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Study N = 4 Super-Yang-Mills theory — a 4D gauge theory which is a
conformal theory...

Key questions:

I Find the spectrum of conformal weights
≡ eigenvalues of the dilatation operator
≡ (anomalous) dimensions of operators

〈O(0)O(x)〉 =
1
|x |2∆

The dimensions are complicated functions of the coupling:

∆ = ∆0(λ)︸ ︷︷ ︸
planar

+
1

N2
c

∆1(λ) + . . .︸ ︷︷ ︸
nonplanar

where λ ≡ g 2
YMNc

I Find the OPE coefficients Cijk defined through

〈Oi (x1)Oj(x2)Ok(x3)〉 =
Cijk

|x1 − x2|∆i+∆j−∆k |x1 − x3|∆i+∆k−∆j |x2 − x3|∆j+∆k−∆i

I Once ∆i and Cijk are known, all higher point correlation functions
are, in principle, determined explicitly.
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The AdS/CFT correspondence

N = 4 Super Yang-Mills theory ≡ Superstrings on AdS5 × S5

The AdS/CFT dictionary

Operators in N = 4 SYM ←→ (quantized) string states in AdS5 × S5

Single trace operators ←→ single string states

Multitrace operators ←→ multistring states

Large Nc limit ←→ suffices to consider single string states

Operator dimension ←→ Energy of a string state in AdS5 × S5

Nonplanar corrections ∼ string interactions

OPE coefficients ∼ string interactions
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How to describe strings in AdS5 × S5?

I Consider a closed string in AdS5 × S5:

I The embedding coordinates of the point (τ, σ) are quantum fields
Xµ(τ, σ) on the worldsheet which has the geometry of a cylinder

I String theory in AdS5 × S5 ≡ a specific two dimensional quantum
field theory defined on a cylinder (worldsheet QFT) with the
Lagrangian induced by the geometry of AdS5 × S5

I Due to the curved geometry of AdS5 × S5 this 2D worldsheet theory
is interacting (and very complicated...)
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Back to the main questions again...

1. Anomalous dimensions in the planar limit:

≡ energy levels of a single string in AdS5 × S5

≡ energy levels of a specific 2D QFT on a cylinder

2. Nonplanar corrections to the dilatation operator or OPE
coefficeints:

≡ string interactions
≡ the specific 2D QFT on a string ‘pants’ topology:

This is the string field theory vertex ← focus of this talk
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Integrability?

I Typically interacting QFT’s can only be studied via perturbation
theory...

difficult and practically hopeless to get exact answers...

I There exists a subclass of interacting (massive) two-dimensional
QFT’s which are integrable — exhibit additional conserved quantities

I Many quantities for these theories can be determined exactly
without recourse to perturbation theory

I This typically involves solving functional equations of some sort...
I The worldsheet QFT of the string in AdS5 × S5 is an integrable

QFT! (but of a highly nonstandard type..)

Aim: Develop integrable techniques for the string ’pants’ topology
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Motivation

I We have a very good understanding of
the spectrum of a string on AdS5 × S5

I This is due to the integrability of the
worldsheet theory

Key question:

I How to describe string interactions for
a generic integrable worldsheet theory

I Previously we knew how to proceed only
for a free worldsheet theory

I massless free bosons and fermions in
the case of flat spacetime

I massive free bosons and fermions in
the case of pp-wave background
geometry

Disclaimer: Here we only consider light-cone String Field Theory
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Motivation

As mentioned before all this has direct AdS/CFT motivation...

Energy levels of a single string ≡ Anomalous dimensions

String interactions −→
OPE coefficients

1/Nc corrections?
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Our approach

Look for guidance from the case of two known problems:

1. Integrable bootstrap for the spectal problem...

2. Integrable bootstrap for form factors...
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How to solve the spectral problem?

I) solve the theory on an infinite plane

1. Particle momenta are completely
unconstrained!

2. We may perform analytic continuation
into the complex plane (of appropriate
rapidities)

3. We get crossing equation

4. This together with unitarity...

5. ... and symmetry + Yang-Baxter
equation

6. determines analytically the S-matrix

Works equally for relativistic and AdS5 × S5 case...
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How to solve the spectral problem?

II) solve the theory on a (large!) cylinder

1. Bethe Ansatz Quantization

e ipkL
∏
l 6=k

S(pk , pl) = 1

2. Get the energies from

E =
∑
k

E (pk) =
∑
k

√
1 +

λ

π2 sin2 pk
2

This gives the spectrum up to wrapping corrections...

relativistic ∼ e−mL weak coupling ∼ λL strong coupling ∼ e−
2πL√

λ
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How to solve the spectral problem?

III) Include leading wrapping corrections...

— generalized Lüscher formulas

IV) Resum all wrapping corrections

— Thermodynamic Bethe Ansatz
−→ Quantum Spectral Curve

Comments
I The basic steps follow the strategy used for solving ordinary

relativistic integrable quantum field theories...
(despite numerous subtleties and novel features)

I Key role of the infinite plane −→ only there do we have
crossing+analyticity which allows for solving for the S-matrix
(functional equations for the S-matrix)

I Up to wrapping corrections, the finite volume spectrum follows very
easily
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— generalized Lüscher formulas

IV) Resum all wrapping corrections

— Thermodynamic Bethe Ansatz
−→ Quantum Spectral Curve

Comments
I The basic steps follow the strategy used for solving ordinary

relativistic integrable quantum field theories...
(despite numerous subtleties and novel features)

I Key role of the infinite plane −→ only there do we have
crossing+analyticity which allows for solving for the S-matrix
(functional equations for the S-matrix)

I Up to wrapping corrections, the finite volume spectrum follows very
easily

14 / 41



How to solve the spectral problem?

III) Include leading wrapping corrections...

— generalized Lüscher formulas
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Proceed to form factors...
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Form factors

I Form factors are expectation values of a local operator sandwiched
between specific multiparticle in and out states pk = m sinh θ

I Form factors in infinite volume (on an infinite plane) satisfy a definite
set of functional equations 〈∅|O (0) |θ1, . . . , θn〉 ≡ f (θ1, . . . , θn)

f (θ1, θ2) = S(θ1, θ2) f (θ2, θ1)

f (θ1, θ2) = f (θ2, θ1 − 2πi)

−i resθ′=θ fn+2(θ′, θ + iπ, θ1, . . . , θn) = (1−
∏
i

S(θ, θi )) fn(θ1, . . . , θn)

I Solutions explicitly known for numerous relativistic integrable QFT’s
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Form factors

Comments:

I The form factor axioms do not depend at all on the specific local
operator inserted...

I They have numerous solutions — for each local operator in the
theory...

Finite volume ≡ form factors on a cylinder

I Up to wrapping corrections (∼ e−mL), very simple way to pass to
finite volume (cylinder of circumference L): Pozsgay, Takacs

〈∅|O (0) |θ1, θ2〉L =
1√

ρ2 · S(θ1, θ2)
· f (θ1, θ2)

where θ1, θ2 satisfy Bethe ansatz quantization and ρ2 is essentially
the Gaudin norm

I Cylinder – initial and final sizes have to be the same...
I From the point of view of uniform light-cone gauge in AdS5 × S5

this means that J1 = J2
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Form factors – applications to AdS/CFT

Bajnok (Nordita talk); Klose, McLoughlin; Bajnok, RJ, Wereszczyński

I Relation to Heavy-Heavy-Light correlators:
Bajnok, RJ, Wereszczyński

figure from Zarembo 1008.1059

−→ CHHL ∼
∫
Moduli

∫
d2σ VL(X I (σ))

coincides exactly with a classical
computation of a ‘diagonal’ form factor

I Also seen at weak coupling!
Hollo, Jiang, Petrovsky

I Similarities with the String Field Theory vertex...
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Lessons from these examples:

1. The necessity of an infinite volume formulation in order to have
analyticity/crossing and other functional equations

2. Simple passage to finite volume neglecting wrapping..
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Proceed to the light cone String Field Theory vertex...

20 / 41



Light-cone String Field Theory Vertex

String Field Theory vertex describes the splitting/joining of 3 strings with
generic sizes J1 + J2 = J3

Comments:

1. The lengths here are directly the R-charges w.r.t. U(1)⊂SO(6)

(these are not spin-chain lengths)

2. They always have to add up by charge conservation

3. This does not mean that one only considers an extremal
configuration here!
– this setup encompasses any possible configuration of excitations...
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Our goal: Concentrate on defining the string field theory vertex for
a generic integrable worldsheet theory

22 / 41



Light-cone String Field Theory Vertex – the pp-wave

I pp-wave SFT vertex ≡ free massive boson φ (or fermion) on this
geometry

I impose continuity conditions for φ and Π ≡ ∂tφ
I φ expressed in terms of cos 2πn

Lr
and sin 2πn

Lr
modes...

looks like an inherently finite-volume computation...
I solution is surprisingly complicated...
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Light-cone String Field Theory Vertex – the pp-wave

I Continuity conditions yield linear relations between creation and
annihilation operators of the three strings:

I Implement these relations as operator equations acting on a state
|V 〉 ∈ H1 ⊗H2 ⊗H3 — the SFT vertex

I The state has the form

|V 〉 = (Prefactor) · exp

{
1
2

3∑
r ,s=1

∑
n,m

N rsnm a+(r)
n a+(s)

m

}
|0〉
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Light-cone String Field Theory Vertex – the pp-wave

|V 〉 = (Prefactor) · exp

{
1
2

3∑
r ,s=1

∑
n,m

N rsnm a+(r)
n a+(s)

m

}
|0〉

I The Neumann coefficient N rsnm has the interpretation of a SFT
amplitude/matrix element involving only 2 particles

I Obtaining the Neumann matrices is surprisingly nontrivial as it
involves inverting an infinite-dimensional matrix

He, Schwarz, Spradlin, Volovich
→ Lucietti, Schafer-Nameki, Sinha

I Exact expressions involve novel special functions Γµ(z)
Lucietti, Schafer-Nameki, Sinha

Γµ(z) =
e−γ
√
z2+µ2

z
·
∞∏
n=1

n√
n2 + µ2 +

√
z2 + µ2

e
√
z2+µ2

n
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Light-cone String Field Theory Vertex – the pp-wave

I In the pp-wave times, people used simplified expressions for N rsnm
neglecting exponential e−µαr terms αr = Lr/L3

(these are exactly wrapping terms e−MLr !!)
I Going to an exponential basis (BMN basis) one got in this limit

N rsmn =

[√
(ωrm + µαr )(ωsn + µαs)

ωrm + ωsn
−
√

(ωrm − µαr )(ωsn − µαs)
ωrm + ωsn

]
·(simple)

I Instead of integer mode numbers use rapidities... pk=M sinh θk

N33(θ1, θ2) =
−1

cosh θ1−θ2
2

· sin
p1L1

2
sin

p2L1

2

I The integer mode numbers (characteristic of finite volume) are
completely inessential – they only obscure a simple underlying
structure

I Pole at θ1 = θ2 + iπ (position of kinematical singularity as for form
factors!) −→ there should be some underlying axioms...

I Still some surprising features — the sin pkL1
2 factors
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N33(θ1, θ2) =
−1

cosh θ1−θ2
2

· sin
p1L1

2
sin

p2L1

2

I The integer mode numbers (characteristic of finite volume) are
completely inessential – they only obscure a simple underlying
structure

I Pole at θ1 = θ2 + iπ (position of kinematical singularity as for form
factors!) −→ there should be some underlying axioms...

I Still some surprising features — the sin pkL1
2 factors
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The language of mode expansions and enforcing continuity does
not generalize for interacting integrable QFT’s...

Questions:

1. How to formulate an infinite volume version of the string
vertex?

2. Can we propose functional equations for the Neumann
coefficients (more generally amplitudes with various numbers of
particles in each string)?
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Step I) The decompactified string vertex

I String #1 still remains of finite size (denoted by L) — which can be
arbitrary — large or even very small

I The emission of string #1 can be understood as an insertion of
some macroscopic (not completely local) operator...

I Looks like some kind of generalized form factor with ingoing
particles in string #3 and outgoing ones in string #2

I Key new feature: string #1 ‘eats up volume’ −→ the operator
should have a e−ipL branch cut defect...

Formulate functional equations...
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Step I) The decompactified string vertex

Functional equations for the (decompactified) string vertex
written here for two incoming particles and, for the moment, free theory

I The exact pp-wave solution, involving the Γµ(θ) special function
solves these equations and can be reconstructed from them!

n(θ)n(θ + iπ) = − 1
2π2 ML sinh θ sin

p(θ)L
2

I This includes all exponential wrapping corrections e−µα1 = e−ML

for the #1 string
I Straightforward generalization of the axioms to an interacting

integrable QFT
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Step I) The decompactified string vertex

Analyticity conditions

I We have to supplant the functional equations with some analyticity
conditions

I We consider the simplest case of the Neumann coefficient
N33(θ1, θ2) (more precisely the SFT amplitude with two incoming
particles and vacuum on the remaining strings)

I By examining the pp-wave case we deduced the following condition:

• The Neumann coefficient N33(θ1, θ2) should have zeroes on the
real axis and not on the ‘crossing line’ Im θ = π

I In addition we found that in a certain sense, in the large L limit, the
monodromy under θ → θ + 2πi should be killed
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Step II) The string vertex — back to finite volume

We considered so far the ‘decompactified string vertex’...

but ultimately we are interested in the finite volume one...

Use the same prescription
(Pozsgay-Takacs) as for
form factors...

This means that we neglect
exponential corrections for strings
#2 and #3 but keep all size
dependence of string #1...
(i.e. infinite set of wrapping
corrections)
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What happens in AdS5 × S5?

Novel kinematics

I Complex rapidities are defined on a covering of an elliptic curve
I The momentum p is not a well defined function
I Only e ip is a well defined elliptic function
I The phase factors e ip L make sense directly only for integer L

which is nice from the point of view of N = 4 SYM...

Complicated dynamics

I The S-matrix does not depend on the difference of rapidities
I The S-matrix is nondiagonal which drastically complicates solving

form factor axioms (which are a special case of our SFT axioms)

We would like to separate the two problems...
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The AdS5 × S5 elliptic curve

I Excitations of the string in AdS5 × S5 have a nonstandard dispersion
relation

E =

√
1 + 16g 2 sin2 p

2
where g 2 =

λ

16π2 ≡
g 2
YMNc
16π2

I This can be uniformized through elliptic functions
I The natural space for rapidities is the covering space of an elliptic

curve – the complex plane RJ

I z → z + 1 is the novel periodicity, while z → z + τ/2 is the AdS
analog of the crossing transformation in relativistic theories

I e−ip is an elliptic function

e−ip = q
1
2 ·
θ0
(
z − 1

2 + τ
4

)
θ0
(
z − 1

2 −
3τ
4

)
θ2

0

(
z − 1

2 −
τ
4

)
hence e−ip L makes sense directly only for integer L
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I e−ip is an elliptic function

e−ip = q
1
2 ·
θ0
(
z − 1

2 + τ
4

)
θ0
(
z − 1

2 −
3τ
4

)
θ2

0

(
z − 1

2 −
τ
4

)
hence e−ip L makes sense directly only for integer L
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The AdS5 × S5 Neumann coefficient

I Consider arguably the simplest SFT amplitude with two particles on
the incoming string #3 and vacua on the outgoing strings..

we will call it still as Neumann coefficient

I This corresponds to the N33
nm pp-wave Neumann coefficient

(N33(z1, z2) in our notation)
I More precisely one should write N33(z1, z2)ij where i , j are

polarizations
I In the case of pp-wave this is trivial as N33(z1, z2)ij ∝ δijN33(z1, z2)

Question: What is the N33(z1, z2)i1,i2 in AdS5 × S5?
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The AdS5 × S5 Neumann coefficient

I The equations satisfied by N33
L (z1, z2)i1,i2 are

N33
L (z1, z2)i1,i2 = Skli1i2 (z1, z2)N33

L (z2, z1)l,k

N33
L (z1, z2)i1,i2 = e−ip(z1)LN33

L (z2, z1 − τ)i2,i1

resz′=z N33
L (z ′ + τ/2, z )̄i,i =

(
1− e ip(z)L

)
I Suppose that we know a solution of 2-particle form factor equations

in AdS F(z1, z2)i1,i2 s.t.

F(z + τ/2, z)i1,i2 = δī1,i2

I Then we can solve the SFT vertex equations by

N33
L (z1, z2)i1i2 = F(z1, z2)i1,i2 · N33

L (z1, z2)

I We call N33
L (z2, z1) the kinematical AdS5 × S5 Neumann

coefficient...
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The kinematical AdS5 × S5 Neumann coefficient

N33
L (z1, z2)i1i2 = F(z1, z2)i1,i2 · N33

L (z2, z1)

I It satisfies a set of scalar equations:

N33
L (z1, z2) = N33

L (z2, z1)

N33
L (z1, z2) = e−ip(z1)LN33

L (z2, z1 − τ)

resz′=z N33
L (z ′ + τ/2, z) =

(
1− e ip(z)L

)
I N33

L (z2, z1) incorporates all L dependence (all wrapping corrections
w.r.t. string #1) at any coupling

I Conversely, if we have any solution of the SFT axioms, then the ratio

N33
L (z1, z2)i1i2

N33
L (z1, z2)

is a solution of ordinary L-independent form factor axioms
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The kinematical AdS5 × S5 Neumann coefficient

I We will solve the equations following the general structure of the
pp-wave answer:

N33(θ1, θ2) =
2π2

L
·

1 + tanh θ1
2 tanh θ2

2

M cosh θ1 + M cosh θ2︸ ︷︷ ︸
P(θ1,θ2)

n(θ1)n(θ2)

I The denominator generalizes directly to the AdS case – however it
in addition to the kinematical singularity pole at θ1 = θ2 + iπ, it has
another pole at θ1 = −θ2 + iπ

I The tanh θi
2 factors in the numerator exactly cancel the unwanted

pole
I Use the following ansatz in the general AdS5 × S5 case...

N33
L (z1, z2) =

2π2

L
· 1 + f (z1)f (z2)

E (z1) + E (z2)︸ ︷︷ ︸
P(z1,z2)

n(z1)n(z2)

I Pick f (z) to cancel the unwanted pole at z1 = −z2 + τ/2
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I f (z) should satisfy

f (−z) = −f (z) f (z + τ/2) =
1

f (z)

I Such a f (z) can be constructed using q-theta functions θ0(z):

f (z) = C
θ0 (z) θ0

(
z − 1

2

)
θ0
(
z − τ

2

)
θ0
(
z − 1

2 + τ
2

)
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I f (z) should satisfy

f (−z) = −f (z) f (z + τ/2) =
1

f (z)

I Such a f (z) can be constructed using q-theta functions θ0(z):

f (z) = C
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The kinematical AdS5 × S5 Neumann coefficient — the n(z) part
I n(z) satisfies in particular

n(z)n(z + τ/2) ∝ sin
pL
2

I This already implies a set of zeroes – we should distribute them on
the real line we consider L = 2n

n(z) ∝
√

L
2

n−1∏
k=1

√
1 + 16g 2 sin2 πk

L − E (z)

4g sin πk
L

I n(z) also satisfies a monodromy property

n(z + τ) = e−ip(z)Ln(z)

I This can be satisfied by a ratio of elliptic Gamma functions...

Γell(z + τ) = θ0(z)Γell(z)

I The complete n(z) for even L is a essentially a product of these two
pieces
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The kinematical AdS5 × S5 Neumann coefficient

We performed a number of checks:

1. We verified that our formula has the correct pp-wave limit

2. The L dependence in the weak coupling limit agrees with spin chain
calculations

3. We observe ‘vanishing of monodromy’ in the asymptotic large L limit
i.e. for any L we have

lim
ε→0+

n(z + τ − iε)

n(z + iε)
= e−ip(z)L

but

lim
ε→0+

lim
L→∞

n(z + τ − iε)

n(z + iε)
= −1 (1)
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Conclusions & outlook

I We propose a framework for formulating functional equations for
string interactions (light cone string field theory vertex) when the
worldsheet theory is integrable

I This approach should work in particular for strings in the full
AdS5 × S5 geometry

I A key step is the existence of an infinite volume setup, which allows
for formulating functional equations incorporating e.g. crossing

I We reproduced pp-wave string field theory formulas for the
Neumann coefficients

I We solved for the ‘kinematical’ part of the AdS5 × S5 Neumann
coefficient describing exact volume dependence (for even L) at any
coupling – may describe all order wrapping w.r.t. one string

I Solve the form factor equations — to obtain the matrix part...
I Understand links with the subsequent ‘hexagon’ approach of Basso,

Komatsu, Vieira
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