The $AdS_5 \times S^5$ string field theory vertex and integrability

Romuald A. Janik

Jagiellonian University Kraków

Z. Bajnok, RJ 1501.04533Z. Bajnok, RJ 1512.01471

Outline

Part I

Introduction and motivation

Part II

Our approach

Motivation from the spectral problem Form factors revisited

String Field Theory vertex

Short reminder of the conventional approach for pp-wave

Functional equations for the string vertex

What happens in $AdS_5 \times S^5$? The kinematical $AdS_5 \times S^5$ Neumann coefficient

Conclusions & outlook

Key questions:

► Find the spectrum of conformal weights ≡ eigenvalues of the dilatation operator ≡ (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = rac{1}{|x|^{2\Delta}}$$

The dimensions are complicated functions of the coupling:

$$\Delta = \underbrace{\Delta_0(\lambda)}_{planar} + \underbrace{\frac{1}{N_c^2} \Delta_1(\lambda) + \dots}_{nonplanar} \qquad \text{where } \lambda \equiv g_{YM}^2 N_c$$

▶ Find the OPE coefficients *C*_{ijk} defined through

 $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = rac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$

Key questions:

▶ Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = rac{1}{|x|^{2\Delta}}$$

The dimensions are complicated functions of the coupling:

$$\Delta = \underbrace{\Delta_0(\lambda)}_{planar} + \underbrace{\frac{1}{N_c^2} \Delta_1(\lambda) + \dots}_{nonplanar} \qquad \text{where } \lambda \equiv g_{YM}^2 N_0$$

▶ Find the OPE coefficients *C*_{ijk} defined through

 $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \frac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$

Key questions:

▶ Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = rac{1}{|x|^{2\Delta}}$$

The dimensions are complicated functions of the coupling:

$$\Delta = \underbrace{\Delta_0(\lambda)}_{planar} + \underbrace{\frac{1}{N_c^2} \Delta_1(\lambda) + \dots}_{nonplanar} \qquad \text{where } \lambda \equiv g_{YM}^2 N_{N_c}$$

▶ Find the OPE coefficients *C*_{ijk} defined through

 $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = rac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$

Key questions:

Find the spectrum of conformal weights

 \equiv eigenvalues of the dilatation operator \equiv (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

The dimensions are complicated functions of the coupling:

$$\Delta = \underbrace{\Delta_0(\lambda)}_{planar} + \underbrace{\frac{1}{N_c^2} \Delta_1(\lambda) + \dots}_{nonplanar} \qquad \text{where } \lambda \equiv g_{YM}^2 \Lambda$$

▶ Find the OPE coefficients *C*_{ijk} defined through

 $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \frac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$

Key questions:

► Find the spectrum of conformal weights ≡ eigenvalues of the dilatation operator

 \equiv (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = \frac{1}{|x|^{2\Delta}}$$

The dimensions are complicated functions of the coupling:

$$\Delta = \underbrace{\Delta_0(\lambda)}_{planar} + \underbrace{\frac{1}{N_c^2} \Delta_1(\lambda) + \dots}_{nonplanar} \qquad \text{where } \lambda \equiv g_Y^2$$

▶ Find the OPE coefficients *C*_{ijk} defined through

 $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = rac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$

Key questions:

- Find the spectrum of conformal weights
 - \equiv eigenvalues of the dilatation operator
 - \equiv (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = rac{1}{|x|^{2\Delta}}$$

The dimensions are complicated functions of the coupling:

$$\Delta = \underbrace{\Delta_0(\lambda)}_{planar} + \underbrace{\frac{1}{N_c^2} \Delta_1(\lambda) + \dots}_{nonplanar}$$

where
$$\lambda \equiv g_{YM}^2 N_c$$

▶ Find the OPE coefficients C_{ijk} defined through

 $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = rac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$

Key questions:

- ► Find the spectrum of conformal weights
 - \equiv eigenvalues of the dilatation operator
 - \equiv (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = rac{1}{|x|^{2\Delta}}$$

The dimensions are complicated functions of the coupling:

$$\Delta = \underbrace{\Delta_0(\lambda)}_{planar} + \underbrace{\frac{1}{N_c^2}\Delta_1(\lambda) + \dots}_{nonplanar}$$

where
$$\lambda \equiv g_{YM}^2 N_c$$

▶ Find the OPE coefficients C_{ijk} defined through

 $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = \frac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$

Key questions:

- ► Find the spectrum of conformal weights
 - \equiv eigenvalues of the dilatation operator
 - \equiv (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = rac{1}{|x|^{2\Delta}}$$

The dimensions are complicated functions of the coupling:

$$\Delta = \underbrace{\Delta_0(\lambda)}_{planar} + \underbrace{\frac{1}{N_c^2} \Delta_1(\lambda) + \dots}_{nonplanar} \qquad \text{where } \lambda \equiv g_{YM}^2 N_c$$

▶ Find the OPE coefficients C_{ijk} defined through

 $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = rac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$

Key questions:

- ► Find the spectrum of conformal weights
 - \equiv eigenvalues of the dilatation operator
 - \equiv (anomalous) dimensions of operators

$$\langle O(0)O(x)\rangle = rac{1}{|x|^{2\Delta}}$$

The dimensions are complicated functions of the coupling:

$$\Delta = \underbrace{\Delta_0(\lambda)}_{planar} + \underbrace{\frac{1}{N_c^2} \Delta_1(\lambda) + \dots}_{nonplanar} \qquad \text{where } \lambda \equiv g_{YM}^2 N_c$$

▶ Find the OPE coefficients C_{ijk} defined through

 $\langle O_i(x_1)O_j(x_2)O_k(x_3)\rangle = rac{C_{ijk}}{|x_1 - x_2|^{\Delta_i + \Delta_j - \Delta_k}|x_1 - x_3|^{\Delta_i + \Delta_k - \Delta_j}|x_2 - x_3|^{\Delta_j + \Delta_k - \Delta_j}}$

The AdS/CFT correspondence

 $\mathcal{N} = 4$ Super Yang-Mills theory

Superstrings on $AdS_5 \times S^5$

The AdS/CFT dictionary

- Operators in $\mathcal{N} = 4$ SYM
- Single trace operators
- Multitrace operators
- Large *N_c* limit
- Operator dimension
- Nonplanar corrections
- OPE coefficients

- (quantized) string states in $AdS_5 imes S^5$
- \rightarrow single string states

 \equiv

- \rightarrow multistring states
- \rightarrow suffices to consider single string states
- ightarrow Energy of a string state in $\mathit{AdS}_5 imes S^5$
- \sim string interactions
- \sim string interactions

The AdS/CFT correspondence

 $\mathcal{N} = 4$ Super Yang-Mills theory

Superstrings on $AdS_5 \times S^5$

The AdS/CFT dictionary

- Operators in $\mathcal{N} = 4$ SYM \leftarrow
- Single trace operators
- Multitrace operators
- Large *N_c* limit
- Operator dimension
- Nonplanar corrections
- OPE coefficients

- (quantized) string states in $AdS_5 imes S^5$
- \rightarrow single string states

 \equiv

- \rightarrow multistring states
- \rightarrow suffices to consider single string states
- ightarrow Energy of a string state in $AdS_5 imes S^5$
- \sim string interactions
- \sim string interactions

The AdS/CFT correspondence

 $\mathcal{N} = 4$ Super Yang-Mills theory

Superstrings on $AdS_5 \times S^5$ ≡

The AdS/CFT dictionary

- Single trace operators
- Multitrace operators
- Large N_c limit
- Operator dimension
- Nonplanar corrections
- **OPE** coefficients

- Operators in $\mathcal{N} = 4$ SYM $\leftrightarrow \rightarrow$ (quantized) string states in $AdS_5 \times S^5$
 - \leftrightarrow single string states
 - \longleftrightarrow multistring states
 - \longleftrightarrow suffices to consider single string states
 - Energy of a string state in $AdS_5 \times S^5$ \longleftrightarrow
 - string interactions \sim
 - string interactions \sim

- The embedding coordinates of the point (τ, σ) are quantum fields X^μ(τ, σ) on the worldsheet which has the geometry of a cylinder
- ▶ String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT) with the Lagrangian induced by the geometry of $AdS_5 \times S^5$
- ▶ Due to the curved geometry of $AdS_5 \times S^5$ this 2D worldsheet theory is **interacting** (and very complicated...)

- The embedding coordinates of the point (τ, σ) are quantum fields $X^{\mu}(\tau, \sigma)$ on the worldsheet which has the geometry of a cylinder
- ▶ String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT) with the Lagrangian induced by the geometry of $AdS_5 \times S^5$
- ▶ Due to the curved geometry of $AdS_5 \times S^5$ this 2D worldsheet theory is **interacting** (and very complicated...)

- The embedding coordinates of the point (τ, σ) are quantum fields X^μ(τ, σ) on the worldsheet which has the geometry of a cylinder
- ▶ String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT) with the Lagrangian induced by the geometry of $AdS_5 \times S^5$
- ▶ Due to the curved geometry of $AdS_5 \times S^5$ this 2D worldsheet theory is **interacting** (and very complicated...)

- The embedding coordinates of the point (τ, σ) are quantum fields X^μ(τ, σ) on the worldsheet which has the geometry of a cylinder
- ▶ String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT) with the Lagrangian induced by the geometry of $AdS_5 \times S^5$
- ▶ Due to the curved geometry of $AdS_5 \times S^5$ this 2D worldsheet theory is **interacting** (and very complicated...)

- The embedding coordinates of the point (τ, σ) are quantum fields X^μ(τ, σ) on the worldsheet which has the geometry of a cylinder
- ► String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT) with the Lagrangian induced by the geometry of $AdS_5 \times S^5$
- ▶ Due to the curved geometry of $AdS_5 \times S^5$ this 2D worldsheet theory is **interacting** (and very complicated...)

- The embedding coordinates of the point (τ, σ) are quantum fields X^μ(τ, σ) on the worldsheet which has the geometry of a cylinder
- ▶ String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT) with the Lagrangian induced by the geometry of $AdS_5 \times S^5$
- ► Due to the curved geometry of AdS₅ × S⁵ this 2D worldsheet theory is interacting (and very complicated...)

- The embedding coordinates of the point (τ, σ) are quantum fields X^μ(τ, σ) on the worldsheet which has the geometry of a cylinder
- ▶ String theory in $AdS_5 \times S^5 \equiv$ a specific two dimensional quantum field theory defined on a cylinder (worldsheet QFT) with the Lagrangian induced by the geometry of $AdS_5 \times S^5$
- ► Due to the curved geometry of AdS₅ × S⁵ this 2D worldsheet theory is interacting (and very complicated...)

1. Anomalous dimensions in the planar limit:

 \equiv energy levels of a single string in $AdS_5 \times S^5$ \equiv energy levels of a specific 2D QFT on a cylinder

- 2. Nonplanar corrections to the dilatation operator or OPE coefficeints:
 - \equiv string interactions
 - \equiv the specific 2D QFT on a string 'pants' topology:

1. Anomalous dimensions in the planar limit:

 \equiv energy levels of a single string in $AdS_5 \times S^5$ \equiv energy levels of a specific 2D QFT on a cylinder

- 2. Nonplanar corrections to the dilatation operator or OPE coefficeints:
 - \equiv string interactions
 - \equiv the specific 2D QFT on a string 'pants' topology:

1. Anomalous dimensions in the planar limit:

≡ energy levels of a single string in $AdS_5 \times S^5$ ≡ energy levels of a specific 2D QFT on a cylinder

- 2. Nonplanar corrections to the dilatation operator or OPE coefficeints:
 - \equiv string interactions
 - \equiv the specific 2D QFT on a string 'pants' topology:

1. Anomalous dimensions in the planar limit:

 \equiv energy levels of a single string in $AdS_5 \times S^5$ \equiv energy levels of a specific 2D QFT on a cylinder

- 2. Nonplanar corrections to the dilatation operator or OPE coefficeints:
 - \equiv string interactions
 - \equiv the specific 2D QFT on a string 'pants' topology:

1. Anomalous dimensions in the planar limit:

 \equiv energy levels of a single string in $AdS_5\times S^5$ \equiv energy levels of a specific 2D QFT on a cylinder

2. Nonplanar corrections to the dilatation operator or OPE coefficeints:

 \equiv string interactions \equiv the specific 2D QFT on a string 'pants' topology

1. Anomalous dimensions in the planar limit:

 \equiv energy levels of a single string in $AdS_5\times S^5$ \equiv energy levels of a specific 2D QFT on a cylinder

- 2. Nonplanar corrections to the dilatation operator or OPE coefficeints:
 - \equiv string interactions
 - \equiv the specific 2D QFT on a string 'pants' topology:

1. Anomalous dimensions in the planar limit:

 \equiv energy levels of a single string in $AdS_5 \times S^5$ \equiv energy levels of a specific 2D QFT on a cylinder

- 2. Nonplanar corrections to the dilatation operator or OPE coefficeints:
 - \equiv string interactions
 - \equiv the specific 2D QFT on a string 'pants' topology:

1. Anomalous dimensions in the planar limit:

 \equiv energy levels of a single string in $AdS_5 \times S^5$ \equiv energy levels of a specific 2D QFT on a cylinder

- 2. Nonplanar corrections to the dilatation operator or OPE coefficeints:
 - \equiv string interactions
 - \equiv the specific 2D QFT on a string 'pants' topology:

Typically interacting QFT's can only be studied via perturbation theory...

difficult and practically hopeless to get exact answers...

- There exists a subclass of interacting (massive) two-dimensional QFT's which are integrable — exhibit additional conserved quantities
- Many quantities for these theories can be determined exactly without recourse to perturbation theory
- This typically involves solving functional equations of some sort...
- ► The worldsheet QFT of the string in AdS₅ × S⁵ is an integrable QFT! (but of a highly nonstandard type...)

 Typically interacting QFT's can only be studied via perturbation theory...

difficult and practically hopeless to get exact answers...

- There exists a subclass of interacting (massive) two-dimensional QFT's which are integrable — exhibit additional conserved quantities
- Many quantities for these theories can be determined exactly without recourse to perturbation theory
- ▶ This typically involves solving functional equations of some sort...
- ► The worldsheet QFT of the string in AdS₅ × S⁵ is an integrable QFT! (but of a highly nonstandard type...)

 Typically interacting QFT's can only be studied via perturbation theory...

difficult and practically hopeless to get exact answers...

- There exists a subclass of interacting (massive) two-dimensional QFT's which are integrable — exhibit additional conserved quantities
- Many quantities for these theories can be determined exactly without recourse to perturbation theory
- ▶ This typically involves solving functional equations of some sort...
- ► The worldsheet QFT of the string in AdS₅ × S⁵ is an integrable QFT! (but of a highly nonstandard type...)

 Typically interacting QFT's can only be studied via perturbation theory...

difficult and practically hopeless to get exact answers...

- There exists a subclass of interacting (massive) two-dimensional QFT's which are integrable — exhibit additional conserved quantities
- Many quantities for these theories can be determined exactly without recourse to perturbation theory
- This typically involves solving functional equations of some sort...
- ► The worldsheet QFT of the string in AdS₅ × S⁵ is an integrable QFT! (but of a highly nonstandard type...)

 Typically interacting QFT's can only be studied via perturbation theory...

difficult and practically hopeless to get exact answers...

- There exists a subclass of interacting (massive) two-dimensional QFT's which are integrable — exhibit additional conserved quantities
- Many quantities for these theories can be determined exactly without recourse to perturbation theory
- This typically involves solving functional equations of some sort...
- ► The worldsheet QFT of the string in AdS₅ × S⁵ is an integrable QFT! (but of a highly nonstandard type...)

 Typically interacting QFT's can only be studied via perturbation theory...

difficult and practically hopeless to get exact answers...

- There exists a subclass of interacting (massive) two-dimensional QFT's which are integrable — exhibit additional conserved quantities
- Many quantities for these theories can be determined exactly without recourse to perturbation theory
- This typically involves solving functional equations of some sort...
- The worldsheet QFT of the string in AdS₅ × S⁵ is an integrable QFT! (but of a highly nonstandard type...)

 Typically interacting QFT's can only be studied via perturbation theory...

difficult and practically hopeless to get exact answers...

- There exists a subclass of interacting (massive) two-dimensional QFT's which are integrable — exhibit additional conserved quantities
- Many quantities for these theories can be determined exactly without recourse to perturbation theory
- This typically involves solving functional equations of some sort...
- ► The worldsheet QFT of the string in AdS₅ × S⁵ is an integrable QFT! (but of a highly nonstandard type...)
Integrability?

 Typically interacting QFT's can only be studied via perturbation theory...

difficult and practically hopeless to get exact answers...

- There exists a subclass of interacting (massive) two-dimensional QFT's which are integrable — exhibit additional conserved quantities
- Many quantities for these theories can be determined exactly without recourse to perturbation theory
- This typically involves solving functional equations of some sort...
- The worldsheet QFT of the string in AdS₅ × S⁵ is an integrable QFT! (but of a highly nonstandard type..)

Aim: Develop integrable techniques for the string 'pants' topology

Integrability?

 Typically interacting QFT's can only be studied via perturbation theory...

difficult and practically hopeless to get exact answers...

- There exists a subclass of interacting (massive) two-dimensional QFT's which are integrable — exhibit additional conserved quantities
- Many quantities for these theories can be determined exactly without recourse to perturbation theory
- This typically involves solving functional equations of some sort...
- ► The worldsheet QFT of the string in AdS₅ × S⁵ is an integrable QFT! (but of a highly nonstandard type..)

Aim: Develop integrable techniques for the string 'pants' topology

Part II

- ▶ We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry

- We have a very good understanding of the spectrum of a string on AdS₅ × S⁵
- This is due to the integrability of the worldsheet theory

Key question:

- How to describe string interactions for a generic integrable worldsheet theory
- Previously we knew how to proceed only for a free worldsheet theory
 - massless free bosons and fermions in the case of flat spacetime
 - massive free bosons and fermions in the case of pp-wave background geometry

As mentioned before all this has direct AdS/CFT motivation...

Energy levels of a single string

String interactions

Anomalous dimensions OPE coefficients 1/N_c corrections?

As mentioned before all this has direct AdS/CFT motivation...

Energy levels of a single string

String interactions

Anomalous dimensions OPE coefficients $1/N_c$ corrections?

As mentioned before all this has direct AdS/CFT motivation...

 \equiv

Energy levels of a single string

String interactions

Anomalous dimensions OPE coefficients $1/N_c$ corrections?

As mentioned before all this has direct AdS/CFT motivation...

Energy levels of a single string \equiv Anomalous dimensions String interactions \longrightarrow OPE coefficients $1/N_c$ corrections?

As mentioned before all this has direct AdS/CFT motivation...

- 1. Integrable bootstrap for the spectal problem...
- 2. Integrable bootstrap for form factors...

- 1. Integrable bootstrap for the spectal problem...
- 2. Integrable bootstrap for form factors...

- 1. Integrable bootstrap for the spectal problem...
- 2. Integrable bootstrap for form factors...

- 1. Integrable bootstrap for the spectal problem...
- 2. Integrable bootstrap for form factors...

I) solve the theory on an infinite plane

- 1. Particle momenta are completely unconstrained!
- 2. We may perform analytic continuation into the complex plane (of appropriate rapidities)
- 3. We get crossing equation
- 4. This together with unitarity...
- **5.** ... and symmetry + Yang-Baxter equation
- 6. determines analytically the S-matrix

I) solve the theory on an infinite plane

- **1.** Particle momenta are completely unconstrained!
- 2. We may perform analytic continuation into the complex plane (of appropriate rapidities)
- 3. We get crossing equation
- 4. This together with unitarity...
- **5.** ... and symmetry + Yang-Baxter equation
- 6. determines analytically the S-matrix

I) solve the theory on an infinite plane

1. Particle momenta are completely unconstrained!

- 2. We may perform analytic continuation into the complex plane (of appropriate rapidities)
- 3. We get crossing equation
- 4. This together with unitarity...
- **5.** ... and symmetry + Yang-Baxter equation
- 6. determines analytically the S-matrix

I) solve the theory on an infinite plane

- 1. Particle momenta are completely unconstrained!
- 2. We may perform analytic continuation into the complex plane (of appropriate rapidities)
- 3. We get crossing equation
- 4. This together with unitarity...
- **5.** ... and symmetry + Yang-Baxter equation
- 6. determines analytically the S-matrix

I) solve the theory on an infinite plane

- 1. Particle momenta are completely unconstrained!
- 2. We may perform analytic continuation into the complex plane (of appropriate rapidities)
- 3. We get crossing equation
- 4. This together with unitarity...
- 5. ... and symmetry + Yang-Baxter equation
- 6. determines analytically the S-matrix

I) solve the theory on an infinite plane

- 1. Particle momenta are completely unconstrained!
- 2. We may perform analytic continuation into the complex plane (of appropriate rapidities)
- 3. We get crossing equation
- 4. This together with unitarity...
- 5. ... and symmetry + Yang-Baxter equation
- 6. determines analytically the S-matrix

I) solve the theory on an infinite plane

- 1. Particle momenta are completely unconstrained!
- 2. We may perform analytic continuation into the complex plane (of appropriate rapidities)
- 3. We get crossing equation
- 4. This together with unitarity...
- 5. ... and symmetry + Yang-Baxter equation
- 6. determines analytically the S-matrix

I) solve the theory on an infinite plane

- 1. Particle momenta are completely unconstrained!
- 2. We may perform analytic continuation into the complex plane (of appropriate rapidities)
- 3. We get crossing equation
- 4. This together with unitarity...
- 5. ... and symmetry + Yang-Baxter equation
- 6. determines analytically the S-matrix

I) solve the theory on an infinite plane

- 1. Particle momenta are completely unconstrained!
- 2. We may perform analytic continuation into the complex plane (of appropriate rapidities)
- 3. We get crossing equation
- 4. This together with unitarity...
- 5. ... and symmetry + Yang-Baxter equation
- 6. determines analytically the S-matrix

II) solve the theory on a (large!) cylinder

1. Bethe Ansatz Quantization

 $e^{ip_k \mathsf{L}} \prod_{l \neq k} S(p_k, p_l) = 1$

2. Get the energies from

$$E = \sum_{k} E(p_k) = \sum_{k} \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p_k}{2}}$$

This gives the spectrum up to wrapping corrections...

relativistic $\sim e^{-mL}$ weak coupling $\sim \lambda^L$ strong coupling $\sim e^{-\frac{2\pi I}{\sqrt{3}}}$

II) solve the theory on a (large!) cylinder

1. Bethe Ansatz Quantization

 $e^{ip_k\mathsf{L}}\prod_{l\neq k}S(p_k,p_l)=1$

2. Get the energies from

$$E = \sum_{k} E(p_k) = \sum_{k} \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p_k}{2}}$$

This gives the spectrum up to wrapping corrections...

relativistic $\sim e^{-mL}$ weak coupling $\sim \lambda^L$ strong coupling $\sim e^{-\frac{2\pi i}{\sqrt{\lambda}}}$

II) solve the theory on a (large!) cylinder

1. Bethe Ansatz Quantization

 $e^{ip_k \mathsf{L}} \prod_{l \neq k} S(p_k, p_l) = 1$

2. Get the energies from

$$E = \sum_{k} E(p_k) = \sum_{k} \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p_k}{2}}$$

This gives the spectrum up to wrapping corrections...

relativistic $\sim e^{-mL}$ weak coupling $\sim \lambda^L$ strong coupling $\sim e^{-rac{2\pi l}{\sqrt{\lambda}}}$

13 / 41

II) solve the theory on a (large!) cylinder

1. Bethe Ansatz Quantization

$$e^{ip_k \mathsf{L}} \prod_{l \neq k} S(p_k, p_l) = 1$$

2. Get the energies from

$$E = \sum_{k} E(p_k) = \sum_{k} \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p_k}{2}}$$

This gives the spectrum up to wrapping corrections...

relativistic $\sim e^{-mL}$ weak coupling $\sim \lambda^L$ strong coupling $\sim e^{-\frac{2\pi I}{\sqrt{\lambda}}}$

II) solve the theory on a (large!) cylinder

1. Bethe Ansatz Quantization

$$e^{ip_k \mathsf{L}} \prod_{l \neq k} S(p_k, p_l) = 1$$

2. Get the energies from

$$E = \sum_{k} E(p_k) = \sum_{k} \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p_k}{2}}$$

This gives the spectrum up to wrapping corrections...

relativistic $\sim e^{-mL}$ weak coupling $\sim \lambda^L$ strong coupling $\sim e^{-rac{2\pi L}{\sqrt{\lambda}}}$

II) solve the theory on a (large!) cylinder

1. Bethe Ansatz Quantization

$$e^{ip_k \mathsf{L}} \prod_{l \neq k} S(p_k, p_l) = 1$$

2. Get the energies from

$$E = \sum_{k} E(p_k) = \sum_{k} \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p_k}{2}}$$

This gives the spectrum up to wrapping corrections...

relativistic $\sim e^{-mL}$ weak coupling $\sim \lambda^L$ strong coupling $\sim e^{-\frac{2\pi L}{\sqrt{\lambda}}}$

II) solve the theory on a (large!) cylinder

1. Bethe Ansatz Quantization

$$e^{ip_k \mathsf{L}} \prod_{l \neq k} S(p_k, p_l) = 1$$

2. Get the energies from

$$E = \sum_{k} E(p_k) = \sum_{k} \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p_k}{2}}$$

This gives the spectrum up to wrapping corrections...

relativistic $\sim e^{-mL}$ weak coupling $\sim \lambda^{L}$ strong coupling $\sim e^{-\frac{2\pi L}{\sqrt{\lambda}}}$

II) solve the theory on a (large!) cylinder

1. Bethe Ansatz Quantization

$$e^{ip_k \mathsf{L}} \prod_{l \neq k} S(p_k, p_l) = 1$$

2. Get the energies from

$$E = \sum_{k} E(p_k) = \sum_{k} \sqrt{1 + \frac{\lambda}{\pi^2} \sin^2 \frac{p_k}{2}}$$

This gives the spectrum up to wrapping corrections...

relativistic $\sim e^{-mL}$ weak coupling $\sim \lambda^L$ strong coupling $\sim e^{-\frac{2\pi L}{\sqrt{\lambda}}}$

III) Include leading wrapping corrections...

— generalized Lüscher formulas

IV) Resum all wrapping corrections

— Thermodynamic Bethe Ansatz

 \longrightarrow Quantum Spectral Curve

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

— generalized Lüscher formulas

IV) Resum all wrapping corrections

— Thermodynamic Bethe Ansatz

 \longrightarrow Quantum Spectral Curve

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

— generalized Lüscher formulas

IV) Resum all wrapping corrections

— Thermodynamic Bethe Ansatz

 \longrightarrow Quantum Spectral Curve

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

- generalized Lüscher formulas

IV) Resum all wrapping corrections

— Thermodynamic Bethe Ansatz
 → Quantum Spectral Curve

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

- generalized Lüscher formulas

IV) Resum all wrapping corrections

- Thermodynamic Bethe Ansatz

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

- generalized Lüscher formulas

IV) Resum all wrapping corrections

- Thermodynamic Bethe Ansatz
- $\longrightarrow \ \mathsf{Quantum Spectral Curve}$

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

- generalized Lüscher formulas

IV) Resum all wrapping corrections

- Thermodynamic Bethe Ansatz
- $\longrightarrow \ \mathsf{Quantum Spectral Curve}$

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

- generalized Lüscher formulas

IV) Resum all wrapping corrections

- Thermodynamic Bethe Ansatz
- \longrightarrow Quantum Spectral Curve

Comments

The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories...

(despite numerous subtleties and novel features)

- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

- generalized Lüscher formulas

IV) Resum all wrapping corrections

- Thermodynamic Bethe Ansatz
- \longrightarrow Quantum Spectral Curve

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

- generalized Lüscher formulas

IV) Resum all wrapping corrections

- Thermodynamic Bethe Ansatz
- \longrightarrow Quantum Spectral Curve

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

- generalized Lüscher formulas

IV) Resum all wrapping corrections

- Thermodynamic Bethe Ansatz
- \longrightarrow Quantum Spectral Curve

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

III) Include leading wrapping corrections...

- generalized Lüscher formulas

IV) Resum all wrapping corrections

- Thermodynamic Bethe Ansatz
- \longrightarrow Quantum Spectral Curve

- The basic steps follow the strategy used for solving ordinary relativistic integrable quantum field theories... (despite numerous subtleties and novel features)
- ► Key role of the infinite plane → only there do we have crossing+analyticity which allows for solving for the S-matrix (functional equations for the S-matrix)
- Up to wrapping corrections, the finite volume spectrum follows very easily

Proceed to form factors...

► Form factors are expectation values of a local operator sandwiched between specific multiparticle *in* and *out* states $p_k = m \sinh \theta$

Form factors in infinite volume (on an infinite plane) satisfy a definite set of functional equations (Ø|O(0)|θ₁,...,θ_n) ≡ f(θ₁,...,θ_n)

 $f(\theta_1, \theta_2) = S(\theta_1, \theta_2) f(\theta_2, \theta_1)$ $f(\theta_1, \theta_2) = f(\theta_2, \theta_1 - 2\pi i)$ $-i \operatorname{res}_{\theta'=\theta} f_{n+2}(\theta', \theta + i\pi, \theta_1, \dots, \theta_n) = (1 - \prod_i S(\theta, \theta_i)) f_n(\theta_1, \dots, \theta_n)$ Solutions explicitly known for numerous relativistic integrable QET's

Form factors are expectation values of a local operator sandwiched between specific multiparticle *in* and *out* states *p_k* = *m* sinh (

Form factors in infinite volume (on an infinite plane) satisfy a definite set of functional equations ⟨∅|𝒴(0) |θ₁,...,θ_n⟩ ≡ f(θ₁,...,θ_n)

 $f(\theta_1, \theta_2) = S(\theta_1, \theta_2) f(\theta_2, \theta_1)$ $f(\theta_1, \theta_2) = f(\theta_2, \theta_1 - 2\pi i)$ $-i \operatorname{res}_{\theta'=\theta} f_{n+2}(\theta', \theta + i\pi, \theta_1, \dots, \theta_n) = (1 - \prod_i S(\theta, \theta_i)) f_n(\theta_1, \dots, \theta_n)$ Solutions explicitly known for numerous relativistic integrable QET's

Form factors are expectation values of a local operator sandwiched between specific multiparticle *in* and *out* states p_k = m sinh θ

 $_{out}\langle \theta_{1}^{\prime},\ldots,\theta_{m}^{\prime}|\mathcal{O}\left(0
ight)|\theta_{1},\ldots,\theta_{k}\rangle_{in}$

Form factors in infinite volume (on an infinite plane) satisfy a definite set of functional equations (Ø|O(0)|θ₁,...,θ_n) ≡ f(θ₁,...,θ_n)

 $f(\theta_1, \theta_2) = S(\theta_1, \theta_2) f(\theta_2, \theta_1)$ $f(\theta_1, \theta_2) = f(\theta_2, \theta_1 - 2\pi i)$ $-i \operatorname{res}_{\theta'=\theta} f_{n+2}(\theta', \theta + i\pi, \theta_1, \dots, \theta_n) = (1 - \prod S(\theta, \theta_1))$

Solutions explicitly known for numerous relativistic integrable QFT's

Form factors are expectation values of a local operator sandwiched between specific multiparticle *in* and *out* states p_k = m sinh θ

$_{out} \langle \varnothing | \mathcal{O}(0) | \theta_1, \ldots, \theta_n \rangle_{in} \equiv f(\theta_1, \ldots, \theta_n)$

Form factors in infinite volume (on an infinite plane) satisfy a definite set of functional equations ⟨∅|𝒪(0) |θ₁,...,θ_n⟩ ≡ f(θ₁,...,θ_n)

 $f(\theta_1, \theta_2) = S(\theta_1, \theta_2) f(\theta_2, \theta_1)$ $f(\theta_1, \theta_2) = f(\theta_2, \theta_1 - 2\pi i)$ $-i \operatorname{res}_{\theta'=\theta} f_{n+2}(\theta', \theta + i\pi, \theta_1, \dots, \theta_n) = (1 - \prod_i S(\theta, \theta_i)) f_n(\theta_1, \dots, \theta_n)$

Solutions explicitly known for numerous relativistic integrable QFT's

Form factors are expectation values of a local operator sandwiched between specific multiparticle *in* and *out* states p_k = m sinh θ

$$_{out}\langle \varnothing | \mathcal{O}(\mathbf{0}) | \theta_1, \dots, \theta_n \rangle_{in} \equiv f(\theta_1, \dots, \theta_n)$$

Form factors in infinite volume (on an infinite plane) satisfy a definite set of functional equations (Ø|O(0)|θ₁,...,θ_n) ≡ f(θ₁,...,θ_n)

 $f(\theta_1, \theta_2) = S(\theta_1, \theta_2) f(\theta_2, \theta_1)$ $f(\theta_1, \theta_2) = f(\theta_2, \theta_1 - 2\pi i)$ $-i \operatorname{res}_{\theta'=\theta} f_{n+2}(\theta', \theta + i\pi, \theta_1, \dots, \theta_n) = (1 - \prod_i S(\theta, \theta_i)) f_n(\theta_1, \dots, \theta_n)$ $\blacktriangleright \text{ Solutions explicitly known for numerous relativistic integrable QFT's}$

Form factors are expectation values of a local operator sandwiched between specific multiparticle *in* and *out* states p_k = m sinh θ

$$_{out}\langle \varnothing | \mathcal{O}\left(0\right) | heta_{1}, \dots, heta_{n}
angle_{in} \equiv f(heta_{1}, \dots, heta_{n})$$

Form factors in infinite volume (on an infinite plane) satisfy a definite set of functional equations (Ø|O(0)|θ₁,...,θ_n) ≡ f(θ₁,...,θ_n)

 $f(\theta_1, \theta_2) = S(\theta_1, \theta_2) f(\theta_2, \theta_1)$ $f(\theta_1, \theta_2) = f(\theta_2, \theta_1 - 2\pi i)$ $-i \operatorname{res}_{\theta'=\theta} f_{n+2}(\theta', \theta + i\pi, \theta_1, \dots, \theta_n) = (1 - \prod_i S(\theta, \theta_i)) f_n(\theta_1, \dots, \theta_n)$ • Solutions explicitly known for numerous relativistic integrable QFT's

Form factors are expectation values of a local operator sandwiched between specific multiparticle *in* and *out* states p_k = m sinh θ

$$_{out}\langle \varnothing | \mathcal{O}(\mathbf{0}) | \theta_1, \dots, \theta_n \rangle_{in} \equiv f(\theta_1, \dots, \theta_n)$$

Form factors in infinite volume (on an infinite plane) satisfy a definite set of functional equations (Ø|O(0)|θ₁,...,θ_n) ≡ f(θ₁,...,θ_n)

 $f(\theta_1, \theta_2) = S(\theta_1, \theta_2) f(\theta_2, \theta_1)$ $f(\theta_1, \theta_2) = f(\theta_2, \theta_1 - 2\pi i)$ $-i \operatorname{res}_{\theta'=\theta} f_{n+2}(\theta', \theta + i\pi, \theta_1, \dots, \theta_n) = (1 - \prod_i S(\theta, \theta_i)) f_n(\theta_1, \dots, \theta_n)$ Solutions explicitly known for numerous relativistic integrable QFT's

16 / 41

Comments:

- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

▶ Up to wrapping corrections ($\sim e^{-mL}$), very simple way to pass to finite volume (cylinder of circumference *L*): Pozsgay, Takacs

$$\left\langle arnothing | \mathcal{O}\left(0
ight) | heta_{1}, heta_{2}
ight
angle_{L} = rac{1}{\sqrt{
ho_{2} \cdot S(heta_{1}, heta_{2})}} \cdot f(heta_{1}, heta_{2})$$

- Cylinder initial and final sizes have to be the same...
- ▶ From the point of view of uniform light-cone gauge in AdS₅ × S⁵ this means that J₁ = J₂

Comments:

- The form factor axioms do not depend at all on the specific local operator inserted...
- ► They have numerous solutions for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

Up to wrapping corrections (~ e^{-mL}), very simple way to pass to finite volume (cylinder of circumference L): Pozsgay, Takacs

$$\left\langle arnothing | \mathcal{O}\left(0
ight) | heta_{1}, heta_{2}
ight
angle_{L} = rac{1}{\sqrt{
ho_{2} \cdot S(heta_{1}, heta_{2})}} \cdot f(heta_{1}, heta_{2})$$

- Cylinder initial and final sizes have to be the same...
- ▶ From the point of view of uniform light-cone gauge in AdS₅ × S⁵ this means that J₁ = J₂

Comments:

- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

Up to wrapping corrections (~ e^{-mL}), very simple way to pass to finite volume (cylinder of circumference L): Pozsgay, Takacs

$$\left\langle arnothing | \mathcal{O}\left(0
ight) | heta_{1}, heta_{2}
ight
angle_{L} = rac{1}{\sqrt{
ho_{2} \cdot S(heta_{1}, heta_{2})}} \cdot f(heta_{1}, heta_{2})$$

- Cylinder initial and final sizes have to be the same...
- ▶ From the point of view of uniform light-cone gauge in AdS₅ × S⁵ this means that J₁ = J₂

Comments:

- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

▶ Up to wrapping corrections ($\sim e^{-mL}$), very simple way to pass to finite volume (cylinder of circumference *L*): Pozsgay, Takacs

$$\left\langle arnothing | \mathcal{O}\left(0
ight) | heta_{1}, heta_{2}
ight
angle_{L} = rac{1}{\sqrt{
ho_{2} \cdot S(heta_{1}, heta_{2})}} \cdot f(heta_{1}, heta_{2})$$

- Cylinder initial and final sizes have to be the same...
- ▶ From the point of view of uniform light-cone gauge in AdS₅ × S⁵ this means that J₁ = J₂

Comments:

- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

Up to wrapping corrections (~ e^{-mL}), very simple way to pass to finite volume (cylinder of circumference L): Pozsgay, Takacs

$$\left\langle arnothing | \mathcal{O}\left(0
ight) | heta_{1}, heta_{2}
ight
angle_{L} = rac{1}{\sqrt{
ho_{2} \cdot S(heta_{1}, heta_{2})}} \cdot f(heta_{1}, heta_{2})$$

- Cylinder initial and final sizes have to be the same...
- From the point of view of uniform light-cone gauge in $AdS_5 \times S^5$ this means that $J_1 = J_2$

Comments:

- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

Up to wrapping corrections (~ e^{-mL}), very simple way to pass to finite volume (cylinder of circumference L): Pozsgay, Takacs

$$\left\langle arnothing | \mathcal{O}\left(0
ight) | heta_{1}, heta_{2}
ight
angle_{L} = rac{1}{\sqrt{
ho_{2} \cdot \mathcal{S}(heta_{1}, heta_{2})}} \cdot f(heta_{1}, heta_{2})$$

- Cylinder initial and final sizes have to be the same...
- ▶ From the point of view of uniform light-cone gauge in AdS₅ × S⁵ this means that J₁ = J₂

Comments:

- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

Up to wrapping corrections (~ e^{-mL}), very simple way to pass to finite volume (cylinder of circumference L): Pozsgay, Takacs

$$\left< arnothing \left| \mathcal{O} \left(0
ight) \left| heta_1, heta_2
ight>_L = rac{1}{\sqrt{
ho_2 \cdot S(heta_1, heta_2)}} \cdot f(heta_1, heta_2)$$

- Cylinder initial and final sizes have to be the same...
- ▶ From the point of view of uniform light-cone gauge in AdS₅ × S⁵ this means that J₁ = J₂

Comments:

- The form factor axioms do not depend at all on the specific local operator inserted...
- They have numerous solutions for each local operator in the theory...

Finite volume \equiv form factors on a cylinder

Up to wrapping corrections (~ e^{-mL}), very simple way to pass to finite volume (cylinder of circumference L): Pozsgay, Takacs

$$\left< arnothing \left| \mathcal{O} \left(0
ight) \left| heta_1, heta_2
ight>_L = rac{1}{\sqrt{
ho_2 \cdot S(heta_1, heta_2)}} \cdot f(heta_1, heta_2)$$

- Cylinder initial and final sizes have to be the same...
- ▶ From the point of view of uniform light-cone gauge in $AdS_5 \times S^5$ this means that $J_1 = J_2$

Bajnok (Nordita talk); Klose, McLoughlin; Bajnok, RJ, Wereszczyński
 Relation to Heavy-Heavy-Light correlators:

Bajnok, RJ, Wereszczyński

$$\longrightarrow C_{HHL} \sim \int_{Moduli} \int d^2 \sigma \ V_L(X^I(\sigma))$$

coincides exactly with a classical computation of a 'diagonal' form factor

figure from Zarembo 1008.1059

Also seen at weak coupling!

Hollo, Jiang, Petrovsky

Bajnok (Nordita talk); Klose, McLoughlin; Bajnok, RJ, Wereszczyński

Relation to Heavy-Heavy-Light correlators:

Bajnok, RJ, Wereszczyński

coincides exactly with a classical computation of a 'diagonal' form factor

figure from Zarembo 1008.1059

Also seen at weak coupling!

Hollo, Jiang, Petrovsky

Bajnok (Nordita talk); Klose, McLoughlin; Bajnok, RJ, Wereszczyński

Relation to Heavy-Heavy-Light correlators:

Bajnok, RJ, Wereszczyński

$$\longrightarrow C_{HHL} \sim \int_{Moduli} \int d^2 \sigma \ V_L(X^I(\sigma))$$

coincides exactly with a classical computation of a 'diagonal' form factor

figure from Zarembo 1008.1059

Also seen at weak coupling!

Hollo, Jiang, Petrovsky

Bajnok (Nordita talk); Klose, McLoughlin; Bajnok, RJ, Wereszczyński

Relation to Heavy-Heavy-Light correlators:

Bajnok, RJ, Wereszczyński

$$\longrightarrow C_{HHL} \sim \int_{Moduli} \int d^2 \sigma \ V_L(X'(\sigma))$$

coincides exactly with a classical computation of a 'diagonal' form factor

figure from Zarembo 1008.1059

Also seen at weak coupling!

Hollo, Jiang, Petrovsky

Bajnok (Nordita talk); Klose, McLoughlin; Bajnok, RJ, Wereszczyński

Relation to Heavy-Heavy-Light correlators:

Bajnok, RJ, Wereszczyński

$$\longrightarrow C_{HHL} \sim \int_{Moduli} \int d^2 \sigma \ V_L(X'(\sigma))$$

coincides exactly with a classical computation of a 'diagonal' form factor

figure from Zarembo 1008.1059

Also seen at weak coupling!

Hollo, Jiang, Petrovsky
Form factors – applications to AdS/CFT

Bajnok (Nordita talk); Klose, McLoughlin; Bajnok, RJ, Wereszczyński

Relation to Heavy-Heavy-Light correlators:

Bajnok, RJ, Wereszczyński

$$\longrightarrow C_{HHL} \sim \int_{Moduli} \int d^2 \sigma \ V_L(X'(\sigma))$$

coincides exactly with a classical computation of a 'diagonal' form factor

figure from Zarembo 1008.1059

Also seen at weak coupling!

Hollo, Jiang, Petrovsky

Similarities with the String Field Theory vertex...

Form factors – applications to AdS/CFT

Bajnok (Nordita talk); Klose, McLoughlin; Bajnok, RJ, Wereszczyński

Relation to Heavy-Heavy-Light correlators:

Bajnok, RJ, Wereszczyński

$$\longrightarrow C_{HHL} \sim \int_{Moduli} \int d^2 \sigma \ V_L(X'(\sigma))$$

coincides exactly with a classical computation of a 'diagonal' form factor

figure from Zarembo 1008.1059

Also seen at weak coupling!

Hollo, Jiang, Petrovsky

Similarities with the String Field Theory vertex...

Lessons from these examples:

- **1.** The necessity of **an infinite volume** formulation in order to have analyticity/crossing and other functional equations
- 2. Simple passage to finite volume neglecting wrapping..

Lessons from these examples:

1. The necessity of an infinite volume formulation in order to have analyticity/crossing and other functional equations

2. Simple passage to finite volume neglecting wrapping.

Lessons from these examples:

- 1. The necessity of an infinite volume formulation in order to have analyticity/crossing and other functional equations
- 2. Simple passage to finite volume neglecting wrapping..

Proceed to the light cone String Field Theory vertex...

String Field Theory vertex describes the splitting/joining of 3 strings with generic sizes $J_1 + J_2 = J_3$

Comments:

- The lengths here are directly the R-charges w.r.t. U(1)⊂SO(6) (these are not spin-chain lengths)
- 2. They always have to add up by charge conservation
- **3.** This **does not** mean that one only considers an **extremal** configuration here!

String Field Theory vertex describes the splitting/joining of 3 strings with generic sizes $J_1 + J_2 = J_3$

Comments:

- The lengths here are directly the R-charges w.r.t. U(1)⊂SO(6) (these are not spin-chain lengths)
- 2. They always have to add up by charge conservation
- **3.** This **does not** mean that one only considers an **extremal** configuration here!

String Field Theory vertex describes the splitting/joining of 3 strings with generic sizes $J_1 + J_2 = J_3$

Comments:

- The lengths here are directly the R-charges w.r.t. U(1)⊂SO(6) (these are not spin-chain lengths)
- 2. They always have to add up by charge conservation
- **3.** This **does not** mean that one only considers an **extremal** configuration here!

String Field Theory vertex describes the splitting/joining of 3 strings with generic sizes $J_1 + J_2 = J_3$

Comments:

- **1.** The lengths here are directly the R-charges w.r.t. $U(1) \subset SO(6)$ (these are not spin-chain lengths)
- 2. They always have to add up by charge conservation
- **3.** This **does not** mean that one only considers an **extremal** configuration here!

String Field Theory vertex describes the splitting/joining of 3 strings with generic sizes $J_1 + J_2 = J_3$

Comments:

- **1.** The lengths here are directly the R-charges w.r.t. $U(1) \subset SO(6)$ (these are not spin-chain lengths)
- 2. They always have to add up by charge conservation
- **3.** This **does not** mean that one only considers an **extremal** configuration here!

String Field Theory vertex describes the splitting/joining of 3 strings with generic sizes $J_1 + J_2 = J_3$

Comments:

- **1.** The lengths here are directly the R-charges w.r.t. $U(1) \subset SO(6)$ (these are not spin-chain lengths)
- 2. They always have to add up by charge conservation
- **3.** This **does not** mean that one only considers an **extremal** configuration here!

Our goal: Concentrate on defining the string field theory vertex for a generic integrable worldsheet theory

- ▶ pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- impose continuity conditions for ϕ and $\Pi \equiv \partial_t \phi$
- ϕ expressed in terms of $\cos \frac{2\pi n}{L_r}$ and $\sin \frac{2\pi n}{L_r}$ modes...

looks like an inherently finite-volume computation...

- ▶ pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- impose continuity conditions for ϕ and $\Pi \equiv \partial_t \phi$
- ϕ expressed in terms of $\cos \frac{2\pi n}{L_r}$ and $\sin \frac{2\pi n}{L_r}$ modes...

looks like an inherently finite-volume computation...

- pp-wave SFT vertex ≡ free massive boson φ (or fermion) on this geometry
- impose continuity conditions for ϕ and $\Pi \equiv \partial_t \phi$
- ϕ expressed in terms of $\cos \frac{2\pi n}{L_r}$ and $\sin \frac{2\pi n}{L_r}$ modes...

looks like an inherently finite-volume computation...

- pp-wave SFT vertex ≡ free massive boson φ (or fermion) on this geometry
- impose continuity conditions for ϕ and $\Pi \equiv \partial_t \phi$
- ϕ expressed in terms of $\cos \frac{2\pi n}{L_r}$ and $\sin \frac{2\pi n}{L_r}$ modes...

looks like an inherently finite-volume computation...

- ▶ pp-wave SFT vertex \equiv free massive boson ϕ (or fermion) on this geometry
- impose continuity conditions for ϕ and $\Pi \equiv \partial_t \phi$
- ϕ expressed in terms of $\cos \frac{2\pi n}{L_r}$ and $\sin \frac{2\pi n}{L_r}$ modes...

looks like an inherently finite-volume computation...

- pp-wave SFT vertex ≡ free massive boson φ (or fermion) on this geometry
- impose continuity conditions for ϕ and $\Pi \equiv \partial_t \phi$
- ϕ expressed in terms of $\cos \frac{2\pi n}{L_r}$ and $\sin \frac{2\pi n}{L_r}$ modes...

looks like an inherently finite-volume computation...

Continuity conditions yield linear relations between creation and annihilation operators of the three strings:

▶ Implement these relations as operator equations acting on a state $|V\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$ — the SFT vertex

The state has the form

$$|V\rangle = (Prefactor) \cdot \exp\left\{\frac{1}{2} \sum_{r,s=1}^{3} \sum_{n,m} N_{nm}^{rs} a_n^{+(r)} a_m^{+(s)}\right\} |0\rangle$$

Continuity conditions yield linear relations between creation and annihilation operators of the three strings:

$$\sum_{r=1}^{3} \frac{X_{nm}^{r}}{\sqrt{\omega_{m}^{r}}} \left(a_{m}^{+(r)} - a_{m}^{(r)} \right) = 0 \quad \sum_{r=1}^{3} s_{r} X_{nm}^{r} \sqrt{\omega_{m}^{r}} \left(a_{m}^{+(r)} + a_{m}^{(r)} \right) = 0$$

- ▶ Implement these relations as operator equations acting on a state $|V\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$ the SFT vertex
- The state has the form

$$|V\rangle = (Prefactor) \cdot \exp\left\{\frac{1}{2} \sum_{r,s=1}^{3} \sum_{n,m} N_{nm}^{rs} a_n^{+(r)} a_m^{+(s)}\right\} |0\rangle$$

Continuity conditions yield linear relations between creation and annihilation operators of the three strings:

$$\sum_{r=1}^{3} \frac{X_{nm}^{r}}{\sqrt{\omega_{m}^{r}}} \left(a_{m}^{+(r)} - a_{m}^{(r)} \right) |V\rangle = 0 \quad \sum_{r=1}^{3} s_{r} X_{nm}^{r} \sqrt{\omega_{m}^{r}} \left(a_{m}^{+(r)} + a_{m}^{(r)} \right) |V\rangle = 0$$

▶ Implement these relations as operator equations acting on a state $|V\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$ — the SFT vertex

The state has the form

$$|V\rangle = (Prefactor) \cdot \exp\left\{\frac{1}{2} \sum_{r,s=1}^{3} \sum_{n,m} N_{nm}^{rs} a_n^{+(r)} a_m^{+(s)}\right\} |0\rangle$$

Continuity conditions yield linear relations between creation and annihilation operators of the three strings:

$$\sum_{r=1}^{3} \frac{X_{nm}^{r}}{\sqrt{\omega_{m}^{r}}} \left(a_{m}^{+(r)} - a_{m}^{(r)} \right) |V\rangle = 0 \quad \sum_{r=1}^{3} s_{r} X_{nm}^{r} \sqrt{\omega_{m}^{r}} \left(a_{m}^{+(r)} + a_{m}^{(r)} \right) |V\rangle = 0$$

- ▶ Implement these relations as operator equations acting on a state $|V\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$ the SFT vertex
- The state has the form

$$|V\rangle = (Prefactor) \cdot \exp\left\{\frac{1}{2} \sum_{r,s=1}^{3} \sum_{n,m} N_{nm}^{rs} a_n^{+(r)} a_m^{+(s)}\right\} |0\rangle$$

$$|V\rangle = (Prefactor) \cdot \exp\left\{\frac{1}{2} \sum_{r,s=1}^{3} \sum_{n,m} N_{nm}^{rs} a_n^{+(r)} a_m^{+(s)}\right\} |0\rangle$$

- ► The Neumann coefficient N^{rs}_{nm} has the interpretation of a SFT amplitude/matrix element involving only 2 particles
- Obtaining the Neumann matrices is surprisingly nontrivial as it involves inverting an infinite-dimensional matrix

He, Schwarz, Spradlin, Volovich → Lucietti, Schafer-Nameki, Sinha

$$\Gamma_{\mu}(z) = \frac{e^{-\gamma\sqrt{z^2 + \mu^2}}}{z} \cdot \prod_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + \mu^2} + \sqrt{z^2 + \mu^2}} e^{\frac{\sqrt{z^2 + \mu^2}}{n}}$$

$$|V\rangle = (Prefactor) \cdot \exp\left\{\frac{1}{2} \sum_{r,s=1}^{3} \sum_{n,m} N_{nm}^{rs} a_n^{+(r)} a_m^{+(s)}\right\} |0\rangle$$

 The Neumann coefficient N^{rs}_{nm} has the interpretation of a SFT amplitude/matrix element involving only 2 particles

 Obtaining the Neumann matrices is surprisingly nontrivial as it involves inverting an infinite-dimensional matrix

> He, Schwarz, Spradlin, Volovich → Lucietti, Schafer-Nameki, Sinha

$$\Gamma_{\mu}(z) = \frac{e^{-\gamma\sqrt{z^2 + \mu^2}}}{z} \cdot \prod_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + \mu^2} + \sqrt{z^2 + \mu^2}} e^{\frac{\sqrt{z^2 + \mu^2}}{n}}$$

$$|V\rangle = (Prefactor) \cdot \exp\left\{\frac{1}{2} \sum_{r,s=1}^{3} \sum_{n,m} N_{nm}^{rs} a_n^{+(r)} a_m^{+(s)}\right\} |0\rangle$$

- The Neumann coefficient N^{rs}_{nm} has the interpretation of a SFT amplitude/matrix element involving only 2 particles
- Obtaining the Neumann matrices is surprisingly nontrivial as it involves inverting an infinite-dimensional matrix

He, Schwarz, Spradlin, Volovich → Lucietti, Schafer-Nameki, Sinha

$$\Gamma_{\mu}(z) = \frac{e^{-\gamma\sqrt{z^2 + \mu^2}}}{z} \cdot \prod_{n=1}^{\infty} \frac{n}{\sqrt{n^2 + \mu^2} + \sqrt{z^2 + \mu^2}} e^{\frac{\sqrt{z^2 + \mu^2}}{n}}$$

$$|V\rangle = (Prefactor) \cdot \exp\left\{\frac{1}{2} \sum_{r,s=1}^{3} \sum_{n,m} N_{nm}^{rs} a_n^{+(r)} a_m^{+(s)}\right\} |0\rangle$$

- The Neumann coefficient N^{rs}_{nm} has the interpretation of a SFT amplitude/matrix element involving only 2 particles
- Obtaining the Neumann matrices is surprisingly nontrivial as it involves inverting an infinite-dimensional matrix

He, Schwarz, Spradlin, Volovich → Lucietti, Schafer-Nameki, Sinha

$$\Gamma_{\mu}(z) = \frac{e^{-\gamma\sqrt{z^{2}+\mu^{2}}}}{z} \cdot \prod_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+\mu^{2}} + \sqrt{z^{2}+\mu^{2}}} e^{\frac{\sqrt{z^{2}+\mu^{2}}}{n}}$$

$$|V\rangle = (Prefactor) \cdot \exp\left\{\frac{1}{2} \sum_{r,s=1}^{3} \sum_{n,m} N_{nm}^{rs} a_n^{+(r)} a_m^{+(s)}\right\} |0\rangle$$

- The Neumann coefficient N^{rs}_{nm} has the interpretation of a SFT amplitude/matrix element involving only 2 particles
- Obtaining the Neumann matrices is surprisingly nontrivial as it involves inverting an infinite-dimensional matrix

He, Schwarz, Spradlin, Volovich → Lucietti, Schafer-Nameki, Sinha

$$\Gamma_{\mu}(z) = \frac{e^{-\gamma\sqrt{z^{2}+\mu^{2}}}}{z} \cdot \prod_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+\mu^{2}} + \sqrt{z^{2}+\mu^{2}}} e^{\frac{\sqrt{z^{2}+\mu^{2}}}{n}}$$

► In the pp-wave times, people used simplified expressions for N_{nm}^{rs} neglecting exponential $e^{-\mu\alpha_r}$ terms $\alpha_r = L_r/L_3$ (these are exactly wrapping terms $e^{-ML_r}!!$)

▶ Going to an exponential basis (BMN basis) one got in this limit

$$N_{mn}^{rs} = \left[\frac{\sqrt{(\omega_m^r + \mu\alpha_r)(\omega_n^s + \mu\alpha_s)}}{\omega_m^r + \omega_n^s} - \frac{\sqrt{(\omega_m^r - \mu\alpha_r)(\omega_n^s - \mu\alpha_s)}}{\omega_m^r + \omega_n^s}\right] \cdot (simple)$$
Instead of integer mode numbers use rapidities...

$$N^{33}(\theta_1, \theta_2) = \frac{-1}{\cosh \frac{\theta_1 - \theta_2}{2}} \cdot \sin \frac{p_1 L_1}{2} \sin \frac{p_2 L_1}{2}$$

- The integer mode numbers (characteristic of finite volume) are completely inessential – they only obscure a simple underlying structure
- Pole at θ₁ = θ₂ + iπ (position of kinematical singularity as for form factors!) → there should be some underlying axioms...
- Still some surprising features the sin $\frac{p_k L_1}{2}$ factors

► In the pp-wave times, people used simplified expressions for N_{nm}^{rs} neglecting exponential $e^{-\mu\alpha_r}$ terms $\alpha_r = L_r/L_3$ (these are exactly wrapping terms e^{-ML_r} !!)

Going to an exponential basis (BMN basis) one got in this limit

$$N_{mn}^{rs} = \left[\frac{\sqrt{(\omega_m^r + \mu\alpha_r)(\omega_n^s + \mu\alpha_s)}}{\omega_m^r + \omega_n^s} - \frac{\sqrt{(\omega_m^r - \mu\alpha_r)(\omega_n^s - \mu\alpha_s)}}{\omega_m^r + \omega_n^s}\right] \cdot (simple)$$

$$\blacktriangleright \text{ Instead of integer mode numbers use rapidities...}$$

$$N^{33}(\theta_1, \theta_2) = \frac{-1}{\cosh \frac{\theta_1 - \theta_2}{2}} \cdot \sin \frac{p_1 L_1}{2} \sin \frac{p_2 L_1}{2}$$

- The integer mode numbers (characteristic of finite volume) are completely inessential – they only obscure a simple underlying structure
- Pole at θ₁ = θ₂ + iπ (position of kinematical singularity as for form factors!) → there should be some underlying axioms...
- Still some surprising features the sin $\frac{p_k L_1}{2}$ factors

► In the pp-wave times, people used simplified expressions for N_{nm}^{rs} neglecting exponential $e^{-\mu\alpha_r}$ terms $\alpha_r = L_r/L_3$ (these are exactly wrapping terms $e^{-ML_r}!!$)

Going to an exponential basis (BMN basis) one got in this limit

$$N_{mn}^{rs} = \left[\frac{\sqrt{(\omega_m^r + \mu\alpha_r)(\omega_n^s + \mu\alpha_s)}}{\omega_m^r + \omega_n^s} - \frac{\sqrt{(\omega_m^r - \mu\alpha_r)(\omega_n^s - \mu\alpha_s)}}{\omega_m^r + \omega_n^s}\right] \cdot (simple)$$
Instead of integer mode numbers use rapidities...

$$N^{33}(\theta_1, \theta_2) = \frac{-1}{\cosh \frac{\theta_1 - \theta_2}{2}} \cdot \sin \frac{p_1 L_1}{2} \sin \frac{p_2 L_1}{2}$$

- The integer mode numbers (characteristic of finite volume) are completely inessential – they only obscure a simple underlying structure
- Pole at θ₁ = θ₂ + iπ (position of kinematical singularity as for form factors!) → there should be some underlying axioms...
- Still some surprising features the sin $\frac{p_k L_1}{2}$ factors

In the pp-wave times, people used simplified expressions for N^{rs}_{nm} neglecting exponential e^{-µα_r} terms α_r = L_r/L₃ (these are exactly wrapping terms e^{-ML_r}!!)

▶ Going to an exponential basis (BMN basis) one got in this limit

$$N_{mn}^{rs} = \left[\frac{\sqrt{(\omega_m^r + \mu\alpha_r)(\omega_n^s + \mu\alpha_s)}}{\omega_m^r + \omega_n^s} - \frac{\sqrt{(\omega_m^r - \mu\alpha_r)(\omega_n^s - \mu\alpha_s)}}{\omega_m^r + \omega_n^s}\right] \cdot (simple)$$

$$\blacktriangleright \text{ Instead of integer mode numbers use rapidities...} \qquad p_k = M \sinh \theta_k$$

$$N^{33}(\theta_1, \theta_2) = \frac{-1}{\cosh \frac{\theta_1 - \theta_2}{2}} \cdot \sin \frac{p_1 L_1}{2} \sin \frac{p_2 L_1}{2}$$

- The integer mode numbers (characteristic of finite volume) are completely inessential – they only obscure a simple underlying structure
- Pole at θ₁ = θ₂ + iπ (position of kinematical singularity as for form factors!) → there should be some underlying axioms...
- Still some surprising features the sin $\frac{p_k L_1}{2}$ factors

In the pp-wave times, people used simplified expressions for N^{rs}_{nm} neglecting exponential e^{-µα_r} terms α_r = L_r/L₃ (these are exactly wrapping terms e^{-ML_r}!!)

▶ Going to an exponential basis (BMN basis) one got in this limit

$$N_{mn}^{rs} = \left[\frac{\sqrt{(\omega_m^r + \mu\alpha_r)(\omega_n^s + \mu\alpha_s)}}{\omega_m^r + \omega_n^s} - \frac{\sqrt{(\omega_m^r - \mu\alpha_r)(\omega_n^s - \mu\alpha_s)}}{\omega_m^r + \omega_n^s}\right] \cdot (simple)$$

Instead of integer mode numbers use rapidities...

 $p_k = M \sinh \theta_k$

$$N^{33}(\theta_1, \theta_2) = \frac{-1}{\cosh \frac{\theta_1 - \theta_2}{2}} \cdot \sin \frac{p_1 L_1}{2} \sin \frac{p_2 L_1}{2}$$

- The integer mode numbers (characteristic of finite volume) are completely inessential – they only obscure a simple underlying structure
- Pole at θ₁ = θ₂ + iπ (position of kinematical singularity as for form factors!) → there should be some underlying axioms...
- Still some surprising features the sin $\frac{p_k L_1}{2}$ factors

In the pp-wave times, people used simplified expressions for N^{rs}_{nm} neglecting exponential e^{-µα_r} terms α_r = L_r/L₃ (these are exactly wrapping terms e^{-ML_r}!!)

▶ Going to an exponential basis (BMN basis) one got in this limit

$$N_{mn}^{rs} = \left[\frac{\sqrt{(\omega_m^r + \mu\alpha_r)(\omega_n^s + \mu\alpha_s)}}{\omega_m^r + \omega_n^s} - \frac{\sqrt{(\omega_m^r - \mu\alpha_r)(\omega_n^s - \mu\alpha_s)}}{\omega_m^r + \omega_n^s}\right] \cdot (simple)$$

Instead of integer mode numbers use rapidities...

 $p_k = M \sinh \theta_k$

$$N^{33}(\theta_1, \theta_2) = \frac{-1}{\cosh \frac{\theta_1 - \theta_2}{2}} \cdot \sin \frac{p_1 L_1}{2} \sin \frac{p_2 L_1}{2}$$

- The integer mode numbers (characteristic of finite volume) are completely inessential – they only obscure a simple underlying structure
- Pole at θ₁ = θ₂ + iπ (position of kinematical singularity as for form factors!) → there should be some underlying axioms...
- Still some surprising features the sin $\frac{p_k L_1}{2}$ factors

In the pp-wave times, people used simplified expressions for N^{rs}_{nm} neglecting exponential e^{-µα_r} terms α_r = L_r/L₃ (these are exactly wrapping terms e^{-ML_r}!!)

▶ Going to an exponential basis (BMN basis) one got in this limit

$$N_{mn}^{rs} = \left[\frac{\sqrt{(\omega_m^r + \mu\alpha_r)(\omega_n^s + \mu\alpha_s)}}{\omega_m^r + \omega_n^s} - \frac{\sqrt{(\omega_m^r - \mu\alpha_r)(\omega_n^s - \mu\alpha_s)}}{\omega_m^r + \omega_n^s}\right] \cdot (simple)$$

Instead of integer mode numbers use rapidities...

 $p_k = M \sinh \theta_k$

$$N^{33}(\theta_1, \theta_2) = \frac{-1}{\cosh \frac{\theta_1 - \theta_2}{2}} \cdot \sin \frac{p_1 L_1}{2} \sin \frac{p_2 L_1}{2}$$

- The integer mode numbers (characteristic of finite volume) are completely inessential – they only obscure a simple underlying structure
- Pole at θ₁ = θ₂ + iπ (position of kinematical singularity as for form factors!) → there should be some underlying axioms...
- Still some surprising features the sin $\frac{p_k L_1}{2}$ factors

In the pp-wave times, people used simplified expressions for N^{rs}_{nm} neglecting exponential e^{-µα_r} terms α_r = L_r/L₃ (these are exactly wrapping terms e^{-ML_r}!!)

▶ Going to an exponential basis (BMN basis) one got in this limit

$$N_{mn}^{rs} = \left[\frac{\sqrt{(\omega_m^r + \mu\alpha_r)(\omega_n^s + \mu\alpha_s)}}{\omega_m^r + \omega_n^s} - \frac{\sqrt{(\omega_m^r - \mu\alpha_r)(\omega_n^s - \mu\alpha_s)}}{\omega_m^r + \omega_n^s}\right] \cdot (simple)$$

Instead of integer mode numbers use rapidities...

 $p_k = M \sinh \theta_k$

$$N^{33}(\theta_1, \theta_2) = \frac{-1}{\cosh \frac{\theta_1 - \theta_2}{2}} \cdot \sin \frac{p_1 L_1}{2} \sin \frac{p_2 L_1}{2}$$

- The integer mode numbers (characteristic of finite volume) are completely inessential – they only obscure a simple underlying structure
- Pole at θ₁ = θ₂ + iπ (position of kinematical singularity as for form factors!) → there should be some underlying axioms...

Still some surprising features — the sin $\frac{p_k L_1}{2}$ factors
Light-cone String Field Theory Vertex – the pp-wave

In the pp-wave times, people used simplified expressions for N^{rs}_{nm} neglecting exponential e^{-µα_r} terms α_r = L_r/L₃ (these are exactly wrapping terms e^{-ML_r}!!)

▶ Going to an exponential basis (BMN basis) one got in this limit

$$N_{mn}^{rs} = \left[\frac{\sqrt{(\omega_m^r + \mu\alpha_r)(\omega_n^s + \mu\alpha_s)}}{\omega_m^r + \omega_n^s} - \frac{\sqrt{(\omega_m^r - \mu\alpha_r)(\omega_n^s - \mu\alpha_s)}}{\omega_m^r + \omega_n^s}\right] \cdot (simple)$$

Instead of integer mode numbers use rapidities...

 $p_k = M \sinh \theta_k$

$$N^{33}(\theta_1, \theta_2) = \frac{-1}{\cosh \frac{\theta_1 - \theta_2}{2}} \cdot \sin \frac{p_1 L_1}{2} \sin \frac{p_2 L_1}{2}$$

- The integer mode numbers (characteristic of finite volume) are completely inessential – they only obscure a simple underlying structure
- Pole at θ₁ = θ₂ + iπ (position of kinematical singularity as for form factors!) → there should be some underlying axioms...

Still some surprising features — the sin $\frac{p_k L_1}{2}$ factors

Light-cone String Field Theory Vertex – the pp-wave

In the pp-wave times, people used simplified expressions for N^{rs}_{nm} neglecting exponential e^{-µα_r} terms α_r = L_r/L₃ (these are exactly wrapping terms e^{-ML_r}!!)

▶ Going to an exponential basis (BMN basis) one got in this limit

$$N_{mn}^{rs} = \left[\frac{\sqrt{(\omega_m^r + \mu\alpha_r)(\omega_n^s + \mu\alpha_s)}}{\omega_m^r + \omega_n^s} - \frac{\sqrt{(\omega_m^r - \mu\alpha_r)(\omega_n^s - \mu\alpha_s)}}{\omega_m^r + \omega_n^s}\right] \cdot (simple)$$

Instead of integer mode numbers use rapidities...

 $p_k = M \sinh \theta_k$

$$N^{33}(\theta_1, \theta_2) = \frac{-1}{\cosh \frac{\theta_1 - \theta_2}{2}} \cdot \sin \frac{p_1 L_1}{2} \sin \frac{p_2 L_1}{2}$$

- The integer mode numbers (characteristic of finite volume) are completely inessential – they only obscure a simple underlying structure
- Pole at θ₁ = θ₂ + iπ (position of kinematical singularity as for form factors!) → there should be some underlying axioms...
- Still some surprising features the sin $\frac{p_k L_1}{2}$ factors

Questions:

1. How to formulate an infinite volume version of the string vertex?

Questions:

1. How to formulate an infinite volume version of the string vertex?

Questions:

1. How to formulate an infinite volume version of the string vertex?

Questions:

1. How to formulate an infinite volume version of the string vertex?

Questions:

1. How to formulate an infinite volume version of the string vertex?

- String #1 still remains of finite size (denoted by L) which can be arbitrary — large or even very small
- ▶ The emission of string #1 can be understood as an insertion of some macroscopic (not completely local) operator...
- ► Looks like some kind of generalized form factor with ingoing particles in string #3 and outgoing ones in string #2
- ▶ Key new feature: string #1 'eats up volume' → the operator should have a e^{-ipL} branch cut defect...

- String #1 still remains of finite size (denoted by L) which can be arbitrary — large or even very small
- The emission of string #1 can be understood as an insertion of some macroscopic (not completely local) operator...
- ► Looks like some kind of generalized form factor with ingoing particles in string #3 and outgoing ones in string #2
- ▶ Key new feature: string #1 'eats up volume' → the operator should have a e^{-ipL} branch cut defect...

- String #1 still remains of finite size (denoted by L) which can be arbitrary — large or even very small
- The emission of string #1 can be understood as an insertion of some macroscopic (not completely local) operator...
- ► Looks like some kind of generalized form factor with ingoing particles in string #3 and outgoing ones in string #2
- ▶ Key new feature: string #1 'eats up volume' → the operator should have a e^{-ipL} branch cut defect...

- String #1 still remains of finite size (denoted by L) which can be arbitrary — large or even very small
- The emission of string #1 can be understood as an insertion of some macroscopic (not completely local) operator...
- ► Looks like some kind of generalized form factor with ingoing particles in string #3 and outgoing ones in string #2
- ▶ Key new feature: string #1 'eats up volume' → the operator should have a e^{-ipL} branch cut defect...

String #1 still remains of finite size (denoted by L) — which can be arbitrary — large or even very small

- The emission of string #1 can be understood as an insertion of some macroscopic (not completely local) operator...
- ► Looks like some kind of generalized form factor with ingoing particles in string #3 and outgoing ones in string #2
- ▶ Key new feature: string #1 'eats up volume' → the operator should have a e^{-ipL} branch cut defect...

- String #1 still remains of finite size (denoted by L) which can be arbitrary — large or even very small
- The emission of string #1 can be understood as an insertion of some macroscopic (not completely local) operator...
- ▶ Looks like some kind of generalized form factor with ingoing particles in string #3 and outgoing ones in string #2
- ▶ Key new feature: string #1 'eats up volume' → the operator should have a e^{-ipL} branch cut defect...

- String #1 still remains of finite size (denoted by L) which can be arbitrary — large or even very small
- The emission of string #1 can be understood as an insertion of some macroscopic (not completely local) operator...
- ► Looks like some kind of generalized form factor with ingoing particles in string #3 and outgoing ones in string #2
- ▶ Key new feature: string #1 'eats up volume' → the operator should have a e^{-ipL} branch cut defect...

- String #1 still remains of finite size (denoted by L) which can be arbitrary — large or even very small
- The emission of string #1 can be understood as an insertion of some macroscopic (not completely local) operator...
- ► Looks like some kind of generalized form factor with ingoing particles in string #3 and outgoing ones in string #2
- ► Key new feature: string #1 'eats up volume' → the operator should have a e^{-ipL} branch cut defect...

- String #1 still remains of finite size (denoted by L) which can be arbitrary — large or even very small
- The emission of string #1 can be understood as an insertion of some macroscopic (not completely local) operator...
- ► Looks like some kind of generalized form factor with ingoing particles in string #3 and outgoing ones in string #2
- ► Key new feature: string #1 'eats up volume' → the operator should have a e^{-ipL} branch cut defect...

- String #1 still remains of finite size (denoted by L) which can be arbitrary — large or even very small
- The emission of string #1 can be understood as an insertion of some macroscopic (not completely local) operator...
- ► Looks like some kind of generalized form factor with ingoing particles in string #3 and outgoing ones in string #2
- ► Key new feature: string #1 'eats up volume' → the operator should have a e^{-ipL} branch cut defect...

Functional equations for the (decompactified) string vertex

written here for two incoming particles and, for the moment, free theory

The exact pp-wave solution, involving the Γ_μ(θ) special function solves these equations and can be reconstructed from them!

$$n(\theta)n(\theta + i\pi) = -\frac{1}{2\pi^2}ML\sinh\theta\sin\frac{p(\theta)L}{2}$$

- This includes all exponential wrapping corrections e^{-μα₁} = e^{-ML} for the #1 string
- Straightforward generalization of the axioms to an interacting integrable QFT

Functional equations for the (decompactified) string vertex

written here for two incoming particles and, for the moment, free theory

$$N^{33}(\theta_1, \theta_2) = N^{33}(\theta_2, \theta_1)$$

$$N^{33}(\theta_1, \theta_2) = e^{-ip_1 L} N^{33}(\theta_2, \theta_1 - 2\pi i)$$

$$-i \operatorname{res}_{\theta'=\theta} N^{33}(\theta + i\pi, \theta) = (1 - e^{ipL}) F_0$$

The exact pp-wave solution, involving the Γ_μ(θ) special function solves these equations and can be reconstructed from them!

$$n(\theta)n(\theta + i\pi) = -\frac{1}{2\pi^2}ML\sinh\theta\sin\frac{p(\theta)L}{2}$$

- This includes all exponential wrapping corrections e^{-μα₁} = e^{-ML} for the #1 string
- Straightforward generalization of the axioms to an interacting integrable QFT

Functional equations for the (decompactified) string vertex

written here for two incoming particles and, for the moment, free theory

The exact pp-wave solution, involving the Γ_μ(θ) special function solves these equations and can be reconstructed from them!

$$n(\theta)n(\theta + i\pi) = -\frac{1}{2\pi^2}ML\sinh\theta\sin\frac{p(\theta)L}{2}$$

- This includes all exponential wrapping corrections e^{-μα₁} = e^{-ML} for the #1 string
- Straightforward generalization of the axioms to an interacting integrable QFT

Functional equations for the (decompactified) string vertex

written here for two incoming particles and, for the moment, free theory

The exact pp-wave solution, involving the Γ_μ(θ) special function solves these equations and can be reconstructed from them!

$$n(\theta)n(\theta + i\pi) = -\frac{1}{2\pi^2}ML\sinh\theta\sin\frac{p(\theta)L}{2}$$

- This includes all exponential wrapping corrections e^{-μα₁} = e^{-ML} for the #1 string
- Straightforward generalization of the axioms to an interacting integrable QFT

Functional equations for the (decompactified) string vertex

written here for two incoming particles and, for the moment, free theory

The exact pp-wave solution, involving the Γ_μ(θ) special function solves these equations and can be reconstructed from them!

$$n(\theta)n(\theta + i\pi) = -\frac{1}{2\pi^2}ML\sinh\theta\sin\frac{p(\theta)L}{2}$$

This includes all exponential wrapping corrections e^{-μα₁} = e^{-ML} for the #1 string

 Straightforward generalization of the axioms to an interacting integrable QFT

Functional equations for the (decompactified) string vertex

written here for two incoming particles and interacting worldsheet theory

$$N^{33}(\theta_{1},\theta_{2}) = N^{33}(\theta_{2},\theta_{1}) \cdot \mathbf{S}(\theta_{1},\theta_{2})$$

$$N^{33}(\theta_{1},\theta_{2}) = e^{-ip_{1}L}N^{33}(\theta_{2},\theta_{1}-2\pi i)$$

$$-i \operatorname{res}_{\theta'=\theta} N^{33}(\theta+i\pi,\theta) = (1-e^{ipL})F_{0}$$

The exact pp-wave solution, involving the Γ_μ(θ) special function solves these equations and can be reconstructed from them!

$$n(\theta)n(\theta + i\pi) = -\frac{1}{2\pi^2}ML\sinh\theta\sin\frac{p(\theta)L}{2}$$

- This includes all exponential wrapping corrections e^{-μα₁} = e^{-ML} for the #1 string
- Straightforward generalization of the axioms to an interacting integrable QFT

- We have to supplant the functional equations with some analyticity conditions
- We consider the simplest case of the Neumann coefficient N³³(θ₁, θ₂) (more precisely the SFT amplitude with two incoming particles and vacuum on the remaining strings)
- ▶ By examining the pp-wave case we deduced the following condition:
 - The Neumann coefficient $N^{33}(\theta_1, \theta_2)$ should have zeroes on the real axis and not on the 'crossing line' $Im \theta = \pi$
- ▶ In addition we found that in a certain sense, in the large *L* limit, the monodromy under $\theta \rightarrow \theta + 2\pi i$ should be killed

- We have to supplant the functional equations with some analyticity conditions
- We consider the simplest case of the Neumann coefficient N³³(θ₁, θ₂) (more precisely the SFT amplitude with two incoming particles and vacuum on the remaining strings)
- ▶ By examining the pp-wave case we deduced the following condition:
 - The Neumann coefficient $N^{33}(\theta_1, \theta_2)$ should have zeroes on the real axis and not on the 'crossing line' $Im \theta = \pi$
- ▶ In addition we found that in a certain sense, in the large *L* limit, the monodromy under $\theta \rightarrow \theta + 2\pi i$ should be killed

- We have to supplant the functional equations with some analyticity conditions
- We consider the simplest case of the Neumann coefficient N³³(θ₁, θ₂) (more precisely the SFT amplitude with two incoming particles and vacuum on the remaining strings)
- ▶ By examining the pp-wave case we deduced the following condition:
 - The Neumann coefficient $N^{33}(\theta_1, \theta_2)$ should have zeroes on the real axis and not on the 'crossing line' $Im \theta = \pi$
- ▶ In addition we found that in a certain sense, in the large *L* limit, the monodromy under $\theta \rightarrow \theta + 2\pi i$ should be killed

Analyticity conditions

- We have to supplant the functional equations with some analyticity conditions
- We consider the simplest case of the Neumann coefficient N³³(θ₁, θ₂) (more precisely the SFT amplitude with two incoming particles and vacuum on the remaining strings)
- By examining the pp-wave case we deduced the following condition:

• The Neumann coefficient $N^{33}(\theta_1, \theta_2)$ should have zeroes on the real axis and not on the 'crossing line' $Im \theta = \pi$

▶ In addition we found that in a certain sense, in the large *L* limit, the monodromy under $\theta \rightarrow \theta + 2\pi i$ should be killed

Analyticity conditions

- We have to supplant the functional equations with some analyticity conditions
- We consider the simplest case of the Neumann coefficient N³³(θ₁, θ₂) (more precisely the SFT amplitude with two incoming particles and vacuum on the remaining strings)
- By examining the pp-wave case we deduced the following condition:

• The Neumann coefficient $N^{33}(\theta_1, \theta_2)$ should have zeroes on the real axis and not on the 'crossing line' $Im \theta = \pi$

▶ In addition we found that in a certain sense, in the large *L* limit, the monodromy under $\theta \rightarrow \theta + 2\pi i$ should be killed

- We have to supplant the functional equations with some analyticity conditions
- We consider the simplest case of the Neumann coefficient N³³(θ₁, θ₂) (more precisely the SFT amplitude with two incoming particles and vacuum on the remaining strings)
- ▶ By examining the pp-wave case we deduced the following condition:
 - The Neumann coefficient $N^{33}(\theta_1, \theta_2)$ should have zeroes on the real axis and not on the 'crossing line' $Im \theta = \pi$
- ▶ In addition we found that in a certain sense, in the large *L* limit, the monodromy under $\theta \rightarrow \theta + 2\pi i$ should be killed

- We have to supplant the functional equations with some analyticity conditions
- We consider the simplest case of the Neumann coefficient N³³(θ₁, θ₂) (more precisely the SFT amplitude with two incoming particles and vacuum on the remaining strings)
- ▶ By examining the pp-wave case we deduced the following condition:
 - The Neumann coefficient $N^{33}(\theta_1, \theta_2)$ should have zeroes on the real axis and not on the 'crossing line' $Im \theta = \pi$
- ▶ In addition we found that in a certain sense, in the large *L* limit, the monodromy under $\theta \rightarrow \theta + 2\pi i$ should be killed

- We have to supplant the functional equations with some analyticity conditions
- We consider the simplest case of the Neumann coefficient N³³(θ₁, θ₂) (more precisely the SFT amplitude with two incoming particles and vacuum on the remaining strings)
- ▶ By examining the pp-wave case we deduced the following condition:
 - The Neumann coefficient $N^{33}(\theta_1, \theta_2)$ should have zeroes on the real axis and not on the 'crossing line' $Im \theta = \pi$
- ▶ In addition we found that in a certain sense, in the large *L* limit, the monodromy under $\theta \rightarrow \theta + 2\pi i$ should be killed

We considered so far the 'decompactified string vertex'...

but ultimately we are interested in the finite volume one...

Use the same prescription (Pozsgay-Takacs) as for form factors...

We considered so far the 'decompactified string vertex'...

but ultimately we are interested in the finite volume one...

Use the same prescription (Pozsgay-Takacs) as for form factors...

We considered so far the 'decompactified string vertex'...

but ultimately we are interested in the finite volume one...

Use the same prescription (Pozsgay-Takacs) as for form factors...

We considered so far the 'decompactified string vertex'...

but ultimately we are interested in the finite volume one...

Use the same prescription (Pozsgay-Takacs) as for form factors...

We considered so far the 'decompactified string vertex'...

but ultimately we are interested in the finite volume one...

Use the same prescription (Pozsgay-Takacs) as for form factors...
Step II) The string vertex — back to finite volume

We considered so far the 'decompactified string vertex'...

but ultimately we are interested in the finite volume one...

Use the same prescription (Pozsgay-Takacs) as for form factors...

This means that we neglect exponential corrections for strings #2 and #3 but **keep** all size dependence of string #1... (i.e. infinite set of wrapping corrections)

Novel kinematics

- Complex rapidities are defined on a covering of an elliptic curve
- ▶ The momentum *p* is *not* a well defined function
- Only e^{ip} is a well defined elliptic function
- The phase factors e^{ip L} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- ► The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

Novel kinematics

- Complex rapidities are defined on a covering of an elliptic curve
- ▶ The momentum *p* is *not* a well defined function
- Only e^{ip} is a well defined elliptic function
- The phase factors e^{ip L} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- ► The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

Novel kinematics

Complex rapidities are defined on a covering of an elliptic curve

- ▶ The momentum *p* is *not* a well defined function
- Only e^{ip} is a well defined elliptic function
- The phase factors e^{ip L} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- ► The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

Novel kinematics

- Complex rapidities are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only e^{ip} is a well defined elliptic function
- The phase factors e^{ip L} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- ► The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

Novel kinematics

- Complex rapidities are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only e^{ip} is a well defined elliptic function
- ► The phase factors e^{ipL} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- ► The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

Novel kinematics

- Complex rapidities are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only e^{ip} is a well defined elliptic function
- The phase factors e^{ipL} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

Novel kinematics

- Complex rapidities are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only e^{ip} is a well defined elliptic function
- The phase factors e^{ip L} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- ► The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

Novel kinematics

- Complex rapidities are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only e^{ip} is a well defined elliptic function
- The phase factors e^{ip L} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

Novel kinematics

- Complex rapidities are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only e^{ip} is a well defined elliptic function
- The phase factors e^{ip L} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- > The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

Novel kinematics

- Complex rapidities are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only e^{ip} is a well defined elliptic function
- The phase factors e^{ip L} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

Novel kinematics

- Complex rapidities are defined on a covering of an elliptic curve
- The momentum p is not a well defined function
- Only e^{ip} is a well defined elliptic function
- The phase factors e^{ip L} make sense directly only for integer L which is nice from the point of view of N = 4 SYM...

Complicated dynamics

- The S-matrix does not depend on the difference of rapidities
- The S-matrix is nondiagonal which drastically complicates solving form factor axioms (which are a special case of our SFT axioms)

• Excitations of the string in $AdS_5 \times S^5$ have a nonstandard dispersion relation

$$E = \sqrt{1 + 16g^2 \sin^2 rac{p}{2}}$$
 where $g^2 = rac{\lambda}{16\pi^2} \equiv rac{g_{YM}^2 N_c}{16\pi^2}$

- This can be uniformized through elliptic functions
- The natural space for rapidities is the covering space of an elliptic curve – the complex plane
 R
- z → z + 1 is the novel periodicity, while z → z + τ/2 is the AdS analog of the crossing transformation in relativistic theories
 e^{-ip} is an elliptic function

$$e^{-ip} = q^{\frac{1}{2}} \cdot \frac{\theta_0 \left(z - \frac{1}{2} + \frac{\tau}{4}\right) \theta_0 \left(z - \frac{1}{2} - \frac{3\tau}{4}\right)}{\theta_0^2 \left(z - \frac{1}{2} - \frac{\tau}{4}\right)}$$

hence $e^{-ip \mathbf{L}}$ makes sense directly only for integer \mathbf{L}

• Excitations of the string in $AdS_5 \times S^5$ have a nonstandard dispersion relation

$$E = \sqrt{1 + 16g^2 \sin^2 \frac{p}{2}} \qquad \text{where} \quad g^2 = \frac{\lambda}{16\pi^2} \equiv \frac{g_{YM}^2 N_c}{16\pi^2}$$

This can be uniformized through elliptic functions

- The natural space for rapidities is the covering space of an elliptic curve – the complex plane
 R
- z → z + 1 is the novel periodicity, while z → z + τ/2 is the AdS analog of the crossing transformation in relativistic theories
 e^{-ip} is an elliptic function

$$e^{-ip} = q^{\frac{1}{2}} \cdot \frac{\theta_0 \left(z - \frac{1}{2} + \frac{\tau}{4}\right) \theta_0 \left(z - \frac{1}{2} - \frac{3\tau}{4}\right)}{\theta_0^2 \left(z - \frac{1}{2} - \frac{\tau}{4}\right)}$$

hence $e^{-ip \mathbf{L}}$ makes sense directly only for integer \mathbf{L}

• Excitations of the string in $AdS_5 \times S^5$ have a nonstandard dispersion relation

$$E = \sqrt{1 + 16g^2 \sin^2 \frac{p}{2}} \qquad \text{where} \quad g^2 = \frac{\lambda}{16\pi^2} \equiv \frac{g_{YM}^2 N_c}{16\pi^2}$$

- This can be uniformized through elliptic functions
- The natural space for rapidities is the covering space of an elliptic curve – the complex plane
 R
- z → z + 1 is the novel periodicity, while z → z + τ/2 is the AdS analog of the crossing transformation in relativistic theories
 e^{-ip} is an elliptic function

$$e^{-ip} = q^{\frac{1}{2}} \cdot \frac{\theta_0 \left(z - \frac{1}{2} + \frac{\tau}{4}\right) \theta_0 \left(z - \frac{1}{2} - \frac{3\tau}{4}\right)}{\theta_0^2 \left(z - \frac{1}{2} - \frac{\tau}{4}\right)}$$

hence $e^{-i\rho L}$ makes sense directly only for integer L

• Excitations of the string in $AdS_5 \times S^5$ have a nonstandard dispersion relation

$$E = \sqrt{1 + 16g^2 \sin^2 \frac{p}{2}} \qquad \text{where} \quad g^2 = \frac{\lambda}{16\pi^2} \equiv \frac{g_{YM}^2 N_c}{16\pi^2}$$

- This can be uniformized through elliptic functions
- The natural space for rapidities is the covering space of an elliptic curve – the complex plane
 RJ
- z → z + 1 is the novel periodicity, while z → z + τ/2 is the AdS analog of the crossing transformation in relativistic theories
 e^{-ip} is an elliptic function

$$e^{-ip} = q^{\frac{1}{2}} \cdot \frac{\theta_0 \left(z - \frac{1}{2} + \frac{\tau}{4} \right) \theta_0 \left(z - \frac{1}{2} - \frac{3\tau}{4} \right)}{\theta_0^2 \left(z - \frac{1}{2} - \frac{\tau}{4} \right)}$$

hence $e^{-ip L}$ makes sense directly only for integer L

• Excitations of the string in $AdS_5 \times S^5$ have a nonstandard dispersion relation

$$E = \sqrt{1 + 16g^2 \sin^2 \frac{p}{2}} \qquad \text{where} \quad g^2 = \frac{\lambda}{16\pi^2} \equiv \frac{g_{YM}^2 N_c}{16\pi^2}$$

- This can be uniformized through elliptic functions
- The natural space for rapidities is the covering space of an elliptic curve – the complex plane
 RJ
- z → z + 1 is the novel periodicity, while z → z + τ/2 is the AdS analog of the crossing transformation in relativistic theories
 e^{-ip} is an elliptic function

$$e^{-ip} = q^{\frac{1}{2}} \cdot \frac{\theta_0 \left(z - \frac{1}{2} + \frac{\tau}{4}\right) \theta_0 \left(z - \frac{1}{2} - \frac{3\tau}{4}\right)}{\theta_0^2 \left(z - \frac{1}{2} - \frac{\tau}{4}\right)}$$

hence $e^{-ip L}$ makes sense directly only for integer L

• Excitations of the string in $AdS_5 \times S^5$ have a nonstandard dispersion relation

$$E = \sqrt{1 + 16g^2 \sin^2 \frac{p}{2}} \qquad \text{where} \quad g^2 = \frac{\lambda}{16\pi^2} \equiv \frac{g_{YM}^2 N_c}{16\pi^2}$$

- This can be uniformized through elliptic functions
- The natural space for rapidities is the covering space of an elliptic curve – the complex plane
 RJ
- z → z + 1 is the novel periodicity, while z → z + τ/2 is the AdS analog of the crossing transformation in relativistic theories
 e^{-ip} is an elliptic function

$$e^{-ip} = q^{\frac{1}{2}} \cdot \frac{\theta_0 \left(z - \frac{1}{2} + \frac{\tau}{4} \right) \theta_0 \left(z - \frac{1}{2} - \frac{3\tau}{4} \right)}{\theta_0^2 \left(z - \frac{1}{2} - \frac{\tau}{4} \right)}$$

hence $e^{-ip \mathbf{L}}$ makes sense directly only for integer \mathbf{L}

• Excitations of the string in $AdS_5 \times S^5$ have a nonstandard dispersion relation

$$E = \sqrt{1 + 16g^2 \sin^2 \frac{p}{2}} \qquad \text{where} \quad g^2 = \frac{\lambda}{16\pi^2} \equiv \frac{g_{YM}^2 N_c}{16\pi^2}$$

- This can be uniformized through elliptic functions
- The natural space for rapidities is the covering space of an elliptic curve – the complex plane
 RJ
- z → z + 1 is the novel periodicity, while z → z + τ/2 is the AdS analog of the crossing transformation in relativistic theories
 e^{-ip} is an elliptic function

$$e^{-ip} = q^{\frac{1}{2}} \cdot \frac{\theta_0 \left(z - \frac{1}{2} + \frac{\tau}{4} \right) \theta_0 \left(z - \frac{1}{2} - \frac{3\tau}{4} \right)}{\theta_0^2 \left(z - \frac{1}{2} - \frac{\tau}{4} \right)}$$

hence $e^{-ip \mathbf{L}}$ makes sense directly only for integer \mathbf{L}

Consider arguably the simplest SFT amplitude with two particles on the incoming string #3 and vacua on the outgoing strings..

we will call it still as Neumann coefficient

- This corresponds to the N³³_{nm} pp-wave Neumann coefficient (N³³(z₁, z₂) in our notation)
- ► More precisely one should write N³³(z₁, z₂)_{ij} where i, j are polarizations
- ▶ In the case of pp-wave this is trivial as $N^{33}(z_1, z_2)_{ij} \propto \delta_{ij} N^{33}(z_1, z_2)$

Consider arguably the simplest SFT amplitude with two particles on the incoming string #3 and vacua on the outgoing strings..

we will call it still as Neumann coefficient

- This corresponds to the N³³_{nm} pp-wave Neumann coefficient (N³³(z₁, z₂) in our notation)
- ▶ More precisely one should write N³³(z₁, z₂)_{ij} where i, j are polarizations
- ▶ In the case of pp-wave this is trivial as $N^{33}(z_1, z_2)_{ij} \propto \delta_{ij} N^{33}(z_1, z_2)$

Consider arguably the simplest SFT amplitude with two particles on the incoming string #3 and vacua on the outgoing strings..

we will call it still as Neumann coefficient

- ► This corresponds to the N³³_{nm} pp-wave Neumann coefficient (N³³(z₁, z₂) in our notation)
- ► More precisely one should write N³³(z₁, z₂)_{ij} where i, j are polarizations
- In the case of pp-wave this is trivial as $N^{33}(z_1, z_2)_{ij} \propto \delta_{ij} N^{33}(z_1, z_2)$

Consider arguably the simplest SFT amplitude with two particles on the incoming string #3 and vacua on the outgoing strings..

we will call it still as Neumann coefficient

- ► This corresponds to the N³³_{nm} pp-wave Neumann coefficient (N³³(z₁, z₂) in our notation)
- ► More precisely one should write N³³(z₁, z₂)_{ij} where i, j are polarizations
- In the case of pp-wave this is trivial as $N^{33}(z_1, z_2)_{ij} \propto \delta_{ij} N^{33}(z_1, z_2)$

Consider arguably the simplest SFT amplitude with two particles on the incoming string #3 and vacua on the outgoing strings..

we will call it still as Neumann coefficient

- ► This corresponds to the N³³_{nm} pp-wave Neumann coefficient (N³³(z₁, z₂) in our notation)
- ► More precisely one should write N³³(z₁, z₂)_{ij} where i, j are polarizations
- ▶ In the case of pp-wave this is trivial as $N^{33}(z_1, z_2)_{ij} \propto \delta_{ij} N^{33}(z_1, z_2)$

Consider arguably the simplest SFT amplitude with two particles on the incoming string #3 and vacua on the outgoing strings..

we will call it still as Neumann coefficient

- ► This corresponds to the N³³_{nm} pp-wave Neumann coefficient (N³³(z₁, z₂) in our notation)
- ► More precisely one should write N³³(z₁, z₂)_{ij} where i, j are polarizations
- In the case of pp-wave this is trivial as $N^{33}(z_1, z_2)_{ij} \propto \delta_{ij} N^{33}(z_1, z_2)$

Consider arguably the simplest SFT amplitude with two particles on the incoming string #3 and vacua on the outgoing strings..

we will call it still as Neumann coefficient

- ► This corresponds to the N³³_{nm} pp-wave Neumann coefficient (N³³(z₁, z₂) in our notation)
- ► More precisely one should write N³³(z₁, z₂)_{ij} where i, j are polarizations
- ▶ In the case of pp-wave this is trivial as $N^{33}(z_1, z_2)_{ij} \propto \delta_{ij} N^{33}(z_1, z_2)$

Consider arguably the simplest SFT amplitude with two particles on the incoming string #3 and vacua on the outgoing strings..

we will call it still as Neumann coefficient

- ► This corresponds to the N³³_{nm} pp-wave Neumann coefficient (N³³(z₁, z₂) in our notation)
- ► More precisely one should write N³³(z₁, z₂)_{ij} where i, j are polarizations
- ▶ In the case of pp-wave this is trivial as $N^{33}(z_1, z_2)_{ij} \propto \delta_{ij} N^{33}(z_1, z_2)$

• The equations satisfied by $N_L^{33}(z_1, z_2)_{i_1, i_2}$ are

$$\begin{split} \mathbf{N}_{\mathsf{L}}^{33}(z_1, z_2)_{i_1, i_2} &= S_{i_1 i_2}^{kl}(z_1, z_2) \mathbf{N}_{\mathsf{L}}^{33}(z_2, z_1)_{l, k} \\ \mathbf{N}_{\mathsf{L}}^{33}(z_1, z_2)_{i_1, i_2} &= e^{-ip(z_1)\mathsf{L}} \mathbf{N}_{\mathsf{L}}^{33}(z_2, z_1 - \tau)_{i_2, i_1} \\ \mathrm{es}_{z'=z} \, \mathbf{N}_{\mathsf{L}}^{33}(z' + \tau/2, z)_{\overline{i}, i} &= \left(1 - e^{ip(z)\mathsf{L}}\right) \end{split}$$

$$\mathbf{F}(z+\tau/2,z)_{i_1,i_2}=\delta_{\bar{i}_1,i_2}$$

Then we can solve the SFT vertex equations by

$$\mathsf{N}^{33}_{\mathsf{L}}(z_1, z_2)_{i_1 i_2} = \mathsf{F}(z_1, z_2)_{i_1, i_2} \cdot \mathsf{N}^{33}_{\mathsf{L}}(z_1, z_2)$$

• The equations satisfied by $N_L^{33}(z_1, z_2)_{i_1, i_2}$ are

$$\begin{split} \mathsf{N}_{\mathsf{L}}^{33}(z_1, z_2)_{i_1, i_2} &= S_{i_1 i_2}^{kl}(z_1, z_2) \mathsf{N}_{\mathsf{L}}^{33}(z_2, z_1)_{l, k} \\ \mathsf{N}_{\mathsf{L}}^{33}(z_1, z_2)_{i_1, i_2} &= e^{-ip(z_1)\mathsf{L}} \mathsf{N}_{\mathsf{L}}^{33}(z_2, z_1 - \tau)_{i_2, i_1} \\ \operatorname{res}_{z'=z} \mathsf{N}_{\mathsf{L}}^{33}(z' + \tau/2, z)_{\overline{l}, i} &= \left(1 - e^{ip(z)\mathsf{L}}\right) \end{split}$$

Suppose that we know a solution of 2-particle form factor equations in AdS F(z₁, z₂)_{i₁,i₂} s.t.

 $\mathbf{F}(z+\tau/2,z)_{i_1,i_2}=\delta_{\bar{i}_1,i_2}$

Then we can solve the SFT vertex equations by

 $\mathsf{N}^{33}_{\mathsf{L}}(z_1,z_2)_{i_1i_2} = \mathsf{F}(z_1,z_2)_{i_1,i_2} \cdot \mathsf{N}^{33}_{\mathsf{L}}(z_1,z_2)$

• The equations satisfied by $N_L^{33}(z_1, z_2)_{i_1, i_2}$ are

$$\begin{split} \mathsf{N}_{\mathsf{L}}^{33}(z_1, z_2)_{i_1, i_2} &= S_{i_1 i_2}^{kl}(z_1, z_2) \mathsf{N}_{\mathsf{L}}^{33}(z_2, z_1)_{l, k} \\ \mathsf{N}_{\mathsf{L}}^{33}(z_1, z_2)_{i_1, i_2} &= e^{-ip(z_1)\mathsf{L}} \mathsf{N}_{\mathsf{L}}^{33}(z_2, z_1 - \tau)_{i_2, i_1} \\ \operatorname{res}_{z'=z} \mathsf{N}_{\mathsf{L}}^{33}(z' + \tau/2, z)_{\overline{l}, i} &= \left(1 - e^{ip(z)\mathsf{L}}\right) \end{split}$$

Suppose that we know a solution of 2-particle form factor equations in AdS F(z₁, z₂)_{i₁,i₂} s.t.

$$\mathbf{F}(z+\tau/2,z)_{i_1,i_2}=\delta_{\bar{i}_1,i_2}$$

▶ Then we can solve the SFT vertex equations by

$$\mathsf{N}^{33}_{\mathsf{L}}(z_1,z_2)_{i_1i_2} = \mathsf{F}(z_1,z_2)_{i_1,i_2} \cdot \mathsf{N}^{33}_{\mathsf{L}}(z_1,z_2)$$

• The equations satisfied by $N_{L}^{33}(z_1, z_2)_{i_1, i_2}$ are

$$\begin{split} \mathbf{N}_{\mathbf{L}}^{33}(z_{1},z_{2})_{i_{1},i_{2}} &= S_{i_{1}i_{2}}^{kl}(z_{1},z_{2})\mathbf{N}_{\mathbf{L}}^{33}(z_{2},z_{1})_{l,k} \\ \mathbf{N}_{\mathbf{L}}^{33}(z_{1},z_{2})_{i_{1},i_{2}} &= e^{-ip(z_{1})\mathbf{L}}\mathbf{N}_{\mathbf{L}}^{33}(z_{2},z_{1}-\tau)_{i_{2},i_{1}} \\ \mathrm{res}_{z'=z}\,\mathbf{N}_{\mathbf{L}}^{33}(z'+\tau/2,z)_{\overline{i},i} &= \left(1-e^{ip(z)\mathbf{L}}\right) \end{split}$$

Suppose that we know a solution of 2-particle form factor equations in AdS F(z₁, z₂)_{i₁,i₂} s.t.

$$\mathbf{F}(z+\tau/2,z)_{i_1,i_2}=\delta_{\bar{i}_1,i_2}$$

Then we can solve the SFT vertex equations by

$$\mathsf{N}^{33}_{\mathsf{L}}(z_1, z_2)_{i_1 i_2} = \mathsf{F}(z_1, z_2)_{i_1, i_2} \cdot \mathsf{N}^{33}_{\mathsf{L}}(z_1, z_2)$$

• The equations satisfied by $N_{L}^{33}(z_1, z_2)_{i_1, i_2}$ are

$$\begin{split} \mathbf{N}_{\mathbf{L}}^{33}(z_{1},z_{2})_{i_{1},i_{2}} &= S_{i_{1}i_{2}}^{kl}(z_{1},z_{2})\mathbf{N}_{\mathbf{L}}^{33}(z_{2},z_{1})_{l,k} \\ \mathbf{N}_{\mathbf{L}}^{33}(z_{1},z_{2})_{i_{1},i_{2}} &= e^{-ip(z_{1})\mathbf{L}}\mathbf{N}_{\mathbf{L}}^{33}(z_{2},z_{1}-\tau)_{i_{2},i_{1}} \\ \mathrm{res}_{z'=z}\,\mathbf{N}_{\mathbf{L}}^{33}(z'+\tau/2,z)_{\overline{i},i} &= \left(1-e^{ip(z)\mathbf{L}}\right) \end{split}$$

Suppose that we know a solution of 2-particle form factor equations in AdS F(z₁, z₂)_{i₁,i₂} s.t.

$$\mathbf{F}(z+\tau/2,z)_{i_1,i_2}=\delta_{\bar{i}_1,i_2}$$

Then we can solve the SFT vertex equations by

$$N_{L}^{33}(z_{1}, z_{2})_{i_{1}i_{2}} = F(z_{1}, z_{2})_{i_{1},i_{2}} \cdot N_{L}^{33}(z_{1}, z_{2})$$

• The equations satisfied by $N_{L}^{33}(z_1, z_2)_{i_1, i_2}$ are

$$\begin{split} \mathsf{N}_{\mathsf{L}}^{33}(z_1, z_2)_{i_1, i_2} &= S_{i_1 i_2}^{kl}(z_1, z_2) \mathsf{N}_{\mathsf{L}}^{33}(z_2, z_1)_{l, k} \\ \mathsf{N}_{\mathsf{L}}^{33}(z_1, z_2)_{i_1, i_2} &= e^{-ip(z_1)\mathsf{L}} \mathsf{N}_{\mathsf{L}}^{33}(z_2, z_1 - \tau)_{i_2, i_1} \\ \mathrm{res}_{z'=z} \, \mathsf{N}_{\mathsf{L}}^{33}(z' + \tau/2, z)_{\overline{l}, i} &= \left(1 - e^{ip(z)\mathsf{L}}\right) \end{split}$$

Suppose that we know a solution of 2-particle form factor equations in AdS F(z₁, z₂)_{i₁,i₂} s.t.

$$\mathbf{F}(z+\tau/2,z)_{i_1,i_2}=\delta_{\bar{i}_1,i_2}$$

Then we can solve the SFT vertex equations by

$$\mathsf{N}^{33}_{\mathsf{L}}(z_1, z_2)_{i_1 i_2} = \mathsf{F}(z_1, z_2)_{i_1, i_2} \cdot \mathsf{N}^{33}_{\mathsf{L}}(z_1, z_2)$$

The kinematical $AdS_5 \times S^5$ Neumann coefficient

$$N_{L}^{33}(z_1, z_2)_{i_1i_2} = F(z_1, z_2)_{i_1,i_2} \cdot N_{L}^{33}(z_2, z_1)$$

It satisfies a set of scalar equations:

$$N_{L}^{33}(z_{1}, z_{2}) = N_{L}^{33}(z_{2}, z_{1})$$

$$N_{L}^{33}(z_{1}, z_{2}) = e^{-ip(z_{1})L}N_{L}^{33}(z_{2}, z_{1} - \tau)$$

$$\operatorname{res}_{z'=z} N_{L}^{33}(z' + \tau/2, z) = \left(1 - e^{ip(z)L}\right)$$

- ▶ N³³_L(z₂, z₁) incorporates all L dependence (all wrapping corrections w.r.t. string #1) at any coupling
- Conversely, if we have any solution of the SFT axioms, then the ratio

 $\frac{\mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2)_{i_1i_2}}{N_{\mathsf{L}}^{33}(z_1,z_2)}$

is a solution of ordinary L-independent form factor axioms

The kinematical $AdS_5 \times S^5$ Neumann coefficient

$$\mathbf{N}_{\mathbf{L}}^{33}(z_1, z_2)_{i_1 i_2} = \mathbf{F}(z_1, z_2)_{i_1, i_2} \cdot N_{\mathbf{L}}^{33}(z_2, z_1)$$

It satisfies a set of scalar equations:

$$\begin{array}{lcl} \mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2) &=& \mathsf{N}_{\mathsf{L}}^{33}(z_2,z_1) \\ \mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2) &=& e^{-ip(z_1)\mathsf{L}}\mathsf{N}_{\mathsf{L}}^{33}(z_2,z_1-\tau) \\ \mathrm{res}_{z'=z}\,\mathsf{N}_{\mathsf{L}}^{33}(z'+\tau/2,z) &=& \left(1-e^{ip(z)\mathsf{L}}\right) \end{array}$$

▶ N_L³³(z₂, z₁) incorporates all L dependence (all wrapping corrections w.r.t. string #1) at any coupling

Conversely, if we have any solution of the SFT axioms, then the ratio

 $\frac{\mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2)_{i_1i_2}}{N_{\mathsf{L}}^{33}(z_1,z_2)}$

is a solution of ordinary L-independent form factor axioms

The kinematical $AdS_5 \times S^5$ Neumann coefficient

$$\mathbf{N}_{\mathbf{L}}^{33}(z_1, z_2)_{i_1 i_2} = \mathbf{F}(z_1, z_2)_{i_1, i_2} \cdot N_{\mathbf{L}}^{33}(z_2, z_1)$$

It satisfies a set of scalar equations:

$$\begin{array}{lll} \mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2) &=& \mathsf{N}_{\mathsf{L}}^{33}(z_2,z_1) \\ \mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2) &=& e^{-ip(z_1)\mathsf{L}}\mathsf{N}_{\mathsf{L}}^{33}(z_2,z_1-\tau) \\ \mathsf{res}_{z'=z}\,\mathsf{N}_{\mathsf{L}}^{33}(z'+\tau/2,z) &=& \left(1-e^{ip(z)\mathsf{L}}\right) \end{array}$$

▶ N³³_L(z₂, z₁) incorporates all L dependence (all wrapping corrections w.r.t. string #1) at any coupling

Conversely, if we have any solution of the SFT axioms, then the ratio

 $\frac{\mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2)_{i_1i_2}}{N_{\mathsf{L}}^{33}(z_1,z_2)}$

is a solution of ordinary L-independent form factor axioms
$$\mathbf{N}_{\mathbf{L}}^{33}(z_1, z_2)_{i_1 i_2} = \mathbf{F}(z_1, z_2)_{i_1, i_2} \cdot N_{\mathbf{L}}^{33}(z_2, z_1)$$

It satisfies a set of scalar equations:

$$N_{L}^{33}(z_{1}, z_{2}) = N_{L}^{33}(z_{2}, z_{1})$$

$$N_{L}^{33}(z_{1}, z_{2}) = e^{-ip(z_{1})L}N_{L}^{33}(z_{2}, z_{1} - \tau)$$

$$\operatorname{res}_{z'=z} N_{L}^{33}(z' + \tau/2, z) = \left(1 - e^{ip(z)L}\right)$$

- ▶ N³³_L(z₂, z₁) incorporates all L dependence (all wrapping corrections w.r.t. string #1) at any coupling
- Conversely, if we have any solution of the SFT axioms, then the ratio

 $\frac{\mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2)_{i_1i_2}}{N_{\mathsf{L}}^{33}(z_1,z_2)}$

is a solution of ordinary L-independent form factor axioms

$$\mathbf{N}_{\mathbf{L}}^{33}(z_1, z_2)_{i_1 i_2} = \mathbf{F}(z_1, z_2)_{i_1, i_2} \cdot N_{\mathbf{L}}^{33}(z_2, z_1)$$

It satisfies a set of scalar equations:

$$\begin{array}{lcl} \mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2) &=& \mathsf{N}_{\mathsf{L}}^{33}(z_2,z_1) \\ \mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2) &=& e^{-ip(z_1)\mathsf{L}}\mathsf{N}_{\mathsf{L}}^{33}(z_2,z_1-\tau) \\ \mathrm{res}_{z'=z}\,\mathsf{N}_{\mathsf{L}}^{33}(z'+\tau/2,z) &=& \left(1-e^{ip(z)\mathsf{L}}\right) \end{array}$$

- ▶ N³³_L(z₂, z₁) incorporates all L dependence (all wrapping corrections w.r.t. string #1) at any coupling
- Conversely, if we have any solution of the SFT axioms, then the ratio

$$\frac{\mathsf{N}_{\mathsf{L}}^{33}(z_1,z_2)_{i_1i_2}}{N_{\mathsf{L}}^{33}(z_1,z_2)}$$

is a solution of ordinary L-independent form factor axioms

We will solve the equations following the general structure of the pp-wave answer:

$$N^{33}(\theta_1, \theta_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + \tanh\frac{\theta_1}{2} \tanh\frac{\theta_2}{2}}{M\cosh\theta_1 + M\cosh\theta_2}}_{P(\theta_1, \theta_2)} n(\theta_1) n(\theta_2)$$

- ► The denominator generalizes directly to the AdS case however it in addition to the kinematical singularity pole at θ₁ = θ₂ + iπ, it has another pole at θ₁ = −θ₂ + iπ
- The tanh $\frac{\theta_i}{2}$ factors in the numerator exactly cancel the unwanted pole
- Use the following ansatz in the general $AdS_5 \times S^5$ case...

$$N_{\rm L}^{33}(z_1, z_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + f(z_1)f(z_2)}{E(z_1) + E(z_2)}}_{P(z_1, z_2)} n(z_1)n(z_2)$$

We will solve the equations following the general structure of the pp-wave answer:

$$N^{33}(\theta_1,\theta_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + \tanh\frac{\theta_1}{2} \tanh\frac{\theta_2}{2}}{M\cosh\theta_1 + M\cosh\theta_2}}_{P(\theta_1,\theta_2)} n(\theta_1)n(\theta_2)$$

- The denominator generalizes directly to the AdS case however it in addition to the kinematical singularity pole at θ₁ = θ₂ + iπ, it has another pole at θ₁ = -θ₂ + iπ
- The tanh $\frac{\theta_i}{2}$ factors in the numerator exactly cancel the unwanted pole
- Use the following ansatz in the general $AdS_5 \times S^5$ case...

$$N_{\rm L}^{33}(z_1, z_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + f(z_1)f(z_2)}{E(z_1) + E(z_2)}}_{P(z_1, z_2)} n(z_1)n(z_2)$$

We will solve the equations following the general structure of the pp-wave answer:

$$N^{33}(\theta_1,\theta_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + \tanh\frac{\theta_1}{2} \tanh\frac{\theta_2}{2}}{M\cosh\theta_1 + M\cosh\theta_2}}_{P(\theta_1,\theta_2)} n(\theta_1)n(\theta_2)$$

- ► The denominator generalizes directly to the AdS case however it in addition to the kinematical singularity pole at θ₁ = θ₂ + iπ, it has another pole at θ₁ = −θ₂ + iπ
- The tanh $\frac{\theta_i}{2}$ factors in the numerator exactly cancel the unwanted pole
- Use the following ansatz in the general $AdS_5 \times S^5$ case...

$$N_{\rm L}^{33}(z_1, z_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + f(z_1)f(z_2)}{E(z_1) + E(z_2)}}_{P(z_1, z_2)} n(z_1)n(z_2)$$

We will solve the equations following the general structure of the pp-wave answer:

$$N^{33}(\theta_1,\theta_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + \tanh\frac{\theta_1}{2} \tanh\frac{\theta_2}{2}}{M\cosh\theta_1 + M\cosh\theta_2}}_{P(\theta_1,\theta_2)} n(\theta_1)n(\theta_2)$$

- ► The denominator generalizes directly to the AdS case however it in addition to the kinematical singularity pole at θ₁ = θ₂ + iπ, it has another pole at θ₁ = −θ₂ + iπ
- The tanh $\frac{\theta_i}{2}$ factors in the numerator exactly cancel the unwanted pole

• Use the following ansatz in the general $AdS_5 \times S^5$ case...

$$N_{\rm L}^{33}(z_1, z_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + f(z_1)f(z_2)}{E(z_1) + E(z_2)}}_{P(z_1, z_2)} n(z_1)n(z_2)$$

We will solve the equations following the general structure of the pp-wave answer:

$$N^{33}(\theta_1,\theta_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + \tanh\frac{\theta_1}{2} \tanh\frac{\theta_2}{2}}{M\cosh\theta_1 + M\cosh\theta_2}}_{P(\theta_1,\theta_2)} n(\theta_1)n(\theta_2)$$

- ► The denominator generalizes directly to the AdS case however it in addition to the kinematical singularity pole at θ₁ = θ₂ + iπ, it has another pole at θ₁ = −θ₂ + iπ
- The tanh $\frac{\theta_i}{2}$ factors in the numerator exactly cancel the unwanted pole
- Use the following ansatz in the general $AdS_5 \times S^5$ case...

$$N_{\rm L}^{33}(z_1, z_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + f(z_1)f(z_2)}{E(z_1) + E(z_2)}}_{P(z_1, z_2)} n(z_1)n(z_2)$$

We will solve the equations following the general structure of the pp-wave answer:

$$N^{33}(\theta_1,\theta_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + \tanh\frac{\theta_1}{2} \tanh\frac{\theta_2}{2}}{M\cosh\theta_1 + M\cosh\theta_2}}_{P(\theta_1,\theta_2)} n(\theta_1)n(\theta_2)$$

- ► The denominator generalizes directly to the AdS case however it in addition to the kinematical singularity pole at θ₁ = θ₂ + iπ, it has another pole at θ₁ = −θ₂ + iπ
- The tanh $\frac{\theta_i}{2}$ factors in the numerator exactly cancel the unwanted pole
- Use the following ansatz in the general $AdS_5 \times S^5$ case...

$$N_{\rm L}^{33}(z_1, z_2) = \frac{2\pi^2}{L} \cdot \underbrace{\frac{1 + f(z_1)f(z_2)}{E(z_1) + E(z_2)}}_{P(z_1, z_2)} n(z_1)n(z_2)$$

$$N_{L}^{33}(z_{1}, z_{2}) = \frac{2\pi^{2}}{L} \cdot \underbrace{\frac{1 + f(z_{1})f(z_{2})}{E(z_{1}) + E(z_{2})}}_{P(z_{1}, z_{2})} n(z_{1})n(z_{2})$$

• f(z) should satisfy

$$f(-z) = -f(z)$$
 $f(z + \tau/2) = \frac{1}{f(z)}$

Such a f(z) can be constructed using *q*-theta functions $\theta_0(z)$:

$$f(z) = C \frac{\theta_0(z) \theta_0\left(z - \frac{1}{2}\right)}{\theta_0\left(z - \frac{\tau}{2}\right) \theta_0\left(z - \frac{1}{2} + \frac{\tau}{2}\right)}$$

$$N_{L}^{33}(z_{1}, z_{2}) = \frac{2\pi^{2}}{L} \cdot \underbrace{\frac{1 + f(z_{1})f(z_{2})}{E(z_{1}) + E(z_{2})}}_{P(z_{1}, z_{2})} n(z_{1})n(z_{2})$$

► *f*(*z*) should satisfy

$$f(-z) = -f(z)$$
 $f(z + \tau/2) = \frac{1}{f(z)}$

Such a f(z) can be constructed using *q*-theta functions $\theta_0(z)$:

$$f(z) = C \frac{\theta_0(z) \theta_0\left(z - \frac{1}{2}\right)}{\theta_0\left(z - \frac{\tau}{2}\right) \theta_0\left(z - \frac{1}{2} + \frac{\tau}{2}\right)}$$

$$N_{L}^{33}(z_{1}, z_{2}) = \frac{2\pi^{2}}{L} \cdot \underbrace{\frac{1 + f(z_{1})f(z_{2})}{E(z_{1}) + E(z_{2})}}_{P(z_{1}, z_{2})} n(z_{1})n(z_{2})$$

► *f*(*z*) should satisfy

$$f(-z) = -f(z)$$
 $f(z + \tau/2) = \frac{1}{f(z)}$

Such a f(z) can be constructed using *q*-theta functions $\theta_0(z)$:

$$f(z) = C \frac{\theta_0(z) \theta_0\left(z - \frac{1}{2}\right)}{\theta_0\left(z - \frac{\tau}{2}\right) \theta_0\left(z - \frac{1}{2} + \frac{\tau}{2}\right)}$$

• n(z) satisfies in particular

$$n(z)n(z+\tau/2)\propto\sinrac{pL}{2}$$

► This already implies a set of zeroes – we should distribute them on the real line we consider L = 2n

$$m(z) \propto \sqrt{rac{L}{2}} \prod_{k=1}^{n-1} rac{\sqrt{1+16g^2 \sin^2 rac{\pi k}{L}} - E(z)}{4g \sin rac{\pi k}{L}}$$

• n(z) also satisfies a monodromy property

$$n(z+\tau)=e^{-ip(z)L}n(z)$$

▶ This can be satisfied by a ratio of elliptic Gamma functions...

$$\Gamma_{ell}(z+\tau) = \theta_0(z)\Gamma_{ell}(z)$$

• n(z) satisfies in particular

$n(z)n(z+\tau/2)\propto\sin\frac{pL}{2}$

► This already implies a set of zeroes – we should distribute them on the real line we consider L = 2n

$$n(z) \propto \sqrt{\frac{L}{2}} \prod_{k=1}^{n-1} \frac{\sqrt{1 + 16g^2 \sin^2 \frac{\pi k}{L}} - E(z)}{4g \sin \frac{\pi k}{L}}$$

• n(z) also satisfies a monodromy property

$$n(z+\tau)=e^{-ip(z)L}n(z)$$

▶ This can be satisfied by a ratio of elliptic Gamma functions...

$$\Gamma_{ell}(z+\tau) = \theta_0(z)\Gamma_{ell}(z)$$

• n(z) satisfies in particular

$$n(z)n(z+\tau/2)\propto\sinrac{pL}{2}$$

► This already implies a set of zeroes – we should distribute them on the real line we consider L = 2n

$$n(z) \propto \sqrt{rac{L}{2}} \prod_{k=1}^{n-1} rac{\sqrt{1+16g^2 \sin^2 rac{\pi k}{L}} - E(z)}{4g \sin rac{\pi k}{L}}$$

• n(z) also satisfies a monodromy property

$$n(z+\tau)=e^{-ip(z)L}n(z)$$

▶ This can be satisfied by a ratio of elliptic Gamma functions...

$$\Gamma_{ell}(z+\tau) = \theta_0(z)\Gamma_{ell}(z)$$

• n(z) satisfies in particular

$$n(z)n(z+\tau/2)\propto\sinrac{pL}{2}$$

► This already implies a set of zeroes – we should distribute them on the real line we consider L = 2n

$$n(z) \propto \sqrt{rac{L}{2}} \prod_{k=1}^{n-1} rac{\sqrt{1+16g^2 \sin^2 rac{\pi k}{L}} - E(z)}{4g \sin rac{\pi k}{L}}$$

• n(z) also satisfies a monodromy property

 $n(z+\tau)=e^{-ip(z)L}n(z)$

▶ This can be satisfied by a ratio of elliptic Gamma functions...

 $\Gamma_{ell}(z+\tau) = \theta_0(z)\Gamma_{ell}(z)$

• n(z) satisfies in particular

$$n(z)n(z+\tau/2)\propto\sinrac{pL}{2}$$

► This already implies a set of zeroes – we should distribute them on the real line we consider L = 2n

$$n(z) \propto \sqrt{rac{L}{2}} \prod_{k=1}^{n-1} rac{\sqrt{1+16g^2 \sin^2 rac{\pi k}{L}} - E(z)}{4g \sin rac{\pi k}{L}}$$

• n(z) also satisfies a monodromy property

$$n(z+\tau)=e^{-ip(z)L}n(z)$$

> This can be satisfied by a ratio of elliptic Gamma functions...

$$\Gamma_{ell}(z+\tau) = \theta_0(z)\Gamma_{ell}(z)$$

• n(z) satisfies in particular

$$n(z)n(z+\tau/2)\propto\sinrac{pL}{2}$$

► This already implies a set of zeroes – we should distribute them on the real line we consider L = 2n

$$n(z) \propto \sqrt{rac{L}{2}} \prod_{k=1}^{n-1} rac{\sqrt{1+16g^2 \sin^2 rac{\pi k}{L}} - E(z)}{4g \sin rac{\pi k}{L}}$$

• n(z) also satisfies a monodromy property

$$n(z+\tau)=e^{-ip(z)L}n(z)$$

> This can be satisfied by a ratio of elliptic Gamma functions...

$$\Gamma_{ell}(z+\tau) = \theta_0(z)\Gamma_{ell}(z)$$

We performed a number of checks:

- 1. We verified that our formula has the correct pp-wave limit
- 2. The *L* dependence in the weak coupling limit agrees with spin chain calculations
- **3.** We observe 'vanishing of monodromy' in the asymptotic large *L* limit i.e. for any *L* we have

$$\lim_{\varepsilon \to 0^+} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = e^{-ip(z)L}$$

$$\lim_{\varepsilon \to 0^+} \lim_{L \to \infty} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = -1$$
(1)

We performed a number of checks:

- 1. We verified that our formula has the correct pp-wave limit
- 2. The *L* dependence in the weak coupling limit agrees with spin chain calculations
- **3.** We observe 'vanishing of monodromy' in the asymptotic large *L* limit i.e. for any *L* we have

$$\lim_{\varepsilon \to 0^+} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = e^{-ip(z)L}$$

$$\lim_{\varepsilon \to 0^+} \lim_{L \to \infty} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = -1$$
(1)

We performed a number of checks:

- 1. We verified that our formula has the correct pp-wave limit
- 2. The *L* dependence in the weak coupling limit agrees with spin chain calculations
- **3.** We observe 'vanishing of monodromy' in the asymptotic large *L* limit i.e. for any *L* we have

$$\lim_{\varepsilon \to 0^+} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = e^{-ip(z)L}$$

$$\lim_{\varepsilon \to 0^+} \lim_{L \to \infty} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = -1$$
(1)

We performed a number of checks:

- 1. We verified that our formula has the correct pp-wave limit
- 2. The *L* dependence in the weak coupling limit agrees with spin chain calculations
- **3.** We observe 'vanishing of monodromy' in the asymptotic large *L* limit i.e. for any *L* we have

$$\lim_{\varepsilon \to 0^+} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = e^{-ip(z)L}$$

$$\lim_{\varepsilon \to 0^+} \lim_{L \to \infty} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = -1$$
(1)

We performed a number of checks:

- 1. We verified that our formula has the correct pp-wave limit
- 2. The *L* dependence in the weak coupling limit agrees with spin chain calculations
- **3.** We observe 'vanishing of monodromy' in the asymptotic large *L* limit i.e. for any *L* we have

$$\lim_{\varepsilon \to 0^+} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = e^{-ip(z)L}$$

$$\lim_{\varepsilon \to 0^+} \lim_{L \to \infty} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = -1$$
(1)

We performed a number of checks:

- 1. We verified that our formula has the correct pp-wave limit
- 2. The *L* dependence in the weak coupling limit agrees with spin chain calculations
- **3.** We observe 'vanishing of monodromy' in the asymptotic large *L* limit i.e. for any *L* we have

$$\lim_{\varepsilon \to 0^+} \frac{n(z+\tau-i\varepsilon)}{n(z+i\varepsilon)} = e^{-ip(z)L}$$

$$\lim_{\varepsilon \to 0^+} \lim_{L \to \infty} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = -1$$
(1)

We performed a number of checks:

- 1. We verified that our formula has the correct pp-wave limit
- 2. The *L* dependence in the weak coupling limit agrees with spin chain calculations
- **3.** We observe 'vanishing of monodromy' in the asymptotic large *L* limit i.e. for any *L* we have

$$\lim_{\varepsilon \to 0^+} \frac{n(z+\tau-i\varepsilon)}{n(z+i\varepsilon)} = e^{-ip(z)L}$$

$$\lim_{\varepsilon \to 0^+} \lim_{L \to \infty} \frac{n(z + \tau - i\varepsilon)}{n(z + i\varepsilon)} = -1$$
(1)

- ▶ We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is **integrable**
- ► This approach should work in particular for strings in the full AdS₅ × S⁵ geometry
- ► A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- ▶ We solved for the 'kinematical' part of the AdS₅ × S⁵ Neumann coefficient describing exact volume dependence (for even L) at any coupling may describe all order wrapping w.r.t. one string
- ▶ Solve the form factor equations to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- ► This approach should work in particular for strings in the full AdS₅ × S⁵ geometry
- ► A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- ▶ We solved for the 'kinematical' part of the AdS₅ × S⁵ Neumann coefficient describing exact volume dependence (for even L) at any coupling may describe all order wrapping w.r.t. one string
- ▶ Solve the form factor equations to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- ► This approach should work in particular for strings in the full AdS₅ × S⁵ geometry
- ► A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- ▶ We solved for the 'kinematical' part of the AdS₅ × S⁵ Neumann coefficient describing exact volume dependence (for even L) at any coupling – may describe all order wrapping w.r.t. one string
- ▶ Solve the form factor equations to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- ► This approach should work in particular for strings in the full AdS₅ × S⁵ geometry
- ► A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- ▶ We solved for the 'kinematical' part of the AdS₅ × S⁵ Neumann coefficient describing exact volume dependence (for even L) at any coupling – may describe all order wrapping w.r.t. one string
- ▶ Solve the form factor equations to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- ► This approach should work in particular for strings in the full AdS₅ × S⁵ geometry
- ► A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- ▶ We solved for the 'kinematical' part of the AdS₅ × S⁵ Neumann coefficient describing exact volume dependence (for even L) at any coupling may describe all order wrapping w.r.t. one string
- ▶ Solve the form factor equations to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- ► This approach should work in particular for strings in the full AdS₅ × S⁵ geometry
- ► A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- ▶ We solved for the 'kinematical' part of the AdS₅ × S⁵ Neumann coefficient describing exact volume dependence (for even L) at any coupling may describe all order wrapping w.r.t. one string
- ▶ Solve the form factor equations to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- ► This approach should work in particular for strings in the full AdS₅ × S⁵ geometry
- ► A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- ► We solved for the 'kinematical' part of the AdS₅ × S⁵ Neumann coefficient describing exact volume dependence (for even L) at any coupling may describe all order wrapping w.r.t. one string
- ▶ Solve the form factor equations to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- ► This approach should work in particular for strings in the full AdS₅ × S⁵ geometry
- ► A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- ► We solved for the 'kinematical' part of the AdS₅ × S⁵ Neumann coefficient describing exact volume dependence (for even L) at any coupling may describe all order wrapping w.r.t. one string
- Solve the form factor equations to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira

- We propose a framework for formulating functional equations for string interactions (light cone string field theory vertex) when the worldsheet theory is integrable
- ► This approach should work in particular for strings in the full AdS₅ × S⁵ geometry
- ► A key step is the existence of an infinite volume setup, which allows for formulating functional equations incorporating e.g. crossing
- We reproduced pp-wave string field theory formulas for the Neumann coefficients
- ► We solved for the 'kinematical' part of the AdS₅ × S⁵ Neumann coefficient describing exact volume dependence (for even L) at any coupling may describe all order wrapping w.r.t. one string
- ▶ Solve the form factor equations to obtain the matrix part...
- Understand links with the subsequent 'hexagon' approach of Basso, Komatsu, Vieira