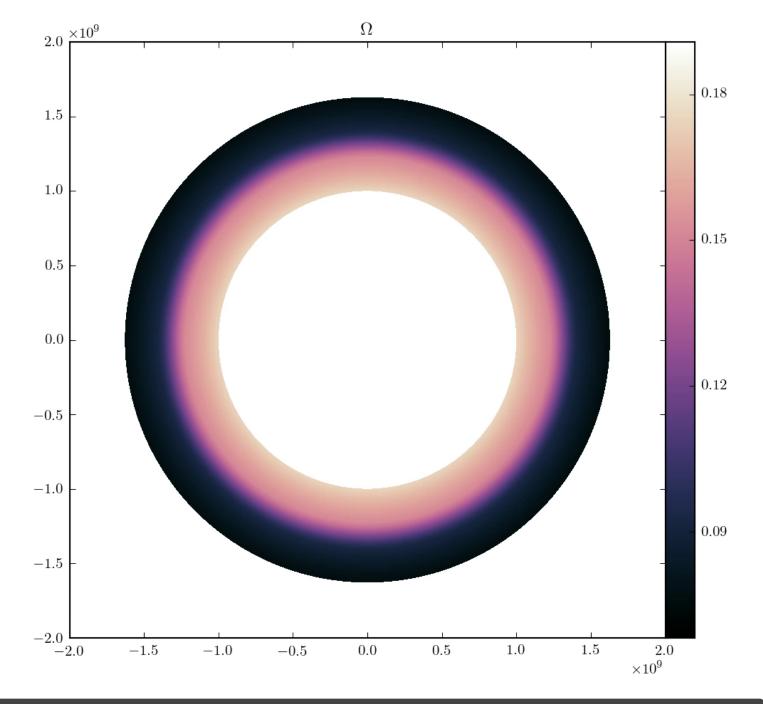
SIMULATION WITH GENEC



SIMULATIONS WITH SLH

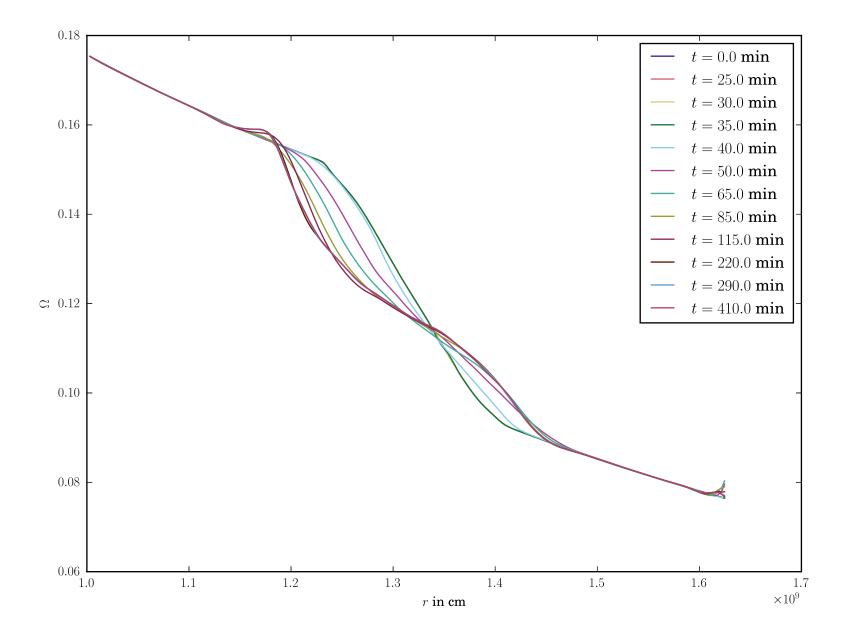
- 2D equatorial plane
- more than 6 hours of physical time
- special mapping of GENEC data to keep convective stability

 $t=0.000000\,\mathrm{s}$

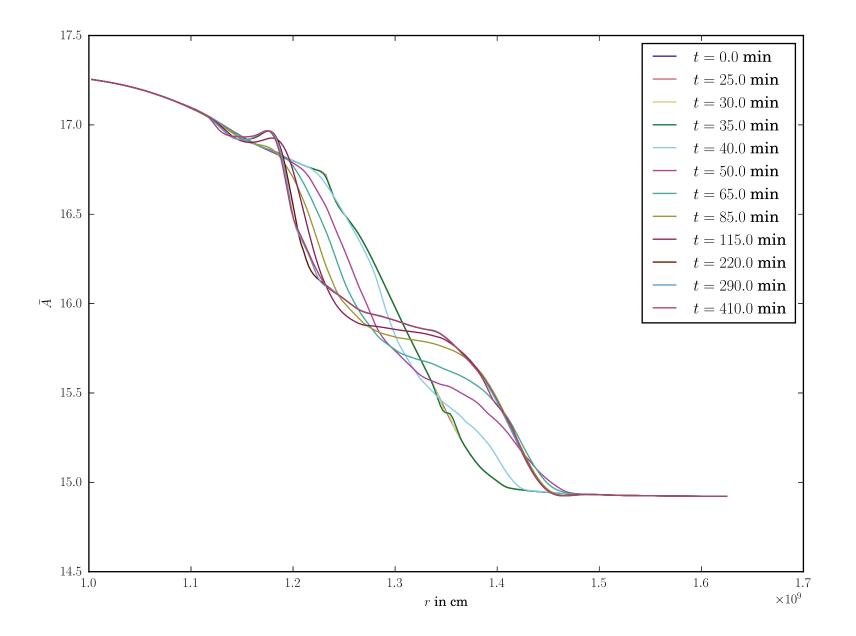


1:36 🚀 🌄

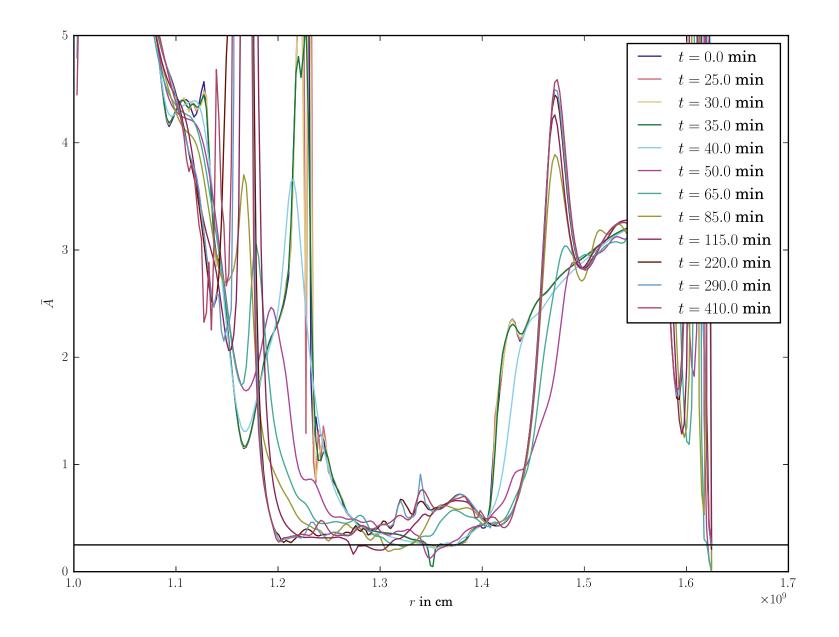
EVOLUTION OF ANGULAR MOMENTUM

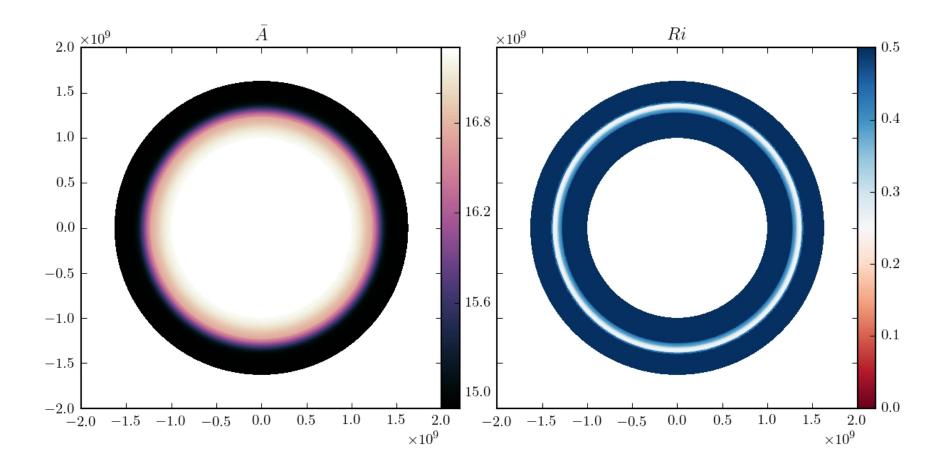


EVOLUTION OF MEAN ATOMIC MASS

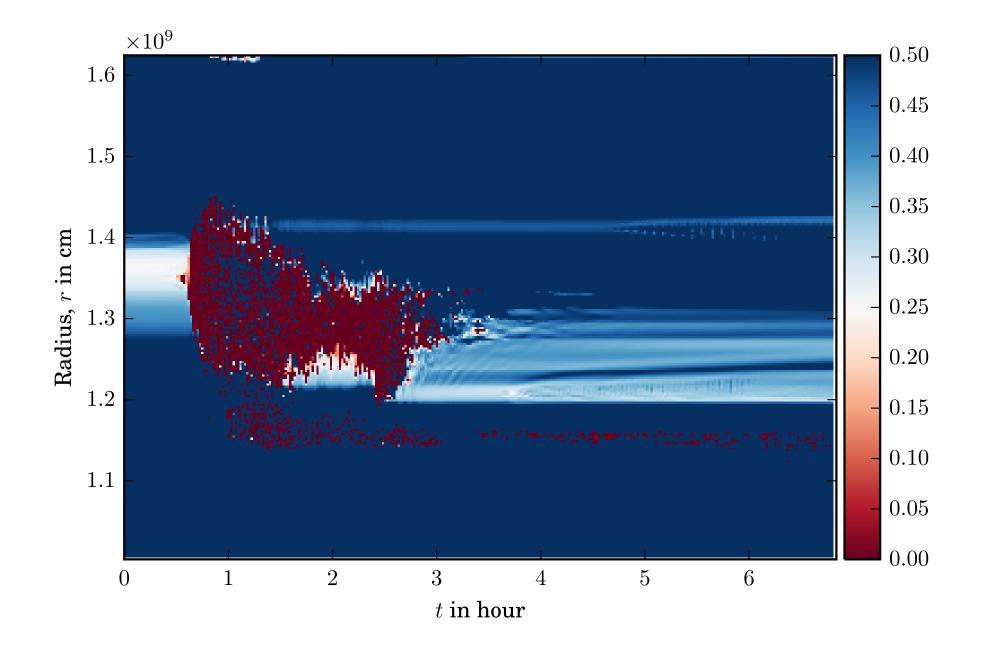


EVOLUTION OF RICHARDSON NUMBER



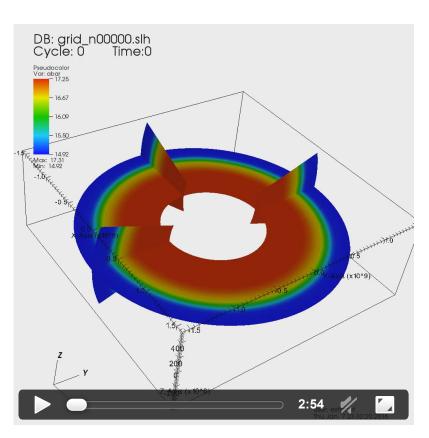


EVOLUTION OF RICHARDSON NUMBER



FIRST 3D WORK

- not straightforward to map model to 3D
- strict shellular rotation cannot always be upheld, while keeping a stable model
- some modifications to Ω profile to get a stable model in the equatorial plane



by Leonhard Horst

CONVECTIVE OVERSHOOTING IN POP III STARS

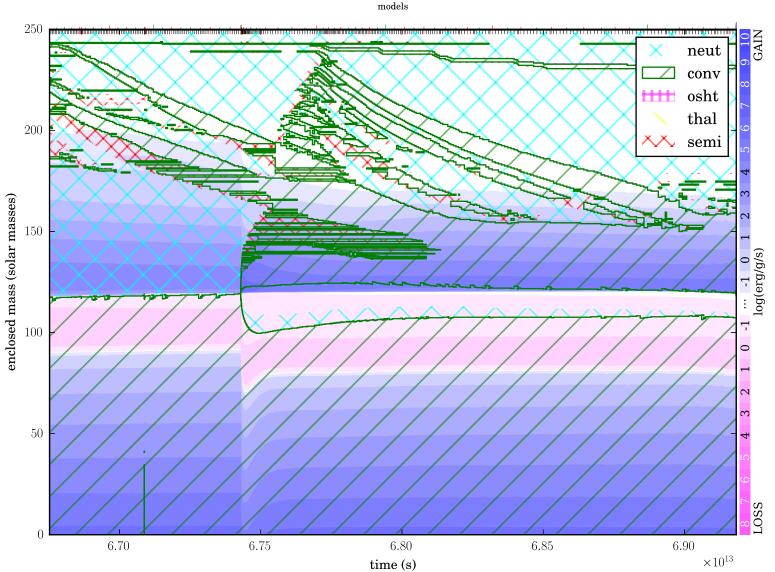
collaborators:

Alexander Heger (Monash), Friedrich Röpke (HITS)

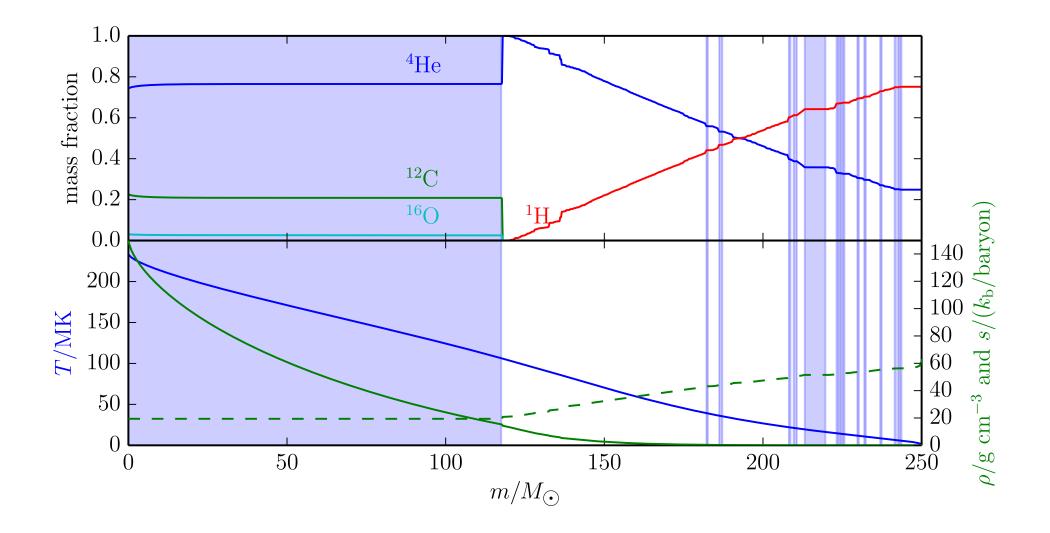
SETTING

- zero metallicity initial model
- core He burning produced already significant amount of $^{12}\mathrm{C}$
- H burning shell with $X(^{12}{
 m C})=10^{-9}$
- convective core grows, reaches H burning shell

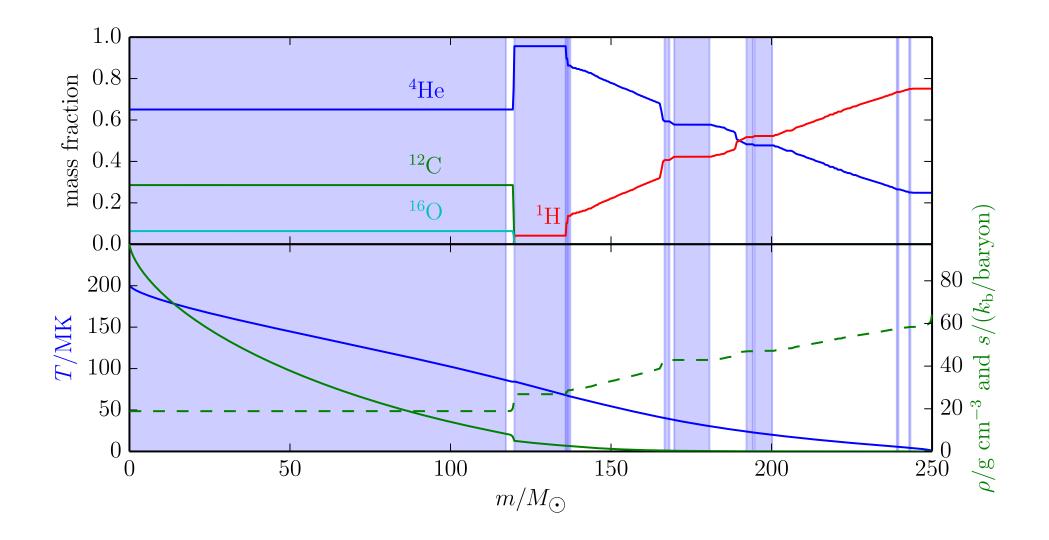
$250\,M_{\odot}$ star (Z=0) during core He burning



STRUCTURE

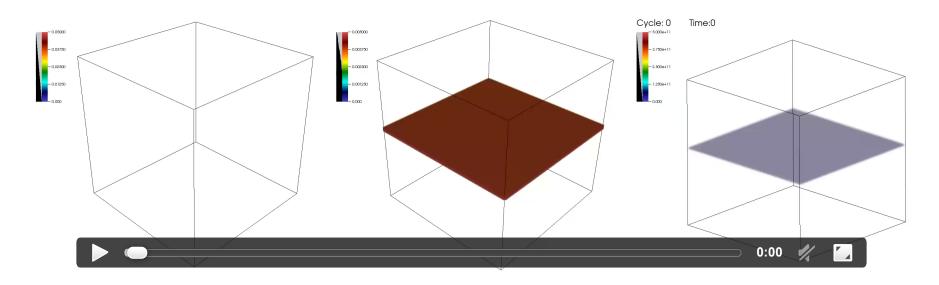


STRUCTURE (20 000 YEARS LATER)



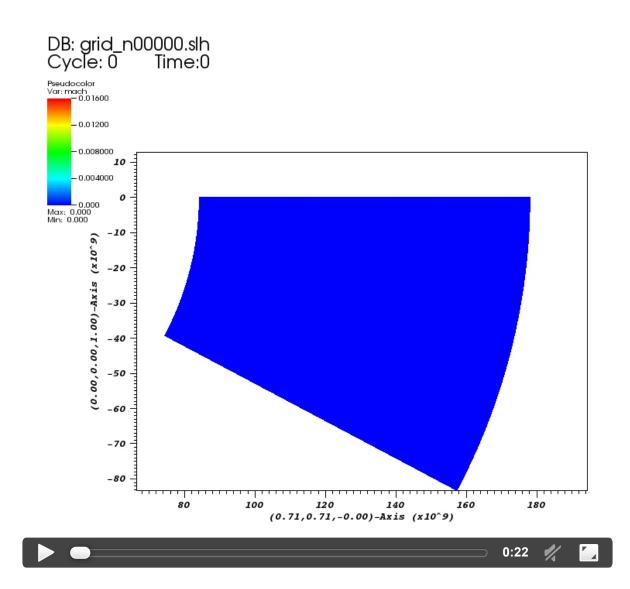
3D BOX (2013)

128^3 grid for about 4 days



Mach number 14_N energy release

$\begin{array}{c} \textbf{3D WEDGE (2014)} \\ 512^3 \text{ grid} \end{array}$



NEXT STEPS

- start simulation right before overshooting reaches H shell
- include core using cubed sphere

CONCLUSIONS

- In many aspects stars should be treated as 3D, dynamical objects.
- SE codes are still needed to cover evolutionary timescale.
- Low Mach numbers require special numerical methods.
- Fully implicit, 3D hydro is possible and scales well to large supercomputers.
- We can now look at many poorly understood phenomena from stellar evolution in greater detail using hydro simulations.