

Study of double beta decay using ZnMoO₄ cryogenic scintillating bolometers and ¹¹⁶CdWO₄ crystal scintillators

Dmitry CHERNYAK

chernyak@kinr.kiev.ua http://lpd.kinr.kiev.ua

Institute for Nuclear Research NASU, Kyiv, Ukraine

Mozumi seminar, Kamioka, Japan, 2 March 2016

Outline

Introduction

Development of cryogenic low background detectors based on $Zn^{100}MoO_4$ crystal scintillators to search for $0\nu2\beta$ of ^{100}Mo

Search for double beta decay of ¹¹⁶Cd with enriched ¹¹⁶CdWO₄ crystal scintillators

Future plans

2β decay

Double beta decay (2β) is a rare nuclear transition which changes the nuclear charge by two units.

Two-neutrino double beta decay (2v2\beta) 2 β^- : $(A, Z) \rightarrow (A, Z + 2) + 2e^- + 2\bar{\nu}_e$

Allowed by the Standard Model, was observed for 11 isotopes:

Neutrinoless double beta decay $(0v2\beta)$ $2\beta^-$: $(A,Z) \rightarrow (A,Z+2) + 2e^-$ Process without emission of neutrino or antineutrino Forbidden by the Standard Model,

is not observed

Neutrino oscillations and $0v2\beta$ decay

Observation of $0v2\beta$:

- help to test leptogenesis
- prove the lepton number violation
- establish the Majorana nature of the neutrino
- help to determine neutrino mass hierarchy and estimate the effective Majorana mass of neutrino

Sensitivity of 2β experiments

- $\epsilon-\text{detection}$ efficiency
- $\delta-\text{abundance}$ of candidate nuclei in the detector
- m mass of detector
- t-time of measurements
- R energy resolution
- BG background

Most sensitive 2β decay experiments

Isotope	Experiment	$T_{1/2}^{2 u}$, years	$T_{1/2}^{0 u}$, years
4800	NEMO-3	$(4.4^{+0.5}_{-0.4}(\text{stat}) \pm 0.4(\text{syst})) \times 10^{19}$	$> 1.3 \times 10^{22}$
"°Ca	ELEGANT VI		$> 5.8 \times 10^{22}$
	IGEX	$(1.45 \pm 0.15) \times 10^{21}$	$\geq 1.57 \times 10^{25}$
7600	нм	$(1.74^{+0.18}_{-0.16}) \times 10^{21}$	$\geq 1.9 \times 10^{25}$
Ge			$= (2.23^{+0.44}_{-0.31}) \times 10^{25}$
	GERDA-I	$(1.84^{+0.14}_{-0.10}) \times 10^{21}$	$> 2.1 \times 10^{25}$
⁸² Se	NEMO-3	$(9.6 \pm 0.1(\text{stat}) \pm 1.0(\text{syst})) \times 10^{19}$	$> 3.6 \times 10^{23}$
⁹⁶ Zr	NEMO-3	(2.35 ± 0.14 (stat) ± 0.16 (syst)) × 10 ¹⁹	$> 9.2 \times 10^{21}$
¹⁰⁰ Mo	NEMO-3	(7.16 ± 0.01 (stat) ± 0.54 (syst)) × 10 ¹⁸	$> 1.1 \times 10^{24}$
11604	Solotvina	$(2.9^{+0.4}_{-0.3}) \times 10^{19}$	$> 1.7 \times 10^{23}$
	NEMO-3	(2.88 ± 0.04 (stat) ± 0.16 (syst)) × 10 ¹⁹ [79]	$> 1.6 \times 10^{22}$
130-	NEMO-3	$(7.0 \pm 0.9 \text{ (stat)} \pm 1.1 \text{ (syst)}) \times 10^{20}$	$> 1.0 \times 10^{23}$
130 16	CUORICINO		$\geq 2.8 \times 10^{24}$
¹³⁶ Xe	EXO-200	(2.165 ± 0.016 (stat) ± 0.059 (syst)) × 10 ²¹	$> 1.1 \times 10^{25}$
	KamLAND-Zen	$(2.38 \pm 0.02 \text{ (stat)} \pm 0.14 \text{ (syst)}) \times 10^{21}$	$> 1.9 \times 10^{25}$
¹⁵⁰ Nd	NEMO-3	$(9.11^{+0.25}_{-0.22}(\text{stat}) \pm 0.63(\text{syst})) \times 10^{18}$	$> 1.8 \times 10^{22}$

Claim for the observation of $0v2\beta$ decay in ⁷⁶Ge by a part of the Heidelberg-Moscow collaboration is strongly disfavored by GERDA result combined with data from HM and IGEX experiments: $T_{1/2}^{0\nu} > 3.0 \times 10^{25}$ (90% C.L.) [M. Agostini et al., Phys. Rev. Lett. 111 (2013) 122503]

Required sensitivity for the next-generation 2β experiments

Development of cryogenic low background detectors based on $Zn^{100}MoO_4$ crystal scintillators to search for $0v2\beta$ of ^{100}Mo

- Development of ZnMoO₄ cryogenic scintillating bolometers
- Monte Carlo simulation of ZnMoO₄ cryogenic scintillating bolometers
- Rejection of randomly coincident events in 0v2β decay experiments with ZnMoO₄ cryogenic bolometers

2β decay of ¹⁰⁰Mo

J.D.Vergados, H.Ejiri, F.Simkovic, Rep. Prog. Phys. 75 (2012) 106301

- Large transition energy : $Q_{2\beta} = 3034.4(17) \text{ keV}$
 - Considerable natural isotopic abundance δ = 9.82% and possibility of enrichment by centrifugation
 - Favorable theoretical estimations of the decay probability

Latest results for 2β decay of ¹⁰⁰Mo:

 $T_{1/2}^{2\nu}(2\nu 2\beta) = (7.16 \pm 0.54) \times 10^{18} \text{ y} [1, 2]$

 $T_{1/2}^{2\nu}(0^+ \rightarrow 0^+_1) = (6.9 \pm 0.7) \times 10^{20} \text{ y } 90\% \text{ C.L.} [3, 4]$

$T_{1/2}^{0\nu}$ > 1.1×10²⁴ y 90% C.L., $\langle m_{\nu} \rangle$ < (0.3–0.9) eV [5]

- [1] L. Simard (NEMO-3) J Phys. Conf. Proc. 375 (2012) 042011
- [2] L Cardani et al., J. Phys. G: Nucl. Part. Phys. 41 (2014) 075204
- [3] R.Arnold et al., Nuclear Physics A 925(2014) 25

[4] P. Belli et al., NPA 846 (2010) 143

[5] R. Arnold et al. (NEMO-3) Phys. Rev. D 89 (2014) 111101(R)

Cryogenic bolometers

⁽figure from presentation of Pierre de Marcillac)

ZnMoO₄ cryogenic scintillating bolometers

- High energy resolution (≈ 6-10 keV @ 2615 keV [1, 2])
- **High detection efficiency** (80–85)%
- Excellent α/β discrimination (10-20 sigma)
- High percentage of Mo (43% in weight)

[3] L. Gironi et al., JINST 5 (2010) 11007 11

DEVELOPMENT OF ZINC MOLYBDATE CRYOGENIC SCINTILLATING BOLOMETERS

Development of ZnMoO₄ crystals

2008

Czochralski (a) and Kyropoulos (b) methods (IGP, Moscow, Russia)

Ø 15 × 40 mm Ø 30 × 15 mm

2009

Czochralski technique (ISMA, Kharkiv, Ukraine)

Ø 25 × 50 mm

2010

Low-thermal-gradient Czochralski technique (NIIC, Novosibirsk, Russia)

Ø 25 × 60 mm

Advanced large volume ZnMoO₄ and Zn¹⁰⁰MoO₄ crystals

Zinc molybdate scintillating crystals were produced in Nikolaev Institute of Inorganic Chemistry by using **low-thermal-gradient Czochralski technique** and **two-stage molybdenum purification technique** (double sublimation with addition of zinc molybdate and recrystallization from aqueous solution of ammonium para-molybdate).

2013 ZnMoO₄ crystal boule ~ 1.5 kg

Zn¹⁰⁰MoO₄ crystals enriched in isotope ¹⁰⁰Mo to 99.5% were developed

High crystal yield (> 80%) and low irrecoverable loses of ¹⁰⁰Mo (< 4%)

Characterization of ZnMoO₄ crystals

Aboveground low-temperature measurements with precursor 313 g ZnMoO₄ crystal

ZnMoO₄ crystal

313 g

ZnMoO₄ scintillating bolometer

 (1) 313 g precursor ZnMoO₄ crystal
 (2) Cu holder of the detector
 (3) PTFE supporting elements
 (4) Two NTD thermistors
 (5) Two Co light detectors

(5) Two Ge light detectors

Centre de Sciences Nucléaires et de Sciences de la Matière (Orsay, France)

Data taking

16 bit ADC, 30 kHz sampling rate Pulse profile ≈ 2 s Working *T* was 17 mK FWHM = 24(2) keV at 2615 keV

The detector performance was deteriorated by the pile-up effects due to the high counting rate ≈ 2.5 Hz

Underground low-temperature test of precursor 313 g ZnMoO₄ crystal

EDELWEISS set-up, Laboratoire Souterrain de Modane (LSM, France)

Scintillating bolometers based on two advanced quality ZnMoO₄ crystals

First bolometric test of two enriched Zn¹⁰⁰MoO₄ crystal scintillators

The energy spectra were accumulated in **aboveground measurements** at CSNSM for over 18.3 h.

The detector was operated at 13.7 mK and irradiated by gamma quanta from low activity ²³²Th source.

Promising bolometric and scintillation characteristics

Main properties of the ZnMoO₄ and Zn¹⁰⁰MoO₄ cryogenic scintillating bolometers

Detector		FWHM, keV						
Crystal	Mass, g	Baseline	¹³³ Ba	²¹⁴ Bi	²⁰⁸ TI	²¹⁰ Po	keV/MeV	QF_{α}
			356 keV	609 keV	2615 keV	5407 keV		
ZnMoO ₄	313	1.4(1)	6.4(1)	6(1)*	24(2)*/9(2)	19(1)	0.77(11)*	0.15(2)*/0.14(1)
	336	1.5(2)	6(1)	_	_	29(4)	_	—
	334	1.06(3)	3.8(4)	_	10(1)	15(1)	_	0.19(2)
Zn ¹⁰⁰ MoO ₄	59.2	1.4(1)	_	5.0(5)*	11(3)*	—	1.01(11)*	≈ 0.15*
	62.9	1.8(1)	_	10(1)*	15(3)*	_	0.93(11)*	≈ 0.15*

* — aboveground measurements

The low-temperature tests of the zinc molybdate crystals (produced from natural and enriched molybdenum) demonstrated high performance of the detectors

Radioactive contamination of zinc molybdate crystals

	Activity, μBq/kg				
Nuclido	LUMINEU crystal Precursor crystals				
Nuchae	334 g	313 g	329 g		
	2216 h	803 h	524 h		
²³² Th	≤ 2.3	≤ 5.5	≤ 8		
²²⁸ Th	≤ 5.3	12 ± 4	≤ 6		
²³⁸ U	≤ 1.8	8 ± 3	≤ 6		
²³⁴ U	≤ 2.5	≤ 8.1	≤ 11		
²³⁰ Th	≤ 1.8	≤ 8.4	≤ 6		
²²⁶ Ra	≤ 4.8	22 ± 5	27 ± 6		
²¹⁰ Po	1271 ± 22	703 ± 28	700 ± 30		
Unidentified		124 + 12			
(on surface)		⊥⊃4 ⊥ ⊥∠ 			

E.Armengaud et al., JINST 10 (2015) P05007

The radioactive contamination of the advanced ZnMoO₄ crystals by ²²⁸Th and ²²⁶Ra is on the level of ≤ 0.005 mBq/kg thanks to the developed methods of molybdenum deep purification and improved crystallization technique

MONTE CARLO SIMULATION OF ZINC MOLYBDATE CRYOGENIC SCINTILLATING BOLOMETERS

Simulation of the light collection from ZnMoO₄ crystal scintillators

We simulated the collection of scintillation photons in ZnMoO₄ cryogenic scintillating bolometers in different geometry using GEANT4 package:

- Three shapes of the ZnMoO₄ crystal: cylinder, hexagonal prism, octagonal prism
- Two sizes of $ZnMoO_4$ crystal: $\emptyset60 \times 20$ mm and $\emptyset60 \times 40$ mm
- Three diameters of cylindrical Ge detector: 20 mm, 40 mm and 60mm
- Two types of the crystal surface: polished and diffused

Light collection from ZnMoO₄ crystal scintillators

Shapo of		Surface Condition	Part of photons (%) reaching			
	Size of crystal		photodetectors with diameter (mm)			
			20	40	60	
	Ø60 × 40	Polished	2.6	6.7	11.8	
Cylinder		Diffused	3.6	11.0	20.5	
Cylinder	Ø60 × 20	Polished	4.3	10.6	16.8	
		Diffused	7.7	21.9	36.5	
	60 × 40	Polished	3.5	8.4	14.3	
Octobodron		Diffused	3.9	11.9	22.6	
Octaneuron	60 × 20	Polished	6.0	14.0	21.4	
		Diffused	8.3	23.5	38.8	
	60 × 40	Polished	3.8	9.1	15.3	
Llovaganal		Diffused	4.2	12.7	24.0	
пехадонаі	60 × 20	Polished	6.6	14.7	22.1	
		Diffused	8.8	24.7	40.3	

Best light collection was achieved for

hexagonal crystal shape with a diffused surface Simulation results were confirmed by the experiment [1]

[1] F.A.Danevich et al., Nucl. Instrum. Meth. A 744(2014)41.

Dependence of light collection on distance between the reflector and side surface of ZnMoO₄ crystal

Optimal distance between the light reflector and side surface of ZnMoO₄ crystal is 11–15 mm

Reconstruction of Zn¹⁰⁰MoO₄ crystals shape

To reproduce crystal shape as precise as possible we tried to build a 3D model and integrate the obtained geometry into the GEANT4 code. We applied 3D scanning of the crystals using structured light technique.

The final result of 3D scanning and Zn¹⁰⁰MoO₄ scintillator has visible shape differences 26

Comparison of 2v2β decay distributions for different shapes of Zn¹⁰⁰MoO₄ crystals

Zn¹⁰⁰MoO₄

The **mass and height** of the scintillators were fixed with the two sets of values for all of the crystal shapes: **59.2 g, 32.2 mm**; and **495 g, 40 mm**.

Simulation have demonstrated no significant dependence of $2v2\beta$ decay processes in $Zn^{100}MoO_4$ scintillators on the crystal detector shape

²³²Th calibration of ZnMoO₄ scintillating bolometer

<u>GOAL</u>: Check if background simulation for future experiment is reasonable

We have simulated response of the $ZnMoO_4$ scintillating bolometers installed in the EDELWEISS set-up to gamma quanta of ²³²Th source aiming to compare simulated model with experimental spectrum.

The isotropic ²³²Th source was made of thoriated tungsten wires (1% of thorium in weight).

The source activity (≈ 600 Bq) was reduced twice by removing one half of wires.

Comparison of ²³²Th simulated and experimental spectra

Simulation of 48 Zn¹⁰⁰MoO₄ cryogenic scintillating bolometers in the EDELWEISS set-up

12 towers each of 4 Zn¹⁰⁰MoO₄

scintillating bolometers

- 1) Internal contamination of Zn¹⁰⁰MoO₄ crystals by ²³²Th and ²²⁶Ra (bulk and surface contamination)
- 2) Cosmogenic activation of $Zn^{100}MoO_4$ crystals by ⁵⁶Co and ⁸⁸Y
- 3) $0v2\beta$ of ¹⁰⁰Mo
- 4) Contamination of the set-up by ²³²Th and ²²⁶Ra
- 5) Cosmogenic activation of copper by ⁵⁶Co

Simulation conditions

- 10^6 events uniformly distributed in material for bulk contamination, 10^5 events exponentially distributed with a mean depth of 5 μ m for surface contamination
- 50 keV energy threshold of detectors working in anticoincidences
- Average cosmogenic activity was taken during 5 years of underground measurements, assuming 3 months of activation on the Earth surface and one year of cooling down underground
- 10³ suppression factor of background from ²⁰⁸Tl by delayed coincidences
- Background from α particles is suppressed by pulse-shape discrimination with efficiency 99.9%

Total background spectra

Total background evaluation

Desition	Source Activity		Background
Position	of background	(µBq/kg)	(counts/(keV·kg·yr))
	²⁰⁸ TI	10 (²³² Th)	8.0 × 10 ⁻⁶
70100100	²¹⁴ Bi	10	3.1 × 10 ⁻⁸
$2\Pi^{-3}WI00_4$	²¹² Bi	10 (²³² Th)	5.1 × 10 ⁻⁸
Crystal Dulk	⁸⁸ Y	0.3	6.3 × 10 ⁻⁷
	⁵⁶ Co	0.06	6.2 × 10 ⁻⁵
Zn ¹⁰⁰ MoO ₄	²³² Th	0.5	1.2 × 10 ⁻⁵
crystal surface	²³⁸ U	2.4	1.5×10^{-4}
	²³² Th	20	1.3×10^{-6}
Cu holder	²¹⁴ Bi	70	1.5 × 10 ⁻⁷
	⁵⁶ Co	0.2	6.6 × 10 ⁻⁵
DTEE clamps	²³² Th	100	9.6 × 10⁻ ⁶
	²¹⁴ Bi	60	7.5 × 10 ⁻⁷
BoPET reflective	²³² Th	100	7.5 × 10⁻⁵
foil	²¹⁴ Bi	60	2.1 × 10 ⁻⁵
Total			4.1×10^{-4}

A total background rate in the region of interest is 4.1×10^{-4} counts/(keV·kg·yr) for Zn¹⁰⁰MoO₄ crystal scintillators, which corresponds to **2.5 counts/(ton·yr)** in a 6 keV window centered at the 0v2 β peak position.

REJECTION OF RANDOMLY COINCIDENT EVENTS IN 0v2β DECAY EXPERIMENTS WITH ZnMoO₄ CRYOGENIC BOLOMETERS

Random coincidence of 2v2ß events

Poor time resolution of scintillating bolometers

Background from random coincidence of 2v2β events and external gamma quanta

The total counting rate due to the randomly coinciding $2\nu 2\beta$ decay events and external gamma events in the region of interest is estimated as ≈ 0.016 counts/(keV·kg·yr) for $\emptyset 60 \times 40$ mm Zn¹⁰⁰MoO₄ cryogenic bolometer with a time resolution 45 ms.

Random coincidence of events could be the main source of background in cryogenic bolometers to search for 0v2β decay

Pulse profiles for scintillating bolometers

Single and randomly coincident signals were generated by using pulse profiles and noise baselines accumulated with 313 g $ZnMoO_4$ crystal scintillator operated as a cryogenic scintillating bolometer with Ge light detector.

Generation of the pulse profiles

Amplitude of the first pulse A_1 was obtained by sampling the $2v2\beta$ distribution for ¹⁰⁰Mo Amplitude of the second pulse A_2 was chosen so that the total pulse amplitude was $Q_{2\beta}(^{100}Mo) + \Delta E$, where ΔE is a random component in the energy interval [-5, +5] keV

We generated 10000 single and 10000 coinciding pulses Coinciding signals were randomly generated in the time interval from 0 to $3.3\tau_R (\Delta t = [0, 3.3\tau_R])$, where τ_R is the rise-time of the signals

Reconstruction of the time origin of events

To reconstruct the time origin of each event from our data the following procedure was used:

- 1. Preliminary search for the presence of a signal
- Summation of the data over a certain number of channels depending on the time structure of signal and noise data
- Calculation of the standard deviation of the integrated signal baseline fluctuations
- Search for the pulse start under the request that the signal exceeds the threshold set on a certain number of standard deviations of the baseline

Methods of pulse-shape discrimination

We have applied three techniques to discriminate randomly coincident events:

1) Mean-time

For each pulse $f(t_k)$ we calculate parameter $\langle t \rangle$ (mean-time) with the following formula:

 $\langle t \rangle = \sum f(t_k) t_k / \sum f(t_k),$

where sum is over time channels *k*, starting from origin of pulse and up to certain time.

2) $\chi^2 = \sum (f(t_k) - f_S(t_k))^2$,

where sum is over time channels k, starting

from the origin of pulse and up to a certain time, $f_S(t)$ is shape of the reference single signal

3) Front edge analysis

Front edge parameter was defined as time between two points on the pulse front edge with amplitudes Y_1 % and Y_2 % of the pulse amplitude.

We demanded a 95 % efficiency in accepting single signals

Optimization of pulse-shape discrimination methods

All of the pulse-shape discrimination methods were optimized to find a maximum rejection efficiency.

Optimization for mean-time and χ^2 methods was performed by choosing number of channels to calculate parameters mean-time and χ^2 respectively, while for front edge analysis the parameter Y_1 was varied.

Rejection efficiency of randomly coinciding events

The rejection efficiency of the methods was calculated with pulses start positions found by our algorithms, and using the known start positions from the generation procedure.

Channel,	Start position	Mean-time	Front edge	x^2 mothod θ'
rise-time	Start position	method, %	analysis, %	χ- method, %
Light,	Known	97.5 ± 0.5	96.4 ± 0.5	97.4 ± 0.5
3 ms	Found	92.2 ± 0.5	88.1 ± 0.5	92.3 ± 0.5
Heat,	Known	99.4 ± 0.2	99.4 ± 0.2	99.4 ± 0.2
13.6 ms	Found	99.3 ± 0.2	99.3 ± 0.2	99.3 ± 0.2

All the methods give rejection efficiency 88%–92% for the light signals with a rise-time of 3 ms and signal-to-noise ratio 30, and at the level of 99% for the heat signals with the rise-time of 13.6 ms and the signal-to-noise ratio 900.

Background from random coincidence of events can be reduced to the level of $\approx 10^{-4}$ counts/(keV·kg·yr) at Q_{2B}

Dependence of rejection efficiency on signal-to-noise ratio for heat signals

Dependence of rejection efficiency on rise-time, signal-to-noise ratio and data acquisition sampling rate

Application of the analysis to the real data

We found 6 coinciding events in the energy interval 2.8–3.2 MeV accumulated with 313 g $ZnMoO_4$ scintillating bolometer operated at the LSM. We also selected 59 single pulses with the energy 2.6 MeV, and 1000 noise baselines from the same run.

Conclusions (1)

- The developed purification method combined with the low-thermalgradient Czochralski technique gave a significant improvement of zinc molybdate crystals quality, high crystal yield (≈80%) and low irrecoverable losses of ¹⁰⁰Mo (≈4%). The optical and luminescence properties of the produced ZnMoO₄ crystals confirmed improved quality of the detectors. Finally, large volume (~1.4 kg) Zn¹⁰⁰MoO₄ crystal boule enriched in ¹⁰⁰Mo was produced recently.
- Low-temperature aboveground and underground measurements with the natural and enriched zinc molybdate crystals demonstrated their excellent characteristics. The radioactive contamination of ZnMoO₄ crystals by ²²⁸Th and ²²⁶Ra is on the level of < 0.005 mBq/kg.
- Simulation of the light collection from ZnMoO₄ crystals has shown the advantages of hexagonal (octahedral) crystal shape with diffused surface in comparison to polished cylindrical scintillators.
- Monte Carlo simulation of 2v2β decay processes in Zn¹⁰⁰MoO₄ crystals of different shape (cylinder, hexagonal and cuboid) demonstrated no significant dependence of 2v2β decay distributions from the crystal shape.

Conclusions (2)

- Monte Carlo simulation of 48 Zn¹⁰⁰MoO₄ scintillating bolometers (Ø60 × 40 mm) in the EDELWEISS set-up was performed. The contamination of Zn¹⁰⁰MoO₄ crystal and nearest materials by ²³⁸U and ²³²Th daughters, and cosmogenic activation by ⁵⁶Co and ⁸⁸Y were simulated. A total background rate in the region of interest is 4.1 × 10⁻⁴ counts/(keV·kg·yr).
- Random coincidence of events in cryogenic bolometers could be the main source of background due to the poor time resolution. The developed pulse-shape discrimination methods allow to reduce the background from ≈ 0.02 counts/(keV·kg·yr) to the level of ≈ 10⁻⁴ counts/(keV·kg·yr) at Q_{2β}.
- Total background rate of Zn¹⁰⁰MoO₄ scintillating bolometers is estimated as \approx 5 × 10⁻⁴ counts/(keV·kg·yr) at $Q_{2\beta}$, including \approx 4 × 10⁻⁴ counts/(keV·kg·yr) from radioactive sources and \approx 10⁻⁴ cou
- The current progress on the zinc molybdate crystal production, the low-temperature bolometric tests and Monte Carlo simulation shows that Zn¹⁰⁰MoO₄ scintillating bolometers are excellent candidates for the next-generation large-scale experiment to search for 0v2β of ¹⁰⁰Mo to explore the inverted hierarchy region of neutrino mass pattern.

Search for double beta decay of ¹¹⁶Cd with enriched ¹¹⁶CdWO₄ crystal scintillators (Aurora experiment)

2β decay of ¹¹⁶Cd

- Large transition energy : $Q_{2\beta} = 2813.44(13) \text{ keV}$
- Considerable natural isotopic abundance $\delta = 7.49(18)\%$ and possibility of enrichment by centrifugation
- Favorable theoretical estimations of the decay probability

CdWO₄ crystals

- good scintillation properties
- source = detector approach
- low levels of internal contamination
- particle discrimination ability

(\downarrow background)

CdWO₄ were successfully used in lowbackground experiments to search for 2 β decay of Cd and W [1], as well as for the study of rare α [2] and β [3] decays

^[1] ZPA 355(1996)433, PRC 68(2003)035501, EPJA 36(2008)167;

^[2] PRC 67(2003)014310;

^[3] PAN 59(1996)1, PRC 76(2007)064603

¹¹⁶CdWO₄ crystal scintillators

High crystal yield (87%) and low irrecoverable loses of ¹¹⁶Cd (\approx 2%)

Excellent optical and scintillation properties of the crystal were obtained thanks to the **deep purification of ¹¹⁶Cd and W**, and the advantage of the **low-thermal-gradient Czochralski technique** to grow the crystal [1]

49

¹¹⁶CdWO₄ scintillation detector

Constructed in 2011

(1) ¹¹⁶CdWO₄ crystals, (2) plastic light-guides, (3) cavities in the light-guides filled by liquid scintillator,
(4) quartz light guides, (5, 6) plastic scintillators, (7) four PMTs Hamamatsu R6233MOD, (8) two PMTs ETL 9302FLA, (9) calibration channel in the plastic scintillator 6.

¹¹⁶CdWO₄ scintillation detector

The detector was several times upgraded

(¹¹⁶CdWO₄ crystals were annealed; reflective foils were changed; different liquid scintillators were used; plastic veto was removed; additional Cu shield was added; one PMT for each detector was removed; two quartz light-guides were glued together for each detector...)

Low background DAMA R&D set-up at LNGS

Laboratori Nazionali del Gran Sasso, Italy (3600 m w.e)

An event-by-event data acquisition system based on a 1 GS/s 8 bit transient digitizer (operated at 50 MS/s) records the time of each event and the pulse shape over a time window of \approx 100 µs from the ¹¹⁶CdWO₄ detectors

The **background rate** in the region of interest 2.7 – 2.9 MeV (after pulse-shape discrimination) is on the level of ≈ **0.1 counts/(keV kg yr)**

Pulse-shape discrimination

Front edge and time-amplitude analyses

Radioactive contamination of ¹¹⁶CdWO₄

Chain	Nuclide	Activity, mBq/kg
²³² Th	²³² Th	0.08
	²²⁸ Th	0.027(3)
²³⁸ U	²³⁸ U- ²³⁴ Th	0.63(2)
	²²⁶ Ra	≤ 0.005
	²¹⁰ Pb	0.6(1)
	⁴⁰ K	≤0.9
	^{110m} Ag	≤ 0.02

Total α activity = 2.25 mBq/kg

Two neutrino 2β decay of ¹¹⁶Cd

 $T_{1/2}^{2\nu}$ = [2.69 ± 0.14(syst.) ± 0.02(stat.)] × 10¹⁹ yr

Comparison with other experiments

- [1] H. Ejiri et al., J. Phys. Soc. Japan 64 (1995) 339
 [2] F.A. Danevich et al., Phys. Lett. B 344 (1995) 72
 [3]R.Arnold et al., Z. Phys. C 72 (1996) 239
 [4] F.A.Danevich et al., PRC 62 (2000) 045501
- [5] F.A.Danevich et al., PRC 68 (2003) 035501
- [6] V.I. Tretyak et al., AIP Conf. Proc. 1572 (2013) 110
- [7] A.S. Barabash, PRC 81 (2010) 035501
- [8] A.S. Barabash, NPA 935 (2015) 52

Limit on $0\nu 2\beta$ decay of ¹¹⁶Cd

Fit in 2.5–3.1 MeV gives area of the effect $S = -3.7 \pm 10.2$ counts limS = 13.3 counts @ 90% C.L. by [1]

 $T_{1/2}^{0\nu}$ > 1.9 × 10²³ yr

Effective Majorana neutrino mass $\langle m_v \rangle \le 1.7 \text{ eV} [2]$ $\langle m_v \rangle \le 1.2 - 1.8 \text{ eV} [3]$

[1] G.J. Feldman and R. D. Cousins, Phys. Rev. D 57(1998)3873
[2] J. Barea, J. Kotila, and F. Iachello Phys. Rev. Lett. 109(2012)042501
[3] J.D. Vergados, H.Ejiri and F.Simkovic Rep. Prog. Phys. 75(2012)106301

Results

Decay mode	Transition, level of ¹¹⁶ Sn	<i>limT</i> _{1/2} (yr) 90% CL, present results	<i>limT</i> _{1/2} , yr at 90% C.L. , best previous limit
0ν	g.S g.S.	≥1.9 × 10 ²³	$\geq 1.7 \times 10^{23}$ [1]
0ν	g.s 2 ₁ +(1294 keV)	≥6.2 × 10 ²²	$\geq 2.9 imes 10^{22}$ [1]
0ν	g.s 0 ₁ +(1757 keV)	≥6.3 × 10 ²²	\geq 1.4 × 10 ²² [1]
0ν	g.s 0 ₂ +(2027 keV)	\geq 4.5 × 10 ²²	$\geq 0.6 imes 10^{22}$ [1]
0ν	g.s 2 ₂ + (2112 keV)	≥3.6 × 10 ²²	$\geq \! 1.7 \times 10^{20} [2]$ (at 68% CL)
0ν	g.s 2 ₃ +(2225 keV)	\geq 4.1 × 10 ²²	$\geq \! 1.0 \times 10^{20} [2]$ (at 68% CL)
0v <i>M</i> 1	g.s g.s.	≥1.1 × 10 ²²	$\geq 0.8 imes 10^{22}$ [1]
0∨ <i>M</i> 2	g.S g.S.	≥0.9 × 10 ²¹	$\geq 0.8 imes 10^{21}$ [1]
0∨bM	g.S g.S.	≥ 2.1 × 10 ²¹	$\geq 1.7 \times 10^{21}$ [1]
2ν	g.s g.s.	[2.69±0.14(syst.)±0.02(stat.)]×10 ¹⁹	See slide 59
2ν	g.s 2 ₁ +(1294 keV)	$\geq 0.9 \times 10^{21}$	$\geq 2.3 \times 10^{21}$ [3]
2ν	g.s 0 ₁ +(1757 keV)	$\geq 1.0 \times 10^{21}$	$\geq 2.0 \times 10^{21}$ [3]
2ν	g.s 0 ₂ +(2027 keV)	$\geq 1.1 \times 10^{21}$	$\geq 2.0 \times 10^{21}$ [3]
2ν	g.s 2 ₂ + (2112 keV)	≥ 2.3 × 10 ²¹	$\geq \! 1.7 \times 10^{20} \text{[2]}$ (at 68% CL)
2v	g.s 2 ₃ + (2225 keV)	≥2.5 × 10 ²¹	\geq 1.0 × 10 ²⁰ [2] (at 68% CL)

[1] PRC 68(2003)035501

[2] Phys.Lett.B 249(1990)186 **[3]** NPA 577(1994)493

Conclusions

- The Aurora experiment to search for 2β decay processes in ¹¹⁶Cd with the help of enriched radiopure ¹¹⁶CdWO₄ scintillators is running at the Gran Sasso underground laboratory
- The most precise measurement of $2v2\beta$ decay of ¹¹⁶Cd: $T_{1/2}^{2\nu}$ = [2.69 ± 0.02(stat.) ± 0.14(syst.)] × 10¹⁹ yr
- The new limit was set for the 0v2 β decay as $T_{1/2}^{0\nu} > 1.9 \times 10^{23}$ yr, which corresponds to $\langle m_{\nu} \rangle \sim (1.2 - 1.7)$ eV
- New improved limits are obtained for 2 β decay of ¹¹⁶Cd with emission of majorons and to the excited levels of ¹¹⁶Sn: $\lim T_{1/2} \sim 10^{21} - 10^{22} \text{ yr}$

Future plans

I would be happy to join the KamLAND-Zen experiment!

Surface contamination of the Inner Balloon

Expected contamination of the **past Inner** Balloon (IB) by ²³⁸U was 2×10⁻¹² g/g. However, on average IB contained 4.7×10⁻¹¹ g/g of ²³⁸U → Significant background from ²¹⁴Bi

We need to monitor surface contamination of the IB during its construction

Pictures from presentation of Masayuki Koga at Particle Physics and Cosmology Workshop (PPC2015)

Control of the surface contamination

I've received an offer to join the **development of an ultra-sensitive** α -particle detector **based on the existing Ion Pulse Ionization Chamber prototype** constructed at the Baksan Neutrino Observatory (Russia). The main features of the detector are:

- it can use various gases including air or nitrogen regardless of their purity
- it has a high energy resolution and can be used to determine tracking parameters of α -particles making possible background suppression to a level of 10⁻⁵ events/h/cm² or less
- it has a sensitivity to 238 U on the level of 10^{-10} g/g using a 1000 cm² sample

R&D of α -particle detector

The research and development of ultra-sensitive α -particle detector will include:

- Construction of a prototype of α-particle detector at Kavli
 IPMU (all technical documentation is ready)
- Development of improved signal processing techniques used for event's energy and track reconstruction
- Study of surface cleaning procedures and radiopurity of detector materials to reduce α-emitters background from inner surface of the detector
- Production of the 1000 cm² or larger ultra-sensitive α-particle detector

Prototype detector

Postdoctoral position at Kavli IPMU

IPMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE

THE UNIVERSITY OF TOKYO

As a postdoc position at Kavli IPMU experiment I would like to actively participate in several research projects:

Development of ultra-sensitive gas detector of αparticles to control the surface contamination of the nylon film and other materials

Development and optimization of NaI(TI) detector modules and large NaI(TI) Dark Matter detector using GEANT4 simulations

Nal(Tl) prototype tests, data analysis, and development of new experimental techniques used for background reduction in Dark Matter and double beta decay experiments

どうもありがとうございました!

......