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Figure 2.4: Possible neutrino spectra: (a) normal (b) inverted.

2.3.4 Loop mediation of neutrino masses

Mediation by loop e↵ects can be realized by many ways. Fig. 2.3 shows the possible one-loop
diagrams [34], in each case there are several choices of quantum numbers for the particles in the
loop. For example, one can consider the standard see-saw scenario with a LNH coupling and
replace the Higgs doublet H with another scalar doublet H 0 with vanishing vev, coupled to the
standard Higgs doublet as (H⇤H 0)2+h.c.: neutrino masses arise from the third diagram in fig. 2.3.
One of the extra particles in the loop (H 0 or N in the example above) could be detectably light:
neutrino masses remain small if other extra particles are heavy.

See [34] for alternative speculative possibilities.

We now study in detail the special cases of pure Majorana and Dirac neutrino masses. We
describe how many and which parameters can be measured in the two cases by low energy
experiments.

2.4 Pure Majorana neutrinos

We extend the SM by adding to its Lagrangian the non-renormalizable operator (LH)2 and no
new fields. Below the SU(2)L-breaking scale, (LH)2 just gives rise to Majorana neutrino masses.
In this situation, charged lepton masses are described as usual by a complex 3 ⇥ 3 matrix mE,
and neutrino masses by a complex symmetric 3⇥ 3 matrix m⌫ :

�Lmass = `TR ·mE · `L +
1

2
⌫T
L ·m⌫ · ⌫L.

How many independent parameters do they contain? Performing the usual unitary flavour ro-
tations of right-handed E = `R and left-handed L = (⌫L, `) leptons, that do not a↵ect the
rest of the Lagrangian,5 we reach the standard mass eigenstate basis of charged leptons, where
mE = diag (me,mµ,m⌧ ). It is still possible to redefine the phases of eL and eR such that me

and mee
⌫ are real and positive; and similarly for µ and ⌧ . Therefore charged lepton masses are

specified by 9 real parameters and 3 complex phases: the 3 real parameters me, mµ, m⌧ ; the 3
real diagonal elements of m⌫ ; the 3 complex o↵-diagonal elements of m⌫ .

5Gauge interactions are the same in any flavour basis, because kinetic energy and gauge interaction originate
from the same Lagrangian term, L̄D/L. This well known but non-trivial fact rests on solid experimental and
theoretical grounds.
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Figure 1: The box- diagrams contributing to K 0� ¯K 0 mixing. Similarly for B0
q �B̄0

q mixing.

Figure 2: The tree- diagrams contributing to K 0� ¯K 0 mixing. Similarly, for B0
q �B̄0

q mixing.

Âm is a fl avour gauge boson mass eigenstate.

The e↵ective Hamiltonian for �F = 2 transitions can then be written in a general form
as

H �F =2
e↵ =

G 2
F M2

W

4⇡2

X

u i

C i ( µ ) Q i , (3.1)

where MW is the mass of the W -boson, Q i are the relevant operators for the transitions,
that we list below, and C i ( µ ) their W ilson coe�cients evaluated at a scale µ , which will
be specifi ed in the next section.

W hile in the SM only one operator contributes to each�F = 2 transition, i.e. Q VLL
1 (M)

in the list of eq. (3.2), in the model in question there are more dimension-six operators. In
the absence of flavon exchanges, the relevant operators for the M0–M̄0 (M = K , B d , Bs)
systems are [18 ]:

Q VLL
1 ( K ) = (¯s ↵� µ P L d

↵)(¯s �� µ P L d
�) , Q VLL

1 (B q ) = (b̄ ↵� µ P L q
↵)( b̄ �� µ P L q

�) ,

Q VRR
1 ( K ) = (¯s ↵� µ P R d

↵)(¯s �� µ P R d
�) , Q VRR

1 (B q ) = (b̄ ↵� µ P R q
↵)( b̄ �� µ P R q

�) ,

Q LR
1 ( K ) = (¯s ↵� µ P L d

↵)(¯s �� µ P R d
�) , Q LR

1 (B q ) = (b̄ ↵� µ P L q
↵)( b̄ �� µ P R q

�) ,

Q LR
2 ( K ) = (¯s ↵ P L d

↵)(¯s � P R d
�) , Q LR

2 (B q ) = (b̄ ↵ P L q
↵)( b̄ � P R q

�) .

(3.2)

where P L , R = (1⌥ �5) / 2.
In the next section, we collect the W ilson coe�cients of these operators separating the

contributions from box-diagrams and from the tree-level heavy gauge boson exchanges so
that

C
(M)
i = �(M)

Box C i + �(M)
A C i , (3.3)

where M = K , B d , Bs.
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5. Giving mass to neutrinos

At the second3 order in perturbation theory one nds the corrections

(1)
i =

k

1

|Mk|
e i k/2mki

(0)
k m(1)

i =
k

mki
1

|Mk|
mki (5.3.44)

(1)
i =

k

1

|Mi|
e i i/2mik

(0)
k m(1)

i =
k

mik
1

|Mi|
mik. (5.3.45)

Thus, up to order (m/M)3, we have the eigenstates

i = Li +
c
Li mT |M | 1N c

R +m†|M | 1NR i
(5.3.46a)

i = ei i/2 N c
Ri +M 1

i (m L)i + e i i/2 NRi + (Mi ) 1(m c
L)i (5.3.46b)

with masses

m i = mT |M | 1m
ii

(5.3.47a)

m i = Mi |Mi| 1 mmT
ii

Mi. (5.3.47b)

The result in (5.3.47a) clearly coincides with that in (5.3.40).
This approach is certainly less accurate and rigorous than that, based on E ective Field

Theory, that was adopted in the rst part of the section. Nonetheless, it sheds light on
some detail of the mechanism that just remained hidden between the lines of the former
analysis. Here we have a di erent understanding of the canonical seesaw mechanism: the
right-handed neutrinos don’t just play the role of heavy mediators that get rigidly removed
from the lagrangian, but they rather mix with the left-handed ones, producing the new
physical states (5.3.46). They are peculiarly unbalanced: three of them are very light and
their N c

R component is tiny (of order m/M) while the remaining n are very heavy and
mostly N c

R.
We can also see, now, the reason of the

name “seesaw”. The essential disparity of
the mass eigenvalues is determined by the
smallness of the ratio m/M : the smaller is
the latter the stronger is the former, just
as the larger is the di erence in weight be-
tween two kids sitting on the opposite sides
of a seesaw, the more inclined is the board
in its equilibrium con guration.

3No correction to the eigenvalues is found at the rst order, because the perturbation matrix has zeroes
all along the diagonal.
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Figure 2: The tree- diagrams contributing to K 0� ¯K 0 mixing. Similarly, for B0
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q mixing.

Âm is a fl avour gauge boson mass eigenstate.

The e↵ective Hamiltonian for �F = 2 transitions can then be written in a general form
as

H �F =2
e↵ =

G 2
F M2

W

4⇡2

X

u i

C i ( µ ) Q i , (3.1)

where MW is the mass of the W -boson, Q i are the relevant operators for the transitions,
that we list below, and C i ( µ ) their W ilson coe�cients evaluated at a scale µ , which will
be specifi ed in the next section.

W hile in the SM only one operator contributes to each�F = 2 transition, i.e. Q VLL
1 (M)

in the list of eq. (3.2), in the model in question there are more dimension-six operators. In
the absence of flavon exchanges, the relevant operators for the M0–M̄0 (M = K , B d , Bs)
systems are [18 ]:

Q VLL
1 ( K ) = (¯s ↵� µ P L d

↵)(¯s �� µ P L d
�) , Q VLL

1 (B q ) = ( b̄ ↵� µ P L q
↵)( b̄ �� µ P L q

�) ,

Q VRR
1 ( K ) = (¯s ↵� µ P R d

↵)(¯s �� µ P R d
�) , Q VRR

1 (B q ) = ( b̄ ↵� µ P R q
↵)( b̄ �� µ P R q

�) ,

Q LR
1 ( K ) = (¯s ↵� µ P L d

↵)(¯s �� µ P R d
�) , Q LR

1 (B q ) = ( b̄ ↵� µ P L q
↵)( b̄ �� µ P R q

�) ,

Q LR
2 ( K ) = (¯s ↵ P L d

↵)(¯s � P R d
�) , Q LR

2 (B q ) = ( b̄ ↵ P L q
↵)( b̄ � P R q

�) .

(3.2)

where P L , R = (1⌥ �5) / 2.
In the next section, we collect the W ilson coe�cients of these operators separating the

contributions from box-diagrams and from the tree-level heavy gauge boson exchanges so
that

C
(M)
i = �(M)

Box C i + �(M)
A C i , (3.3)

where M = K , B d , Bs.
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- The mixing induced CP-asymmetries S KS and S � are una↵ected by the new box-
diagram contributions. Similarly to R

�MB , this allows to see transparently the heavy
gauge flavour boson contributions, which was much harder in the case of �MBd,s

.
We find that S KS is only a↵ected by LL contributions and can only be suppressed.
S � depends on both LL and LR contributions. Interestingly, the NP contributions
interfere destructively with the SM contribution such that the sign of S � can in
principle be reversed in this model. Similar conclusions hold for Ab

sl: it is not a↵ected
by box-diagram contributions, the LR contributions are almost completely negligible
and the LL ones are the only relevant enhancing |Ab

sl| towards the central value of
the experimental determination.

- Finally, the branching ratio of B̄ ! Xs� can be significantly a↵ected by the modifi-
cations in the SM magnetic penguin contributions that can only enhance this observ-
able, as already pointed out in Ref. [12]. The heavy gauge flavour boson contributions
are negligible as discussed in Ref. [17].

Having listed the basic characteristic of NP contributions in this model we will now present
our numerical results in more detail stressing the important role of correlations among
various observables identified in this model by us for the first time.

6.3.1 Correlations Among the Observables

In this section we discuss correlations among the observables. They will allow us to
constrain the parameter space of the model and see whether this model is able or not to
soften, or even solve, the anomalies in the flavour data.

(a) Exclusive Vub (b) Inclusive Vub

Figure 3: The correlation of "K and S KS . The shaded grey regions are the experimental
1�-3� error ranges, while the cross is the central SM values reported in tab. 4. The colour
of the points represent the percentage of the box-diagram contributions (purple) and of the
flavour gauge boson ones (red) in "K. In the NP points the theoretical error on "K is
included.
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q �B̄0

q mixing.
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Figure 2: The tree-diagrams contributing to K0�K̄0 mixing. Similarly, for B0
q�B̄0

q mixing.

Âm is a flavour gauge boson mass eigenstate.

The e↵ective Hamiltonian for �F = 2 transitions can then be written in a general form
as

H�F=2
e↵ =

G2
F M2

W

4⇡2

X

ui

Ci(µ)Qi, (3.1)

where MW is the mass of the W -boson, Qi are the relevant operators for the transitions,
that we list below, and Ci(µ) their Wilson coe�cients evaluated at a scale µ, which will
be specified in the next section.

While in the SM only one operator contributes to each�F = 2 transition, i.e. QVLL
1 (M)

in the list of eq. (3.2), in the model in question there are more dimension-six operators. In
the absence of flavon exchanges, the relevant operators for the M0–M̄0 (M = K,Bd, Bs)
systems are [18]:

QVLL
1 (K) = (s̄↵�µPLd

↵)(s̄��µPLd
�) , QVLL

1 (Bq) = (b̄↵�µPLq
↵)(b̄��µPLq

�) ,

QVRR
1 (K) = (s̄↵�µPRd

↵)(s̄��µPRd
�) , QVRR

1 (Bq) = (b̄↵�µPRq
↵)(b̄��µPRq

�) ,

QLR
1 (K) = (s̄↵�µPLd

↵)(s̄��µPRd
�) , QLR

1 (Bq) = (b̄↵�µPLq
↵)(b̄��µPRq

�) ,

QLR
2 (K) = (s̄↵PLd

↵)(s̄�PRd
�) , QLR

2 (Bq) = (b̄↵PLq
↵)(b̄�PRq

�) .

(3.2)

where PL,R = (1⌥ �5)/2.
In the next section, we collect the Wilson coe�cients of these operators separating the

contributions from box-diagrams and from the tree-level heavy gauge boson exchanges so
that

C
(M)
i = �(M)

Box Ci +�(M)
A Ci , (3.3)

where M = K, Bd, Bs.
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q mixing.

Âm is a flavour gauge boson mass eigenstate.

The e↵ective Hamiltonian for �F = 2 transitions can then be written in a general form
as

H�F=2
e↵ =

G2
F M2

W

4⇡2

X

ui

Ci(µ)Qi, (3.1)

where MW is the mass of the W -boson, Qi are the relevant operators for the transitions,
that we list below, and Ci(µ) their Wilson coe�cients evaluated at a scale µ, which will
be specified in the next section.

While in the SM only one operator contributes to each�F = 2 transition, i.e. QVLL
1 (M)

in the list of eq. (3.2), in the model in question there are more dimension-six operators. In
the absence of flavon exchanges, the relevant operators for the M0–M̄0 (M = K,Bd, Bs)
systems are [18]:

QVLL
1 (K) = (s̄↵�µPLd

↵)(s̄��µPLd
�) , QVLL

1 (Bq) = (b̄↵�µPLq
↵)(b̄��µPLq

�) ,
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1 (K) = (s̄↵�µPRd
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�) ,
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↵)(s̄��µPRd
�) , QLR
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�) ,
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↵)(s̄�PRd
�) , QLR

2 (Bq) = (b̄↵PLq
↵)(b̄�PRq

�) .

(3.2)

where PL,R = (1⌥ �5)/2.
In the next section, we collect the Wilson coe�cients of these operators separating the

contributions from box-diagrams and from the tree-level heavy gauge boson exchanges so
that

C
(M)
i = �(M)

Box Ci +�(M)
A Ci , (3.3)

where M = K, Bd, Bs.
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(a) (b)

Figure 7: Correlation plot of S � and Ab
sl on the left and BR(B̄ ! Xs�) and m0

t on the
right. Grey regions refer to the experimental error ranges. The big black point refers to
the SM values reported in tab. 4. In red the points for which R

�MB , RBR/�M and "K agree
with the data at 3� level, in blue all others for which there is no agreement.

of Grinstein et al. that in this model the NP contributions to BR(B ! Xs�) always
enhance it towards the central experiment value. However, interestingly only very small
enhancements of this branching ratio are allowed when also the bounds from �F = 2
observables are taken into account.

7 Comparison with other Models

A complete comparison of the patterns of flavour violation in MGF with corresponding
patterns found in numerous models [51] would require the study of �F = 1 processes,
however already �F = 2 observables allow a clear distinction between the MGF and the
simplest extensions of the SM. Here we just quote a few examples:

- In the original MFV framework restricted to LL operators, the so-called constrained
MFV [52], the |"K |�S KS anomaly can only be solved by enhancing |"K | since in this
framework S KS remains SM-like. In this framework then only the exclusive value of
|Vub| is viable. An example of such a framework is the model with a single universal
extra dimension (UED) for which a very detailed analysis of �F = 2 observables
has been performed in [53]. In fact this is a general property of CMFV models as
demonstrated in [54]. Thus after |"K | has been taken into account and contributions
from tree-level heavy gauge boson exchanges have been eliminated MGF resembles
CMFV if only �F = 2 processes are considered. However �F = 1 processes can
provide a distinction. In fact whereas in MGF the NP contributions uniquely enhance
BR(B ! Xs�), in UED they uniquely suppress this branching ratio [55]. Concerning
the |"K |–�MBd,s

tension MGF and CMFV are again similar.
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Figure 21. Combination of all ATLAS and CMS resonance searches for Gbulk ! ZLZL (top),
Gbulk ! WLWL (middle) and W0 ! WL ZL (bottom) selections and signal hypotheses, and as
a function of the resonance mass mX carried out in the hadronic (red) and semileptonic (blue)
channels and their combination (black). The results include all correction factors discussed in the
text. Left: Expected (dashed lines) and observed (continuous lines) exclusion limits on exotic
production cross section. The green and yellow bands represent the one and two sigma variations
around the median expected limits. Middle: Likelihood ratio p-values. The dashed black curve
corresponds to the combined search without the corrections discussed in the text. Right: Best
fitted exotic production cross section. The green and yellow bands represent the one and two sigma
variations around the median values.
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with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx
⇤2

Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� Ga
µ⌫G

aµ⌫ OWW = �†Ŵµ⌫Ŵ
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and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators
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is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.
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Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in
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†Ŵµ⌫(D⌫�) OB = (Dµ�)
†B̂µ⌫(D⌫�)

O
�,1 = (Dµ�)

† � �† (Dµ�) O
�,2 =

1

2
@µ

�
�†�

�
@µ

�
�†�

�
O

�,4 = (Dµ�)
† (Dµ�)

�
�†�

�
. (3.2)Ou�,33 = (�†�)(Q̄L3�uR3)

Od�,33 = (�†�)(Q̄L3�dR3)

Oe�,33 = (�†�)(L̄L3�eR3)



";UU=$%AB=;3=$;<$-*#+!

H`

7(->,^=$R>(2*=$_(.\32,\PD-3*2,$[$_(.\32,\P_3-J*3=$8m]dh$Bae`%C

13

with a significantly more optimistic error based on the central scale choice µR,F = mH/2. Again, the now strongly

reduced theoretical uncertainty hardly a↵ects the Run I results.

Finally, we compare the precision of the Higgs couplings determination with flat theoretical uncertainties with a

Gaussian nuisance parameter. The main di↵erences between the frequentist RFit treatment and Gaussian theoret-

ical uncertainties are not related to the shape of the final distribution, but to the size of the combined theoretical

uncertainties. First, combining two flat theoretical uncertainties, for example from unknown higher orders and the

parton densities, will lead to a linear combination of the two error bars in the frequentist RFit scheme [47, 49, 52].

In the Gaussian approach they are added in quadrature. Second, it is not clear with which Gaussian significance we

should identify the ends of the box-shaped distribution. For example, computing the standard deviation of a flat data

set stays well below the size of the box. This means that if we compare the range of one standard deviation for the

RFit scheme with one standard deviation of the Gaussian, the error on the flat distribution appears smaller.

Per se, it is not clear which of the two e↵ects will dominate in a given fit. In this situation we could choose the flat

and Gaussian theoretical uncertainties without a clear preference. We stick to the former because we assume that it

will be the conservative approach once theoretical errors actually a↵ect LHC results with larger data sets.

III. HIGGS OPERATORS

Going beyond a measurement of all couplings predicted by the Standard Model we can ask a di↵erent question:

Which consistent Lagrangian describes all LHC measurements best? A standard approach is defined by e↵ective field

theory [53], where we categorize a Lagrangian with the appropriate symmetries in terms of the expansion parameter.

While the results of the previous section can be interpreted in the framework of a non-linear e↵ective Lagrangian

approach as we have explained, in this section we focus on the linear case. In the linear sigma model we construct a

SU(2)L ⇥U(1)Y -symmetric Higgs Lagrangian based on the doublet � and order it according to the inverse powers of

the cuto↵ scale, 1/⇤ [42, 54–56]. The Lagrangian, here restricting to all dimension-6 operators

L =
X

x

fx
⇤2

Ox (3.1)

is gauge invariant, but not fully renormalizable or unitary.

Strictly speaking, in the SM Higgs sector we should separate two sources of dimension-6 operators. Yukawa

couplings or gauge boson couplings from spontaneous symmetry breaking violate the Appelquist–Carazzone decoupling

theorem [57], which means that the Higgs couplings to photons and gluons are only suppressed by 1/v. New physics

generally gives rise to dimension-6 operators suppressed by 1/⇤2, leading to Higgs coupling strengths to photons and

gluons scaling like v/⇤2. This distinction will be reflected in the normalization of the respective operators below.

A. Dimension-6 operator basis

Before we present the result of the LHC analysis we need to define our basis of dimension-6 operators. The

minimum independent set of dimension-6 operators with the SM particle content (including the Higgs boson as an

SU(2)L doublet) and compatible with the SM gauge symmetries as well as baryon number conservation contains 59

operators, up to flavor and Hermitian conjugation [56]. To present our choice of operator basis [9], we start by imposing

C and P invariance and employing for the bosonic sector the classical non-minimal set of dimension-6 operators in

the HISZ basis [55], with the following operators contributing to the Higgs interactions with gauge bosons:

OGG = �†� Ga
µ⌫G

aµ⌫ OWW = �†Ŵµ⌫Ŵ
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Example I

Coupling
A µν W

`µ W ´ν A µν W
`µ W ´ν h Z µν W

`µ W ´ν Z µν W
`µ W ´ν h

A

W ´

W `

A

h

W ´

W `

Z

W ´

W `

Z

h

W ´

W `

generic singlet 2 c 2 ` c 3 2 c 2 a 2 ` c 3 a 3 ´2t 2θ c 2 ` c 3 ´2t 2θ c 2 a 2 ` c 3 a 3

Coupling
A µν Z

µ B ν h A µν Z
µ h B ν h Z µν Z

µ B ν h Z µν Z
µ h B ν h

h

Z

A

h

h

Z

A

h

Z

Z

h

h

Z

Z

generic singlet 2 c 4 a 4 ` c 5 a 5 2 c 4 b 4 ` c 5 b 5 2t θ c 4 a 4 ´ c 5 a 5 2t θ c 4 b 4 ´ c 5 b 5
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Determining TGV from Higgs data

Determining TGV from Higgs data arxiv:1304.1151

• Gauge Invariance ! TGV and Higgs couplings related: OW and OB

• Complementarity in experimental searches: Higgs data bounds on

fW ⌦ fB , �� ⌦�gZ
1

�gZ1 = gZ1 � 1 =

g2v2

8c2⇤2
fW ,

�� = � � 1 =

g2v2

8⇤

2

⇣
fW + fB

⌘
,

�Z = Z � 1 =

g2v2

8c2⇤2

⇣
c2fW � s2fB

⌘
.

For the plane:
⇧ Measurements with only two of the

three aTGV independent.
⇧ Additional assumption:

�V = 0 , fWWW = 0.

Complete 7+8 TeV LHC results are missing
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variables. We show in Figure 3 the current status of the bounds on the two relevant planes
of coe�cients after taking into consideration all the Higgs measurements included in the
presented Higgs global analysis (based on [49]), together with the most recent combination
of TGV searches presented in the previous subsection (based on [59]).

Figure 3: Present bounds on ⌃B, ⌃W , �B and �W (see text for the details on
their definition) as obtained from the most recent combined global analysis of Higgs
and TGV data. The rest of undisplayed parameters spanned in the global analysis
(�aC , aB, aG, aW , , a17, Y

(1)
t , Y

(1)
b and Y

(1)
⌧ ) have been profiled. The black dots signal

the (0, 0) point, while the stars signal the current best fit point obtained in the analysis.

As described in Ref. [33], given the variables shown in Figure 3, while in the left panel
the (0, 0) point corresponds to the SM, in the right one it also corresponds to possible BSM
signals generated in the linear approach. Therefore, an eventual deviation from (0, 0) in the
left panel would indicate BSM physics irrespective of the nature of the EWSB realization, in
contrast if this was accompanied by a departure in the right panel, this would be indicative
of a non linear nature of the Higgs boson.

The observed constraints of ⌃B, ⌃W , �B and�W shown in Figure 3 present a significant
improvement with respect to the previous bounds that were shown in Figure 2 of [33], The
reason for such a sizable improvement relies on two key points. First he more complete
set of run I LHC Higgs event rate measurement and the addition of relevant kinematic
distributions that are sensitive to the anomalous SM Lorentz structures generated by a5 and
a3 introduced in [49] increase the strength of the derived results. Second the combination
of the significant LHC run I diboson production analysis as described in [59] has also a
huge impact in the results. These combination of improvements leads to the significant
enhancement on the sensitive of the combined results shown in Figure 3, in spite of the
larger dimensionality of the parameter space considered in the present study with respect
to the global analysis in [33].
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Figure 3: The left (right) panel displays the number of expected events as a function of the Z
transverse momentum for a center–of–mass energy of 7 (14) TeV, assuming an integrated
luminosity of 4.64 (300) fb�1. The black histogram corresponds to the sum of all back-
ground sources except for the SM electroweak pp ! W±Z process, while the red histogram
corresponds to the sum of all SM backgrounds, and the dashed distribution corresponds to
the addition of the anomalous signal for gZ5 = 0.2 (gZ5 = 0.1). The last bin contains all the
events with pZT > 180 GeV.

Two procedures have been used to estimate the LHC potential to probe anomalous gZ5
couplings. In the first approach, we performed a simple event counting analysis assuming
that the number of observed events correspond to the SM prediction (gZ5 = 0) and we look
for the values of gZ5 which are inside the 68% and 95% CL allowed regions. As suggested
by Ref. [131], the following additional cut was applied in this analysis to enhance the
sensitivity to gZ5 :

pZT > 90 GeV. (4.41)

On a second analysis, a simple �2 was built based on the contents of the di↵erent bins of
the pZT distribution, in order to obtain more stringent bounds. The binning used is shown
in Fig. 3. Once again, it was assumed that the observed pZT spectrum corresponds to the
SM expectations and we sought for the values of gZ5 that are inside the 68% and 95%
allowed regions. The results of both analyses are presented in Table 7.

We present in the first row of Table 7 the expected LHC limits for the combination of
the 7 TeV and 8 TeV existing data sets, where we considered an integrated luminosity of
4.64 fb�1 for the 7 TeV run and 19.6 fb�1 for the 8 TeV one. Therefore, the attainable
precision on gZ5 at the LHC 7 and 8 TeV runs is already higher than the present direct
bounds stemming from LEP and it is also approaching the present indirect limits. Finally,
the last row of Table 7 displays the expected precision on gZ5 when the 14 TeV run with
an integrated luminosity of 300 fb�1 is included in the combination. Here, once more,
it was assumed that the observed number of events is the SM expected one. The LHC
precision on gZ5 will approach the per cent level, clearly improving the present both direct
and indirect bounds.
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