THE PROBLEM OF THE MASS IN SM AND BEYOND

Luca Merlo

Kavli Institute for the Physics and Mathematics of the Universe, April 27, 2016

invisibles neutrinos, dark matter & dark energy physics

elusives neutrinos, dark matter & dark energy physics

Instituto de Fisica Teórica UAM-CSIC

Our universe today

Start from what we know (±) to infer what we don't know

Focus on masses & mixings and on their origins

Normal matter

The fermion generations

Mixing among generations: quarks

mass eigenstates ≠ interaction eigenstates

Why Nature gives CP violation, but not enough to explain Baryon Asymmetry $(B - \overline{B} > 0)$

The mixing is among all the three families!

Neutrinos Oscillate!!!

"For the greatest benefit to mankind" alfred Volel

2015 NOBEL PRIZE IN PHYSICS

Takaaki Kajita Arthur B. McDonald

Neutrinos Oscillate!!!

Example: the Sun emits electron neutrinos; we detect ν_e , ν_μ , ν_τ (ν_2)

Free adaptation from "¿Qué son las Oscilaciones de Neutrinos? " by José Luis Crespo Cepeda (student at IFT-UAM) 6

Which is the mass ordering? Which is the lightest neutrino mass?

What the Standard Model says!!

What the Standard Model says!!

Higgs Mechanism

Masses come from the interaction with the Higgs that permeates the vacuum

Yukawa Interactions

All the quarks and the charges leptons acquire masses! The Yukawas are just numbers!

Why are so different?

Neutrinos remain massless!!!

How do neutrinos acquire mass?

Many questions!

Experimental Evidences

Theoretical Problems

Neutrino Masses: See-Saw

Weinberg Op.: Weinberg 1980

$$\mathcal{O}_5 = \frac{1}{\Lambda_{LN}} (\bar{L}_L \tilde{\Phi}) \mathcal{C}_\nu (\tilde{\Phi}^T L_L^c)$$

An effective operator is a low-energy description of interactions that could be originated from many different ultraviolet theories.

Why are EFTs useful??

- Only relevant contributions
- Calculations are easier
- Model independent: low-energy spectrum and syms
- Gauge Invariance

Tree level UV theories: $2 \times 2 = 1 + 3$ under $SU(2)_L$

Yanagida 1979

Neutrino Masses: See-Saw

Weinberg Op.: Weinberg 1980

$$\mathcal{O}_5 = \frac{1}{\Lambda_{LN}} (\bar{L}_L \widetilde{\Phi}) \mathcal{C}_\nu (\widetilde{\Phi}^T L_L^c)$$

An effective operator is a low-energy description of interactions that could be originated from many different ultraviolet theories.

Why are EFTs useful??

- Only relevant contributions
- Calculations are easier
- Model independent: low-energy spectrum and syms
- Gauge Invariance

Tree level UV theories: $2 \times 2 = 1 + 3$ under $SU(2)_L$

Neutrino Masses: See-Saw

 Φ

 L_j

 N_{Ri}

 $m_{\nu} = \frac{v^2}{2} \frac{\mathcal{C}_{\nu}}{\Lambda_{LN}}$

 $\begin{array}{ll} \mbox{Weinberg Op.:} & \mathcal{O}_5 = \frac{1}{\Lambda_{LN}} (\bar{L}_L \widetilde{\Phi}) \mathcal{C}_\nu (\widetilde{\Phi}^T L_L^c) \\ \mbox{Weinberg 1980} & \end{array}$

Yanagida 1979

Why are EFTs useful??

Hukugita&Yanagida 1986

 L_{L_i}

Idea: Yukawa coupling from the vev of some field

To explain hierarchies and mixing: different flavour informations!

Top-down approach:

Local Global

Froggatt-Nielsen U(1) models

 $^{
m ilde{W}}$ New scalar field $\, heta$, called flavon, which develops a VEV (\sim Higgs mechanism)

the corresponding non-renormalisable Yukawas read:

$$\frac{\theta^n}{\Lambda_f^n} \bar{L}_{Li} \Phi y_{E_{ij}} E_{Rj} \longrightarrow M_{E_{ij}} = \frac{v}{\sqrt{2}} y_{E_{ij}} \frac{\langle \theta \rangle^n}{\Lambda^n}$$

Similarly for quarks

Good description of <u>quark masses</u> and <u>mixing</u> and of <u>charged lepton masses</u>!

Top-down approach:

Local Global

Froggatt-Nielsen U(1) models

 $^{
m ilde{W}}$ New scalar field $\, heta$, called flavon, which develops a VEV (\sim Higgs mechanism)

Many possibilities for neutrinos:

Hall, Murayama & Weiner 2000 de Gouvea & Murayama 2003

- symmetry at high energy and then no symmetry at low-energy: <u>Anarchy</u>
- symmetry still present at low-energy: <u>Hierarchy</u>

Top-down approach:

Top-down approach: Abelian Continuous Local eV Globa **Huge number of parameters:** Lack of precision! New scalar 1 **Only consistency check** No smoking guns m_{ν} 0.1 Many possil 0.08 Anarchy symme 0.015 0.02 0.005 0.01 eV Hierarchy m_{ν_1} symme

Altarelli, Feruglio, Masina & LM, JHEP1211(2012) Bergstrom, Meloni & LM, PRD89(2014)

s mechanism)

Discrete

vama & Weiner 2000 a & Murayama 2003 ergy: <u>Anarchy</u>

Top-down approach:

The best candidates to reproduce the leptonic flavour structures before 2011

Top-down approach:

The best candidates to reproduce the leptonic flavour structures before 2011

Great Predictivity

Long stable collaboration with G. Altarelli & F.Feruglio

- LO mixing angles determined by GEOMETRY
- Precise mass and angles sum rules

TRI-BIMAXIMAL

Harrison, Perkins & Scott 2002; Xing 2002

$$U^{TB} = \begin{pmatrix} \sqrt{2/3} & 1/\sqrt{3} & 0\\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2}\\ -1/\sqrt{6} & 1/\sqrt{3} & +1/\sqrt{2} \end{pmatrix}$$

Top-down approach:

Minimal Flavour Violation

Chivukula & Georgi 1987; D'Ambrosio et al. 2002

GLOBAL $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$ has been the key ingredient of the Minimal Flavour Violation (MFV), which solves the NP Flavour Problem:

$$\mathcal{L}_{Y} = -\left(\bar{Q}_{L}\Phi\mathcal{Y}_{D}D_{R} + \text{h.c.}\right) - \left(\bar{Q}_{L}\tilde{\Phi}\mathcal{Y}_{U}U_{R} + \text{h.c.}\right) \text{ made invariant by}$$

$$\mathcal{Y}_{D} \longrightarrow \mathcal{Y}_{D} \sim (3,\bar{3},1) \qquad \qquad \mathcal{Y}_{U} \longrightarrow \mathcal{Y}_{U} \sim (3,1,\bar{3})$$

The Yukawa FIELDS develop values, which are the SM Yukawa couplings:

Flavour and CP Violation in SM and beyond controlled by the Yukawas

 $\frac{c^{\alpha\beta\gamma\delta}}{\Lambda_{f}^{2}} \left(\overline{Q}_{\alpha}\gamma_{\mu}Q_{\beta} \right) \left(\overline{Q}_{\gamma}\gamma^{\mu}Q_{\delta} \right) \quad \text{with} \quad c^{\alpha\beta\gamma\delta}(\mathcal{Y}) \leq 10^{-4}$ Any FCNC process under control with a NP at few TeV

Minimal Flavour Violation

Chivukula & Georgi 1987; D'Ambrosio et al. 2002

GLOBAL $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$ has been the key ingredient of the Minimal Flavour Violation (MFV), which solves the NP Flavour Problem:

$$\mathcal{L}_Y = -\left(\bar{Q}_L \Phi \mathcal{Y}_D D_R + \text{h.c.}\right) - \left(\bar{Q}_L \tilde{\Phi} \mathcal{Y}_U U_R + \text{h.c.}\right) \quad \text{made invariant by}$$
 $\mathcal{Y}_D \longrightarrow \mathcal{Y}_D \sim (3, \bar{3}, 1) \quad \mathcal{Y}_U \longrightarrow \mathcal{Y}_U \sim (3, 1, \bar{3})$

The Yukawa FIELDS develop values, which are the SM Yukawa couplings:

Flavour and CP Violation in SM and beyond controlled by the Yukawas

 $\frac{c^{\alpha\beta\gamma\delta}}{\Lambda_{f}^{2}} \left(\overline{Q}_{\alpha}\gamma_{\mu}Q_{\beta} \right) \left(\overline{Q}_{\gamma}\gamma^{\mu}Q_{\delta} \right) \text{ with } c^{\alpha\beta\gamma\delta}(\mathcal{Y}) \leq 10^{-4}$ Any FCNC process under control with a NP at few TeV

Gauging Minimal Flavour Violation

GAUGED $SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R}$

Grinstein, Redi & Villadoro 2010 Buras, LM & Stamou 2011 Buras, Carlucci, LM & Stamou 2011

- The theory is renormalisable without GBs!!
- Effects due to new fermions needed for anomaly cancellations

Gauging Minimal Flavour Violation

GAUGED $SU(3)_{Q_L} \times SU(3)_{U_R} \times SU(3)_{D_R}$

Grinstein, Redi & Villadoro 2010 Buras, LM & Stamou 2011 Buras, Carlucci, LM & Stamou 2011

- The theory is renormalisable without GBs!!
- Effects due to new fermions needed for anomaly cancellations
- Effects due to new flavour gauge bosons

example: Meson oscillation

Similar to the Global MFV case

as it allows only negative contributions

Gauged MLFV

 $SU(3)_{L_L} \times SU(3)_{E_R} \times SO(3)_{N_R}$ GAUGED

Cirigliano, Grinstein, Isidori & Wise 2005 Alonso, Isidori, LM, Munoz&Nardi 2011

Alonso, Fernandez-Martinez, Gavela, Grinstein, LM & Quilez, to appear

Similar to the quark case, but...

Many more possibilities due to the lack of knowledge of neutrino scale

Yukawa Flavon Potential

Does the minimum of the scalar potential justify the observed masses and mixing?

 $\langle \!\!\!/ \!\!\! \rangle Q$ uarks: $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$

Alonso, Gavela, LM & Rigolin, JHEP 1107 (2011)

$$V(\mathcal{Y}_U, \mathcal{Y}_D) \equiv V(\mathcal{I}(\mathcal{Y}_U, \mathcal{Y}_D))$$

5 renormalisable Invariants $\,\mathcal{I}$ ($\mathcal{Y}_i^\dagger \mathcal{Y}_i$) for 10 parameters

Minimisation of the scalar potential

$$\delta V = 0 \qquad \longrightarrow \qquad \sum_{j} \frac{\partial \mathcal{I}_{j}}{\partial p_{i}} \frac{\partial V}{\partial \mathcal{I}_{j}} = 0$$

masses, angles, phase

Results:
$$U(3)^3 \to U(2)^3 \times U(1)$$

 $\langle \mathcal{Y}_U \rangle \propto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \langle \mathcal{Y}_D \rangle \propto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Yukawa Flavon Potential

Does the minimum of the scalar potential justify the observed masses and mixing?

 $\langle \!\!\!/ \!\!\! \rangle Q$ uarks: $U(3)_{Q_L} \times U(3)_{U_R} \times U(3)_{D_R}$

Alonso, Gavela, LM & Rigolin, JHEP 1107 (2011)

$$\Psi V(\mathcal{Y}_U, \mathcal{Y}_D) \equiv V(\mathcal{I}(\mathcal{Y}_U, \mathcal{Y}_D))$$

5 renormalisable Invariants \mathcal{I} ($\mathcal{Y}_i^{\dagger} \mathcal{Y}_i$) for 10 parameters

$$\langle \mathcal{Y}_U \rangle \propto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \langle \mathcal{Y}_D \rangle \propto \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Yukawa Flavon Potential

Leptons: $SU(3)_{L_L} \times SU(3)_{E_R} \times SO(3)_{N_R}$

Alonso, Gavela, Hernandez & LM, PL**B715** (2012) Alonso, Gavela, Hernandez, LM & Rigolin, JHEP**1308** (2013) Alonso, Gavela, Isidori, Maiani, JHEP**1311** (2013)

 $m_{\nu_2} = m_{\nu_3}$

Degenerate masses

wrong sector

6 Invariants at renorm. order for 12 parameters.
One more wrt quarks, due to the $SO(3)_{N_R}$: $\mathcal{Y}_{\nu}^T \mathcal{Y}_{\nu}^*$

Results:

$$\frac{v^2}{M} \begin{pmatrix} y_{\nu_1}^2 & 0 & 0 \\ 0 & 0 & y_{\nu_2} y_{\nu_3} \\ 0 & y_{\nu_2} y_{\nu_3} & 0 \end{pmatrix} = U_{PMNS} \begin{pmatrix} m_{\nu_1} & 0 & 0 \\ 0 & m_{\nu_2} & 0 \\ 0 & 0 & m_{\nu_2} \end{pmatrix} U_{PMNS}^T$$

$$\begin{array}{c} \end{array} \\ U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix} \end{array}$$

$$\begin{array}{c} \end{array}$$

Maximal mixing & Majorana phase

Higgs or not Higgs: that is the question

Everything I said if with SM Higgs. Is this sure?

If it is not the SM Higgs, it is very similar!!

Whisperings of BSM

Dijet Diboson Excess @ 2 TeV

Run II: not enough luminosity to exclude or confirm

Indirect Searches by EFTs

EXACT EW DOUBLET

Hierarchy Problem (neutrino masses & DM & Baryon Asym)

SUSY

SM

two $SU(2)_L$ doublets (Solution for HP)

NOT NECESSARILY DOUBLET

Composite Higgs Models Dilaton or Exotic Not exactly an EW doublet, but almost (Solution for HP)

EW singlet

Linear Effective Lagrangian SMEFT

 $SU(2)_L \times U(1)_Y$ gauge sym

SM spectrum, and in particular exact EW Higgs doublet Φ

Non-Linear Effective Lagrangian HEFT

 $SU(2)_L \times U(1)_Y$ gauge sym

SM spectrum, but non-exact EW Higgs doublet *h*

The SMEFT Lagrangian

59 (no flavour) d=6 operators preserving SM, lepton, baryon syms

Higgs Physics in SMEFT

Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRD87 (2013)

$$\mathcal{O}_{GG} = \Phi^{\dagger} \Phi \ G^{a}_{\mu\nu} G^{a\mu\nu}$$

$$\mathcal{O}_{WW} = \Phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \Phi$$

$$\mathcal{O}_{W} = (D_{\mu} \Phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \Phi)$$

$$\mathcal{O}_{\Phi,2} = \frac{1}{2} \partial^{\mu} (\Phi^{\dagger} \Phi) \partial_{\mu} (\Phi^{\dagger} \Phi)$$

$$\mathcal{O}_{BB} = \Phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \Phi$$

$$\mathcal{O}_{B} = (D_{\mu} \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \Phi)$$

$$\mathcal{O}_{u\Phi,33} = (\Phi^{\dagger} \Phi) (\bar{Q}_{L_{3}} \Phi u_{R_{3}})$$

$$\mathcal{O}_{d\Phi,33} = (\Phi^{\dagger} \Phi) (\bar{Q}_{L_{3}} \Phi d_{R_{3}})$$

$$\mathcal{O}_{e\Phi,33} = (\Phi^{\dagger} \Phi) (\bar{L}_{L_{3}} \Phi e_{R_{3}})$$

Higgs Physics in SMEFT

Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRD87 (2013)

Gauge Invariance implies correlations between TGC and HVV

Interplay HVV and TGV

Correlation between HVV and TGV: Example

$$\mathcal{O}_B = (D_\mu \Phi)^\dagger \hat{B}^{\mu\nu} (D_\nu \Phi)$$

In unitary gauge can be rewritten as:

$$\mathcal{O}_B = \frac{ieg^2}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^2 - \frac{ie^2 g}{8\cos\theta_W} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^2 - \frac{eg}{4\cos\theta_W} A_{\mu\nu} Z^{\mu} \partial^{\nu} h(v+h) + \frac{e^2}{4\cos^2\theta_W} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h(v+h)$$

All these couplings are correlated!!

Interplay HVV and TGV

Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRL 111 (2013)

$$\mathcal{L}_{WWV} = -ig_{WWV} \left\{ g_1^V \left(W_{\mu\nu}^+ W^{-\mu} V^{\nu} - W_{\mu}^+ V_{\nu} W^{-\mu\nu} \right) + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} \right\}$$

Interplay HVV and TGV

Corbett, Eboli, Gonzalez-Fraile & Gonzalez-Garcia, PRL 111 (2013)

$$\mathcal{L}_{WWV} = -ig_{WWV} \left\{ g_1^V \left(W_{\mu\nu}^+ W^{-\mu} V^{\nu} - W_{\mu}^+ V_{\nu} W^{-\mu\nu} \right) + \kappa_V W_{\mu}^+ W_{\nu}^- V^{\mu\nu} \right\}$$

Higgs data bounds (7+8 TeV data used, including kinematics)

HEFT

SMEFT: constructed with

Being h a singlet: generic functions of h

$$\mathcal{F}_i(h) = 1 + 2\alpha_i \frac{h}{v} + \beta_i \frac{h^2}{v^2} + \dots$$

Being $\mathbf{U}(x)$ vs. h independent, many more operators can be constructed

Decorrelations & New Signals

Study the anomalous signals present in the chiral, but absent in the linear SMEFT
HEFT

Brivio, Corbett, Eboli, Gavela, Gonzalez-Fraile, Gonzalez-Garcia, LM& Rigolin, JHEP 1403 (2014)

What is HEFT?

The Higgs Effective Field Theory (HEFT) is a fusion of SMEFT and ChiPT

HEFT describes an extended class of "Higgs" models:

- Standard Model
- SMEFT
- Technicolor-like ansatz
- **Dilator-Like models**
- Composite Higgs models

special limits and fixing the parameters

Alonso, Brivio, Gavela, LM& Rigolin, JHEP **12** (2014) 034 Hierro, LM& Rigolin, arXiv:1510.07899

What is HEFT?

The Higgs Effective Field Theory (HEFT) is a fusion of SMEFT and ChiPT

Building blocks:

$$\begin{array}{ll} \psi_{L,R} & \\ A_{\mu} & X_{\mu\nu} \\ h & \text{singlet of SM syms: arbitrary } \mathcal{F}(h) = \sum_{i=0} a_i \left(\frac{h}{f}\right) \end{array}$$

i

The HEFT Lagrangian

Azatov, Contino & Galloway JHEP 1204 (2012) Alonso, Gavela, LM, Rigolin & Yepes, JHEP 1206 (2012) Alonso, Gavela, LM, Rigolin & Yepes, PLB 722 (2013) Alonso, Gavela, LM, Rigolin & Yepes, PRD 87 (2013) Buchalla, Cata & Krause, NPB 880 (2014) Gavela, Gonzalez-Fraile, Gonzalez-Garcia, LM, Rigolin & Yepes, JHEP 1410 (2014) Brivio, Gonzalez-Fraile, Gonzalez-Garcia & LM, 1604.06801 YESTERDAY

$$\mathcal{L}_{HEFT} = \mathcal{L}_{0} + \Delta \mathcal{L}$$

$$\mathcal{L}_{0} = -\frac{1}{4} G^{\alpha}_{\mu\nu} \mathcal{G}^{\alpha\mu\nu} - \frac{1}{4} W^{a}_{\mu\nu} W^{a\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu} + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \frac{v^{2}}{4} \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu}) \mathcal{F}_{C}(h) - V(h) + i \bar{Q}_{L} \vec{\mathcal{D}} Q_{L} + i \bar{Q}_{R} \vec{\mathcal{D}} Q_{R} + i \bar{L}_{L} \vec{\mathcal{D}} L_{L} + i \bar{L}_{R} \vec{\mathcal{D}} L_{R} + \frac{v}{\sqrt{2}} \left(\bar{Q}_{L} \mathbf{U} \mathcal{Y}_{Q}(h) Q_{R} + \text{h.c.} \right) - \frac{v}{\sqrt{2}} \left(\bar{L}_{L} \mathbf{U} \mathcal{Y}_{L}(h) L_{R} + \text{h.c.} \right)$$

The HEFT Lagrangian

Alonso, Gavela, LM, Rigolin & Yepes, PLB 722 (2013) Alonso, Gavela, LM, Rigolin & Yepes, PRD 87 (2013) Gavela, Gonzalez-Fraile, Gonzalez-Garcia, LM, Rigolin & Yepes, JHEP 1410 (2014) Gavela, Kanshin, Machado & Saa, JHEP 1503 (2015) Brivio, Gonzalez-Fraile, Gonzalez-Garcia & LM, 1604.06801

$$\mathcal{L}_{HEFT} = \mathcal{L}_0 + \Delta \mathcal{L}$$

- 148 (no flavour) operators preserving SM, lepton, baryon syms, up to NLO in the renormalisation procedure (4 derivatives & d=6)
- Higgs analysis similar to SMEFT: 10 parameters wrt 9 of SMEFT

More important effects when comparing TGV and HVV: for example

 $\mathcal{O}_B = (D_\mu \Phi)^{\dagger} \hat{B}^{\mu\nu} (D_\nu \Phi)$

More important effects when comparing TGV and HVV: for example

$$\mathcal{O}_{B} = \frac{ieg^{2}}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{ie^{2}g}{8\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2}$$
$$- \frac{eg}{4\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h) + \frac{e^{2}}{4\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h)$$
$$\mathcal{O}_{B} = \frac{v^{2}}{16} \mathcal{P}_{2}(h) + \frac{v^{2}}{8} \mathcal{P}_{4}(h) \quad \text{with} \quad \mathcal{F}_{i}(h) = \left(1 + \frac{h}{v}\right)^{2}$$
$$\mathcal{P}_{2}(h) = i B_{\mu\nu} \operatorname{Tr} \left(\mathbf{T} \left[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}\right]\right) \mathcal{F}_{2}(h)$$
$$\mathcal{P}_{4}(h) = i B_{\mu\nu} \operatorname{Tr} \left(\mathbf{T} \left[\mathbf{V}^{\mu}, \mathbf{V}^{\nu}\right]\right) \mathcal{F}_{2}(h)$$

More important effects when comparing TGV and HVV: for example

$$\mathcal{O}_{B} = \frac{ieg^{2}}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{ie^{2}g}{8\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2}$$
$$- \frac{eg}{4\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h) + \frac{e^{2}}{4\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h)$$
$$\mathcal{O}_{B} = \frac{v^{2}}{16} \mathcal{P}_{2}(h) + \frac{v^{2}}{8} \mathcal{P}_{4}(h) \quad \text{with} \quad \mathcal{F}_{i}(h) = \left(1 + \frac{h}{v}\right)^{2}$$
$$\mathcal{P}_{2}(h) = 2ieg^{2} A_{\mu\nu} W^{-\mu} W^{+\nu} \mathcal{F}_{2}(h) - 2\frac{ie^{2}g}{\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} \mathcal{F}_{2}(h)$$
$$\mathcal{P}_{4}(h) = -\frac{eg}{\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} \mathcal{F}_{4}(h) + \frac{e^{2}}{\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} \mathcal{F}_{4}(h)$$

due to the decorrelation in the $\mathcal{F}_i(h)$ functions: i.e.

[see also Isidori&Trott, 1307.4051]

More important effects when comparing TGV and HVV: for example

$$\mathcal{O}_{B} = \frac{ieg^{2}}{8} A_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2} - \frac{ie^{2}g}{8\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} (v+h)^{2}$$
$$- \frac{eg}{4\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h) + \frac{e^{2}}{4\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} h (v+h)$$
$$\mathcal{O}_{B} = \frac{v^{2}}{16} \mathcal{P}_{2}(h) + \frac{v^{2}}{8} \mathcal{P}_{4}(h) \quad \text{with} \quad \mathcal{F}_{i}(h) = \left(1 + \frac{h}{v}\right)^{2}$$
$$\mathcal{P}_{2}(h) = 2ieg^{2} A_{\mu\nu} W^{-\mu} W^{+\nu} \mathcal{F}_{2}(h) - 2\frac{ie^{2}g}{\cos\theta_{W}} Z_{\mu\nu} W^{-\mu} W^{+\nu} \mathcal{F}_{2}(h)$$
$$\mathcal{P}_{4}(h) = -\frac{eg}{\cos\theta_{W}} A_{\mu\nu} Z^{\mu} \partial^{\nu} \mathcal{F}_{4}(h) + \frac{e^{2}}{\cos^{2}\theta_{W}} Z_{\mu\nu} Z^{\mu} \partial^{\nu} \mathcal{F}_{4}(h)$$

due to the nature of the chiral operators (different c_i coefficients): i.e.

$$\begin{array}{c} h \\ \end{array} \begin{array}{c} W^+ \\ W^- \\ W^- \end{array} \begin{array}{c} Z \\ VS. \\ A \\ h \\ h \end{array}$$

Brivio,Corbett,Eboli,Gavela,Gonzalez-Fraile, Gonzalez-Garcia,LM&Rigolin, JHEP 1403 (2014) Brivio, Gonzalez-Fraile, Gonzalez-Garcia & LM, 1604.06801

Data: Tevatron D0 and CDF Collaborations and LHC, CMS, and ATLAS Collaborations at 7 TeV and 8 TeV for final states $\gamma\gamma$, W+W⁻, ZZ, Z γ , b⁻b, and $\tau\tau^-$

New Signals

Brivio,Corbett,Eboli,Gavela,Gonzalez-Fraile, Gonzalez-Garcia,LM&Rigolin, JHEP 1403 (2014)

Signals expected in the chiral basis, but not in the linear one (d=8)

number of expected events (WZ production) with respect to the Z p_T

Message to Experimental Collaborations: please, do this dedicate analysis!

Conclusions and future directions

Alonso, Gavela, LM, Rigolin & Yepes 2012

MFV Flavour symmetries

Interplays

SM Higgs or not?

Safe FCNC & LFV Quarks - Leptons Majorana nature

Find a final solution for the scalar potential

Exploit other strategies: multi-Yukawa fields? Disentangling Effects

New Signals

What with 750 GeV?

Full flavour analysis

Dark Matter

Is DM another flavour? Lopez-Honores & LM 2013

How it speaks with SM? Brivio, Gavela, LM, Mimasu, No, Rey, Sanz 2015

39

Interplays

Interplays