The edge of darkness, and other halo surprises

Benedikt Diemer ITC Fellow, Harvard-Smithsonian Center for Astrophysics

(in collaboration with Andrey Kravtsov and Surhud More)

APEC Seminar • IPMU • 4/7/2016

Dark matter power spectrum

Large <-- Scale --> Small

Dark matter power spectrum

N-body simulations

Crocce et al. 2006

89 Mpc

Visualization code: Phil Mansfield

N-body simulations

2000 Mpc/h

Diemer & Kravtsov 2014, 2015 • Springel 2005 • Crocce et al. 2006 • Behroozi et al. 2013ab

Springel 2005 • Crocce et al. 2006 • Behroozi et al. 2013ab

 $\log_{10}(
ho/
ho_{
m m})$

 \mathbf{N}

ಲು

0

Initial peaks

r

Bardeen et al. 1986 • Dalal et al. 2008

Mass accretion history

Wechsler et al. 2002 • van den Bosch 2002 • Zhao et al. 2003/2009 • Dalal et al. 2008

Density profile

Dalal et al. 2008 • Ludlow et al. 2013

Density profile

Scale radius: d log(ρ) / d log(r) = -2

logρ

Outer radius (enclosing some mean overdensity)

 $Mass: M_{\Delta} = 4\pi/3 \ \Delta \ \rho_{ref} \ R_{\Delta}{}^3$

log r

rs

R200c Rvir R200m

Navarro-Frenk-White profile

Navarro et al. 1995/1996/1997

Navarro-Frenk-White profile

Navarro et al. 1995/1996/1997

Questions

Can we find a universal concentration-mass relation?
 Are the outer profiles universal?
 Is there a well-defined edge to a halo?

Concentration-mass models

- Navarro et al. 1996
- Navarro et al. 1997
- Avila-Reese et al. 1999
- Jing 2000
- Bullock et al. 2001
- Eke et al. 2001
- Wechsler et al. 2002
- Zhao et al. 2003
- Colin et al. 2004
- Dolag et al. 2004
- Neto et al. 2007
- Duffy et al. 2008

- Maccio et al. 2008
- Gao et al. 2008
- Zhao et al. 2009
- Klypin et al. 2011
- Munoz-Cuartas et al. 2011
- Prada et al. 2012
- Giocoli et al. 2012
- Bhattacharya et al. 2013
- Ludlow et al. 2014
- Dutton & Maccio 2014
- Klypin et al. 2015

Power-law fits

Avila-Reese et al. 1999 • Jing 2000 • Neto et al. 2007 • Duffy et al. 2008 • Maccio et al. 2008 Gao et al. 2008 • Klypin et al. 2011 • Munoz-Cuartas et al. 2011 • Dutton & Maccio 2014

History-based models

Formation scale

Navarro et al. 1997 • Bullock et al. 2001 • Eke et al. 2001 • Wechsler et al. 2002 Zhao et al. 2009 • Giocoli et al. 2012 • Ludlow et al. 2014

Concentration-mass relation

Halo mass

Diemer & Kravtsov 2015

Is there an upturn?

Ludlow et al. 2012

Prada et al. 2012 • Ludlow et al. 2012 • Meneghetti & Rasia 2013

Concentration-mass relation

Halo mass

Diemer & Kravtsov 2015 • Dutton & Maccio 2015

Peak height

Peak height

Concentration-peak height relation

Prada et al. 2012 • Ludlow et al. 2013 • Diemer & Kravtsov 2015

Power spectrum slope

Bardeen et al. 1986 • Moore et al. 1998 • Dalal et al. 2010

Diemer & Kravtsov 2015

Comparison to CLASH observations

Umetsu et al. 2014 • Merten et al. 2014 • Meneghetti et al. 2014

Micro-halos at high redshift

Diemand et al. 2005 • Anderhalden & Diemand 2013 • Ishiyama 2014

Micro-halos at high redshift

Diemand et al. 2005 • Anderhalden & Diemand 2013 • Ishiyama 2014

We found a universal c-M relation, and thus a universal **inner** profile.

But what about the **outer** profile?

Diemer & Kravtsov 2014

$3 \times 10^{13} < M < 10^{14}$

 $\Gamma = \Delta \log(M_{vir}) / \Delta \log(a)$

Diemer & Kravtsov 2014

New fitting function

10% accuracy (selected by mass or accretion rate)
Valid between 0.1 and 9 R_{vir}

The outer profiles **are not universal**, they exhibit a steepening that depends on the mass accretion rate

Is there an **edge** to a halo?

R_{200c}

Halo finder: Rockstar (Behroozi et al. 2013) $\mathsf{R}_{\mathsf{vir}}$

Halo finder: Rockstar (Behroozi et al. 2013)

Turnaround radius, r_{ta}

Outermost infalling shell

Fillmore & Goldreich 1984 • Bertschinger 1985 • Diemand & Kuhlen 2008 Vogelsberger et al. 2011 • Lithwick & Dalal 2011 • Adhikari et al. 2014

Fillmore & Goldreich 1984 • Bertschinger 1985 • Diemand & Kuhlen 2008 Vogelsberger et al. 2011 • Lithwick & Dalal 2011 • Adhikari et al. 2014

Adhikari et al. 2014 • cf. Diemand & Kuhlen 2008

The Splashback Radius

Fillmore & Goldreich 1984 • Bertschinger 1985 • Diemand & Kuhlen 2008 Vogelsberger et al. 2011 • Lithwick & Dalal 2011 • Adhikari et al. 2014

High accretion rate

Diemer & Kravtsov 2014 • More, Diemer & Kravtsov 2015

Low accretion rate

R_{sp}/M_{sp} as a function of MAR

More, Diemer & Kravtsov 2015 • cf. Vogelsberger et al. 2011 • cf. Adhikari et al. 2014

Do the Milky Way and Andromeda halos overlap?

More, Diemer & Kravtsov 2015 • Diaz et al. 2014

Mass accretion rate

Patej & Loeb 2015 • cf. Tully 2015

More et al. 2015 • Miyatake et al. 2015

More et al. 2015 • Miyatake et al. 2015

More et al. 2015

Can we measure R_{sp} in **individual** simulated halos?

R_{sp} in individual halos

Mansfield et al. 2016 (in prep.)

SHELLFISH

Mansfield et al. 2016 (in prep.)

Results: R_{sp}-Γ relation

Results: Δ_{sp}

Shi 2016

Results: Δ_{sp}

Results: Δ_{sp}

Future directions

- Measure R_{sp} in individual halos
- Quantify the mass function and accretion rates of M_{sp}
- Create halo catalogs and merger trees based on R_{sp}
- Find more observational signatures of R_{sp}

The Colossus Code

Cosmology

from colossus.cosmology import cosmology

```
cosmo = cosmology.setCosmology('WMAP9')
xi = cosmo.correlationFunction(10.0)
```

Concentration

```
from colossus.halo import concentration as hc
c = hc.concentration(1E12, 'vir', 0.0, model = 'diemer15')
```

Density profiles

```
from colossus.halo import profile_nfw as nfw
from colossus.halo import profile_dk14 as dk14
```

p1 = nfw.NFWProfile(M = 1E14, mdef = 'vir', c = 4.0, z = 0.0)
Sigma = p1.surfaceDensity(5.0)

p2 = dk14.DK14Profile(M = 1E14, mdef = 'vir', c = 4.0, z = 0.0)
splashback_radius = p2.Rsp()

http://www.benediktdiemer.com/code/

Conclusions

- Concentrations are universal when expressed as a function of peak properties
- The outer profiles **are not universal**, they depend on the mass accretion rate and are not well described by the NFW form
- The **splashback radius** provides a physical halo boundary

Diemer & Kravtsov 2014 • ApJ 789, 1 • arXiv 1401.1216 Diemer & Kravtsov 2015 • ApJ 799, 108 • arXiv 1407.4730 More, Diemer & Kravtsov 2015 • arXiv 1504.5591