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Measuring Variability
Given two images of a patch of sky I1 and I2 with PSFs ϕ1 and ϕ2 how should I
measure a star (or SNe Ia)'s light curve (i.e. the fluxes A1 and A2)?

The first thing to try is to measure the flux in each image and subtract. If I know the
PSFs I can write down a model

Ii = Aϕ(xi) + ϵi

and make an optimal measurement of each flux

Ar =

∑
i Ir,i ϕr,i/σ2

r,i∑
i ϕ

2
r,i/σ

2
r,i

where r = 1, 2 and i runs over the pixels. For faint sources the noise is dominated by
the sky noise, and we find

A1 − A2 =

∑
i I1,i ϕ1,i∑

i ϕ
2
1,i

−
∑

i I2,i ϕ2,i∑
i ϕ

2
2,i

If the images are complicated (e.g. the Galactic centre or M31) these measurements
may not be very good; in fact, the expressions for Ar were only optimal for isolated
objects.
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M31
Takada Masahiro and Niikura Hiroko used HSC to image M31 for an entire night, e.g.
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M31
Takada Masahiro and Niikura Hiroko used HSC to image M31 for an entire night, e.g.

The "isolated star" condition isn't satisfied.
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Classical Image Subtraction
If the two PSFs were the same we could solve this problem by calculating I1 − I2
directly:

A1 − A2 =

∑
i (I1,i − I2,i)ϕi∑

i ϕ
2
i

If ϕ1 ̸= ϕ2 many people (e.g. Davis and Phillips) have proposed correcting I2 in
Fourier space:

I′2(k) = I2(k)
ϕ1(k)

ϕ2(k)
≡ I2(k)κ(k)

and then proceeding as before. This turns out to be problematic as you need to
know the PSFs very well. Problems are revealed in the residual image I1 − I′2.
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Residuals in M31 (using a spatially-constant PSF model)
– 10 –

Fig. 1.— Application of the Phillips & Davis (1995) algorithm to the KPNO data. The
left side shows a 128 × 128 pixel subimage close to the center of the original frame (upper
left panel) with the mean galaxy background subtracted from the image, and its difference

image (lower left panel). A suitable star close to this region has been used to empirically
determine the PSF matching convolution kernel to match the image pair being differenced

(§3.2). All structure in the unsubtracted data has been effectively removed; the residuals
around the brightest star are due to it being saturated on the CCD. However, applying the

same convolution kernel to a region located 500 pixels away (upper right panel) shows large
systematic residuals in its difference frame on the scale of the PSF (lower right panel). This
indicates a poor match of the PSF in this region and shows that there is no unique solution

to the matching convolution kernel applicable to the entire frame. Effective subtraction of
the full image can only be done by modeling the spatially varying PSF kernel using the

limited number of appropriate PSF matching stars on the frame §3.4. Once applied in this
case the quality of the subtraction for the entire frame becomes comparable to the lower

left panel. The inset image in the lower right corner is the new difference image located in
the region of the box in the upper right panel. A clear detection of a point source is now
made, which was almost completely hidden in the systematic residuals in the first attempt

at matching the PSF. All differences are displayed in the same intensity range; the intensity
range of the upper panels is five times larger.

(Tomaney and Crotts, 1996)
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Cross-Convolution
Another obvious approach (Gal-Yam) is to construct the difference image as

ϕ2 ⊗ I1 − ϕ1 ⊗ I2

but this sacrifices resolution.
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Alard and Lupton
Christophe Alard and I proposed a way to circumvent the need to know ϕ by
choosing the kernel κ to minimise the residuals in the subtracted image.

If we write
I′2 = κ⊗ I2

and expand
κ =

∑
r

arBr

we may minimise ∣∣∣∣ I1 −∑
r ar (B

r ⊗ I2)

σ

∣∣∣∣2
by solving linear equations for ar.

The choice of Br is arbitrary. We originally used Gauss-Hermite functions, but people
have also investigated using δ-function (pixel) bases.
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M31
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M31
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MUSSES
Jiang Jing, Doi Mamuru, and Yasuda Naoki have been looking for early SNe:
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Problems with Alard and Lupton
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Problems with the Alard and Lupton Algorithm
A&L is optimal for the problem it was designed to solve, but…

Where does the template I2 come from?

What should we do if our camera has no atmospheric dispersion corrector
(ADC) (e.g. DECam, LSST)?

What should we do if the data is sharper than the template?

What is the consequence of noise in the template?
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Where Does The Template I2 Come From?
We didn't attempt to solve this problem, but fortunately Nick Kaiser did 15 years
ago.

Unfortunately he didn't publish his result except as "PSDC-002-01[01]-00".
If I have a set of n realisations of an image Ir with known PSFs ϕr, what is the best
estimate for the true image above the atmosphere, T?
We know that

Ir,i = (T ⊗ ϕr)i + ϵr,i

and let's assume that ϵr is an N(0, σ2
r ) variable (i.e. we only care about faint objects)

We may estimate each Fourier mode independently using an ML estimator:

lnL ∝
∑

r

(Ir(k)− T(k)ϕr(k))
2

σ2
r

(assuming for clarity of presentation that the PSF is symmetric, and thus ϕ∗ = ϕ) i.e.

T̂(k) =

∑
r Ir(k)ϕr(k)/σ2

r∑
r ϕr(k)2/σ2

r

with variance

Var(T̂(k)) =
1∑

r ϕr(k)2/σ2
r
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An Optimal Template
If we'd like a template with uncorrelated noise we need to flatten the noise, resulting
in

T̂′(k) =

∑
r Ir(k)ϕr(k)/σ2

r√∑
r ϕr(k)2/σ2

r

√∑
r 1/σ

2
r
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Bad Things in Images
The assumption that ϵr is an N(0, σ2

r ) states that the only things in our images are
objects (with variable seeing) and noise.

In reality there are:

asteroids

satellites

cosmic rays

diffraction spikes

…

People like to deal with these by taking a stack of images and taking the median or
using a 5− σ clip. This is not a good idea; the problem is not statistical.
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Building Templates with Clipping

Three realisations of the image of a star with three different PSFs.

As far as I know, your only options are PSF-matched image or cunning exploitation of
difference images while building templates -- which is circular.
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What should we do if our camera has no ADC?
This is a bit unpleasant. The atmosphere refracts blue light more than red, so a
red/blue pair of stars that overlap at zenith become separated as we point towards
the horizon.

If our science image and template image are taken at different airmasses,
the difference image will be a dipole. This isn't good. We subtracted the two images
to convert a complicated image into a simple one, but now we've made a
complicated image of dipoles.
I don't have code to handle this (yet), but it looks as if we can use a set of images
taken at different airmasses to estimate each pixel's SED. I predict that Yasuda-san
will be suspicious of this approach; we'll see how well it works.

Another popular way to get dipoles is by having bad astrometry; this is probably the
biggest technical problem that current transient surveys face.
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What Should We Do If The Data Is Sharper Than The
Template?
After we've found our difference image D, how should we measure the flux?

That's
easy; I already told you the answer.

A =

∑
i Di ϕ1,i∑
i ϕ

2
1,i

i.e. find the value of D ⊗ ϕ and divide by
∑

ϕ2.
We can find this from I1 directly; our A&L problem becomes to find the kernel κ′

which minimises ∣∣∣∣ I1 ⊗ ϕ1 − κ′ ⊗ I2
σ

∣∣∣∣2
Providing our frame I1 is at least

√
2 wider than the template I2 we won't have a

problem.

Cross-Convolution doesn't suffer from the problem of over-sharp templates.
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What Is The Consequence Of Noise In The Template?
This one is harder.

If the template has noise, then κ⊗ I2 will have correlated noise
which complicates the analysis (for example, those optimal estimates of fluxes were
written assuming diagonal covariance estimates). This is not fatal, but it is a nuisance.
I knew this.
More interestingly if the template is noisy, A&L is no longer optimal. I hadn't realised
this until I read a paper by Barak Zackay, Eran Ofek and Avishay Gal-Yam.
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Subtracting Two Noisy Images
Let as adopt an A&L approach and write

D = I1 − κ⊗ I2

with the Gaussian homoschedastic (faint-object) assumption.

Our model is that the
difference image is D convolved with the PSF ϕ1, so taking a Fourier transform and
constructing the log-likelihood gives

lnL ∼
∑

k

(I1(k)− κ(k)I2(k)− D(k)ϕ1(k))2

σ2
1 + κ2(k)σ2

2

and the MLE for D(k) is

D̂(k) =
I1(k)− κ(k)I2(k)

ϕ1(k)

with variance

Var(D̂(k)) =
σ2
1 + κ2(k)σ2

2

ϕ2
1(k)
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Subtracting Two Noisy Images
That variance diverges at large k -- not surprising, as we're estimating a deconvolved
scene D. As in Kaiser's analysis (and as emphasised by Zackay et al.) we can
construct an uncorrelated image by whitening the noise, resulting in

D̂(k) = (I1(k)− κ(k)I2(k))

√
σ2
1 + σ2

2

σ2
1 + κ2(k)σ2

2

with PSF

ϕD(k) = ϕ1(k)

√
σ2
1 + σ2

2

σ2
1 + κ2(k)σ2

2

i.e. we can estimate κ by standard methods, and then correct it for the noise in the
template.
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`Proper Image Subtraction'
Zackay et al. carry out what amounts to this calculation, assuming that ϕ1 and ϕ2 are
known and that therefore κ(k) = ϕ1(k)/ϕ2(k). If we substitute this into our
equation for D̂ and ϕD we find

D(k) = (ϕ2(k)I1(k)− ϕ1(k)I2(k))

√
σ2
1 + σ2

2

σ2
1ϕ

2
2(k) + σ2

2ϕ
2
1(k)

ϕD(k) = ϕ1(k)ϕ2(k)

√
σ2
1 + σ2

2

σ2
1ϕ

2
2(k) + σ2

2ϕ
2
1(k)

which are Zackay et al.'s equations 13 and 14, except that I've multiplied D by
(σ2

1 + σ2
2)

1/2)

One interesting feature of these equations is that they are symmetric in I1 and I2 and
are thus able to handle better seeing in the science image than in the template. In
this sense they are an optimal version of cross-correlation methods.
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Sensitivity To Noise Levels
If the template is noise free (σ2 = 0), we recover

D̂(k) = I1(k)− κ(k)I2(k)

ϕD(k) = ϕ1(k)

which are just the standard equations for difference imaging.

Numerically, once the S/N in the template is more than c. twice the science image
the results are similar to the noise-free case
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Likelihood Images
Given D̂ and ϕD we can calculate the lnL image D̂ ⊗ ϕD; the result is

lnL ∼
∑

k

ϕ1(k)
I1(k)− κ(k)I2(k)

σ2
1 + κ2(k)σ2

2

(which is equivalent to equation 12 of the ZOGY paper).
In the noiseless template limit (σ2 → 0) this becomes

lnL ∼
∑

k

ϕ1(k) (I1(k)− κ(k)I2(k))

which is (unsurprisingly) precisely my pre-convolution proposal.
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