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Figure 7. Zenith angle distributions for multi-GeV (a) e-like and (b) µ-like events observed in
the Kamiokande. ! shows the zenith angle, cos Q = 1 and −1 represent events whose direction
is vertically down-going and up-going respectively. Dots with error bars show the data. Solid
histograms show the prediction without neutrino oscillations. Dashed histograms show the best fit
to the data including neutrino oscillations. Since there is a large uncertainty in the total number of
predicted events, the prediction is normalized by the total number of observed events.

Figure 8. Inside the Super-Kamiokande detector. This photo was taken in January 1996 during the
construction of the detector. The detector was filled with pure water. Each dot seen on the wall shows
a 50 cm diameter photomultiplier tube. About 11 200 photomultiplier tubes are used for the inner
detector. The outer detector is equipped with about 1900 20 cm diameter photomultiplier tubes.

the exiting and incoming particles. The fiducial mass is the central 22 500 tons, and is about
20 times larger than that of Kamiokande. Figure 8 shows the inside of the Super-Kamiokande
detector.

Due to the larger fiducial mass, Super-Kamiokande can observe the neutrino events
approximately 20 times faster than Kamiokande. Furthermore, the images of the Cherenkov
rings observed by the 11 200 photomultiplier tubes make it possible to study the details of
the events. Figure 9 shows the charged-current νe and νµ interactions with a visible single
Cherenkov ring observed in Super-Kamiokande. This feature turned out to be particularly
useful for studying neutrino oscillations in detail.

The Super-Kamiokande collaboration is an international collaboration from Japan, United
States of America, Korea and Poland. Many people from the Kamiokande and IMB



The Large Hadron Collider

What we discover will shape our ideas about nature 
and the future of our field

Run 2 and beyond at the LHC will be a driving force 
in the search for new physics
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Tree amplitude is a rational function of Lorentz 
invariants            ,            ,           .

The connection between theory 
and experiment

Scattering amplitudes

Feynman rules evaluate to give function of 
momenta of the particles

p1 · p2 p1 · p3 p1 · p4

=



The connection between theory 
and experiment

Scattering amplitudes

Quantum corrections ordered in perturbative 
expansion

Precision 
calculations

=



Why precision?
LHC processes necessarily involve quarks and 
gluons

Strong coupling ~0.1 (vs ~1/137 for electroweak 
processes) means higher perturbative orders 
more important 

q

q
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‘Quantum whispers’ — indirect 
hints of new physics

Quantum effects are detectable…
…and they tend to be democratic (if they aren’t, 
some high energy symmetry is at play)

Effective field 
theories

L =
X

i

ciOi

so write down everything allowed 
by the low energy symmetries
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Probe ‘quantum whispers’ = ‘anomalous tri-linear 
couplings’

Production of WW, WZ, ZZ
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Next-to-leading order (NLO) in QCD coupling

Production of WW, WZ, ZZ



Where does N=4 SYM come in?

=

=

7 gluons = ~2500 diagrams

even worse for one-loop amplitude…



Two crucial ideas imported from N=4 SYM

Where does N=4 SYM come in?

Unitarity — glue tree amplitudes to form loop 
amplitudes

Recursion — work directly with the amplitudes

Britto, Cachazo, Feng 2005 

Britto, Cachazo, Feng 2005 
Britto, Cachazo, Feng, Witten 2005 
(Berends, Giele 1988)



Two crucial ideas imported from N=4 SYM

Where does N=4 SYM come in?

Unitarity

Recursion = ⌃

= ⌃



These techniques apply to colour-ordered 
amplitudes…

Where does N=4 SYM come in?

…an idea borrowed from string theory
Mangano, Parke, Xu 1986

A =
X

P(2,..,n)

Tr(T a1 , T a2 , . . . , T an) A(1, 2, . . . , n)

n gluons

‘Chan-Paton’ 
factors

n gluons



Dramatic example: the Parke-Taylor formula

Where does N=4 SYM come in?

this shift in philosophy has had a large impact on 
LHC precision

n gluons, 
two positive 

helicity
= ign�2 h12i4

h12ih23i . . . hn1i

hiji =
p
2pi · pjei�

Parke, Taylor 1986



‘N=4 feedback’

pp ! W+W+jj

pp ! W+W�jj

pp ! W+W�j

gg ! W+W�g

pp ! WW, WZ, ZZ
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Figure 14: Comparison of one-dimensional limits at 95% CL on the anomalous coupling parameters using a cut-
o↵ scale of ⇤co = 2 TeV and obtained from the analysis of W

±
Z events by the ATLAS [3], D0 [84], and CDF

experiments [1].

Table 9 presents the observed and expected one-dimensional intervals at 95% CL on c

WWW

/⇤2, c

B

/⇤2,
and c

W

/⇤2. The sensitivity of the W

±
Z final state to the EFT parameter c

B

/⇤2 is much weaker.

EFT coupling Expected [TeV�2] Observed [TeV�2]

c

W

/⇤2 [�3.7 ; 7.6] [�4.3 ; 6.8]
c

B

/⇤2 [�270 ; 180] [�320 ; 210]
c

WWW

/⇤2 [�3.9 ; 3.8] [�3.9 ; 4.0]

Table 9: One-dimensional intervals at 95% CL on the EFT parameters expected and observed in data.

13 Anomalous quartic gauge Couplings

To extract limits on aQGC, the EFT approach introduced in the previous section is used. Several ways of
parameterizing possible deviations with respect to the SM exist. In this analysis, the choice is to express
the deviation using two parameters ↵4 and ↵5 following existing notations [49, 85–87]. They are the
coe�cients of the two linearly independent dimension-four operators contributing to the quartic gauge
couplings beyond the SM.

The Whizard event generator is used to compute the ratio in the aQGC fiducial phase space, at particle
level, of the expected fiducial cross section for di↵erent values of ↵4 and ↵5, to the SM cross section.
Whizard includes a unitarization scheme in order to ensure the unitary of the scattering amplitude, which
would be violated for values of the quartic gauge couplings di↵erent from the SM value.

32

L =
X

i

ciOi cW
⇤2

(DµH)† Wµ⌫ D⌫H

cB
⇤2

(DµH)† Bµ⌫ D⌫H

cWWW

⇤2
Tr(Wµ⌫W⌫⇢W⇢µ)
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Figure 14: Comparison of one-dimensional limits at 95% CL on the anomalous coupling parameters using a cut-
o↵ scale of ⇤co = 2 TeV and obtained from the analysis of W

±
Z events by the ATLAS [3], D0 [84], and CDF

experiments [1].

Table 9 presents the observed and expected one-dimensional intervals at 95% CL on c

WWW

/⇤2, c

B

/⇤2,
and c

W

/⇤2. The sensitivity of the W

±
Z final state to the EFT parameter c

B

/⇤2 is much weaker.

EFT coupling Expected [TeV�2] Observed [TeV�2]

c

W

/⇤2 [�3.7 ; 7.6] [�4.3 ; 6.8]
c

B

/⇤2 [�270 ; 180] [�320 ; 210]
c

WWW

/⇤2 [�3.9 ; 3.8] [�3.9 ; 4.0]

Table 9: One-dimensional intervals at 95% CL on the EFT parameters expected and observed in data.

13 Anomalous quartic gauge Couplings

To extract limits on aQGC, the EFT approach introduced in the previous section is used. Several ways of
parameterizing possible deviations with respect to the SM exist. In this analysis, the choice is to express
the deviation using two parameters ↵4 and ↵5 following existing notations [49, 85–87]. They are the
coe�cients of the two linearly independent dimension-four operators contributing to the quartic gauge
couplings beyond the SM.

The Whizard event generator is used to compute the ratio in the aQGC fiducial phase space, at particle
level, of the expected fiducial cross section for di↵erent values of ↵4 and ↵5, to the SM cross section.
Whizard includes a unitarization scheme in order to ensure the unitary of the scattering amplitude, which
would be violated for values of the quartic gauge couplings di↵erent from the SM value.
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Hidden structure in SM amplitudes
Long understood that SM tree amplitudes with 
gluons and one flavour of quark are ‘effectively 
supersymmetric’

N=1 super-multiplet

Parke, Taylor 1985 

(ga,�a)

Apart from the colour (adjoint gluino) these have 
identical interactions as a massless quark with a 
gluon

Kunszt 1986 



Hidden structure in SM amplitudes
Long understood that SM tree amplitudes with 
gluons and one flavour of quark are ‘effectively 
supersymmetric’

N=1 super-multiplet

Parke, Taylor 1985 Kunszt 1986 

(ga,�a)

A =
X

P(2,..,n)

Tr(T a1 , T a2 , . . . , T an) A(1, 2, . . . , n), . . . , n)

goes beyond just 
using the techniques…



Hidden structure in SM amplitudes
All N=4 super Yang-Mills tree amplitudes are 
known in closed (and concise) form
Drummond, Henn 2009 

(g+,�A,�AB ,�A, g
�)

A = 1, 2, 3, 4

N=4 super-multiplet



Hidden structure in SM amplitudes
All N=4 super Yang-Mills tree amplitudes are 
known in closed (and concise) form
Drummond, Henn 2009 

(g+,�A,�AB ,�A, g
�)

A = 1, 2, 3, 4

gluons and four flavours of massless ‘quarks’

N=4 super-multiplet



Hidden structure in SM amplitudes
All N=4 super Yang-Mills tree amplitudes are 
known in closed (and concise) form

…scalars contaminate the amplitudes

Drummond, Henn 2009 

(g+,�A,�AB ,�A, g
�)

A = 1, 2, 3, 4

N=4 super-multiplet

�A

�B

�AB

Dixon, Henn, Plefka, Schuster 2011 

A 6= B



‘Emergent flavour’
It turns out that it is possible to express any k-
flavour QCD tree amplitude in terms of one-flavour 
amplitudes

All massless QCD from N=4 SYM

TM 2014 

gluons and 
k flavours 
of quarks 

gluons and 
one flavour 

of quark 
= ⌃



Dyck word structure

Understanding a basis for these amplitudes is 
crucial for this

TM 2013 

gluons and 
k flavours 
of quarks 

Structure based around ‘Dyck words’



Dyck word structure

String of r Xs and r Ys such that the number of 
Xs is always greater than or equal to the 
number of Ys in any initial segment of the string.

r=1 XY

r=2 XYXYXXYY

r=3 XXXYYY XXYXYY XXYYXY XYXXYY XYXYXY



Planarity



Planarity



Planarity



Dyck word structure
r=3

XXXYYY XXYXYY XXYYXY XYXXYY XYXYXY

determines # independent 
amplitudes



One flavour recursion
r=3

XXXYYY XXYXYY XXYYXY XYXXYY XYXYXY



One flavour recursion
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More feedback into QCD
This basis has provided a bridge for some of the 
most recent developments in the amplitudes field 
to be imported into QCD… 



This basis has provided a bridge for some of the 
most recent developments in the amplitudes field 
to be imported into QCD… 

BCJ relations

CHY representation

Bern, Carrasco, Johansson 2008 Johansson, Ochirov 2015 
QCD trees

QCD trees
Cachazo, He, Yuan 2014,15 de la Cruz, Kniss, Weinzierl 2015 

More feedback into QCD

de la Cruz, Kniss, Weinzierl 2015 



JO conjecture on simple way 
to put colour back correctly…

Johansson, Ochirov 2015 

More feedback into QCD
JO conjecture on simple way 
to put colour back correctly…

Johansson, Ochirov 2015 Johansson, Ochirov 2015 

in terms of three primitives

A12534 = −
n2

D2
− n3

D3
− n5

D5
, A12345 = −

n1

D1
− n4

D4
+

n5

D5
, A12354 =

n3

D3
+

n4

D4
. (3.17)

Note that they correspond to the single Dyck word XY, equivalent to the bracket {34},
with the gluon label 5 inserted before, after and in the middle of the word, respectively.

Their color coefficients in the decomposition (3.16) are given by the following graphs:

C12534 =
2 1

4
5 3

, C12345 =
2 1

3 4
5

,

C12354 =

2 1

3 4

5

+

2 1

3 4

5

=

2 1

3 4

5

+

2 1

3 4

5

,

(3.18)

where C12354 is drawn both as (−c1 + c4) and (−c2 + c3) to emphasize that the nonplanar

diagrams cannot be removed by commutation relations. The pattern to take note of is that

the non-planarity occurs in the ordering {3 5 4} with the gluon sandwiched between the

quark brackets, which is reminiscent of the nested quark-antiquark pairs in section 3.1.

3.3 New color decomposition

In this section we formulate the new color decomposition for QCD.

We use the Melia basis for primitives with (n − 2k) gluons and k quark-lines [38]:

{

A(1, 2,σ)
∣
∣ σ ∈ Dyckk−1 × {gluon insertions}n−2k

}

. (3.19)

In the construction of this basis there are (2k−2)!/(k!(k−1)!) Dyck words prior to assigning

the particle labels inside the brackets. The quark labels can be assigned to (k− 1) slots in

(k − 1)! inequivalent ways. The antiquark labels have unique slot assignments after this,

since all quark lines have different flavors. Then the (n − 2k) gluons are assigned to any

place except between 1 and 2, which must stay adjacent. With each gluon inserted, the

number of available slots grows, starting from (2k − 1) up to (n − 2). Therefore, the size

of this color-algebra basis is

κ(n, k) =

empty brackets
︷ ︸︸ ︷

(2k − 2)!

k!(k − 1)!
×(k − 1)!

︸ ︷︷ ︸

dressed quark brackets

× (2k − 1)(2k) . . . (n− 2)
︸ ︷︷ ︸

insertions of (n−2k) gluons

=
(n− 2)!

k!
, (3.20)

in agreement with the reasoning given in the beginning of section 3. See table 2 for the

explicit counts of the lower-multiplicity primitive amplitudes.

Now the new color decomposition for QCD is conveniently written as

Atree
n,k =

κ(n,k)
∑

σ∈Melia basis

C(1, 2,σ)A(1, 2,σ) , (3.21)

– 14 –

A =
X

P(2,..,n)

Tr(T a1 , T a2 , . . . , T an) A(1, 2, . . . , n)

c.f.



Proof using ‘Mario World’ Feynman diagrams
TM 2015

Prepared for submission to JHEP UCB-PTH-15/06

Proof of a new colour decomposition for QCD

amplitudes

Tom Melia

a,b

aDepartment of Physics, University of California, Berkeley, California 94720, USA
bTheoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720,
USA

E-mail: tmelia@lbl.gov

Abstract: Recently, Johansson and Ochirov conjectured the form of a new colour decom-
position for QCD tree-level amplitudes. This note provides a proof of that conjecture. The
proof is based on ‘Mario World’ Feynman diagrams, which exhibit the hierarchical Dyck
structure previously found to be very useful when dealing with multi-quark amplitudes.
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Note that they correspond to the single Dyck word XY, equivalent to the bracket {34},
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where C12354 is drawn both as (−c1 + c4) and (−c2 + c3) to emphasize that the nonplanar

diagrams cannot be removed by commutation relations. The pattern to take note of is that

the non-planarity occurs in the ordering {3 5 4} with the gluon sandwiched between the

quark brackets, which is reminiscent of the nested quark-antiquark pairs in section 3.1.

3.3 New color decomposition

In this section we formulate the new color decomposition for QCD.

We use the Melia basis for primitives with (n − 2k) gluons and k quark-lines [38]:

{

A(1, 2,σ)
∣
∣ σ ∈ Dyckk−1 × {gluon insertions}n−2k

}

. (3.19)

In the construction of this basis there are (2k−2)!/(k!(k−1)!) Dyck words prior to assigning

the particle labels inside the brackets. The quark labels can be assigned to (k− 1) slots in

(k − 1)! inequivalent ways. The antiquark labels have unique slot assignments after this,

since all quark lines have different flavors. Then the (n − 2k) gluons are assigned to any

place except between 1 and 2, which must stay adjacent. With each gluon inserted, the

number of available slots grows, starting from (2k − 1) up to (n − 2). Therefore, the size

of this color-algebra basis is

κ(n, k) =

empty brackets
︷ ︸︸ ︷

(2k − 2)!

k!(k − 1)!
×(k − 1)!

︸ ︷︷ ︸

dressed quark brackets

× (2k − 1)(2k) . . . (n− 2)
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insertions of (n−2k) gluons

=
(n− 2)!
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, (3.20)

in agreement with the reasoning given in the beginning of section 3. See table 2 for the

explicit counts of the lower-multiplicity primitive amplitudes.

Now the new color decomposition for QCD is conveniently written as

Atree
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κ(n,k)
∑

σ∈Melia basis
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Johansson, Ochirov 2015 

A =
X

P(2,..,n)

Tr(T a1 , T a2 , . . . , T an) A(1, 2, . . . , n)

c.f.

JO conjecture on simple way 
to put colour back correctly…



There are secrets in the 
standard model…

‘One flavour’ was pretty well hidden

What does it mean?
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Surprises in the structure of EFT

Ongoing work to understand mathematical 
structure of EFTs on general grounds
Henning, Lu, TM, Murayama 2015,16…

The importance and ubiquity of EFTs has been 
understood for decades — remarkable that very 
basic questions about their structure are (were) 
unknown



Lightening review…

It turns out the structure of an operator basis is 
controlled by the conformal algebra

Organize into irreps. of the conformal group — 
the basis is spanned by primary operators

L =
X

i

ciOi



Application to the SM

On this operator basis we defined a generating 
function — Hilbert series

Evaluate to count the number of independent 
operators at a given mass dimension in the SM

Buchmuller, Wyler 1986

Grzadkowski et. al. 2010

Manohar et. al. 2013

Lehman, Martin 2014

dim 6, 1 gen.

dim 6, 1 gen, corrected

dim 6, Nf gen.

dim 7, Nf gen.

dim 8, 1 gen.



Counting in the SM EFT
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We have entered a new 
energy regime — 

anything might happen!
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Decay to two pairs of collimated
photons through a Hidden Valley
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TABLE II: Topologies considered in this paper.

• Another variation of the cascade decays is given by the possibility that the di-photon “peak” may be a kinematic
edge, hard to distinguish due to the relatively low statistics. This provide a natural explanation for the peak
“width” and the production rate can be easily controlled because it can proceed at tree level.

• Finally, we consider vector-boson fusion induced by a set of new vector bosons, which are too heavy to contribute
at tree-level to the width of �. This scenario is, however, already excluded by existing di-jet constraints, and
we relegate it to Appendix B.

The various topologies we consider in this paper are summarized in Table II.
A key result of the observation of a di-photon excess is that in all cases we can think of, is we need more new physics

beyond the single resonance. We now turn to discussing the width of the excess, which has important consequences.
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Heavy ion ‘photon collider’
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Enrico Fermi’s effective photons
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Pb

In relativistic limit, 
EM field at P 
becomes equivalent 
to that of a photon

P
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Search for axion like particles

Sensitive to mass 
range M~GeV

e.g. pseudo Nambu-Goldstone boson from 
some spontaneously broken symmetry
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Figure 4. Left panel: Limits on a coupling to two hypercharge bosons. Right panel: Limits
on a coupling only to photons. The new LEP limits from 2 and 3 photon signatures are shaded
in green and enclosed by dashed and solid black lines, respectively. The future FCC-ee limit is
indicated by the red solid line. Our projected LHC sensitivity for 13 TeV and 100 fb�1 by the
blue line (only applicable to the coupling to hypercharge bosons). The rest of the figure is adapted
from [1, 3, 24–30].

particles have a definite energy given by the collider energy and for the measurements we

consider this was (nearly) mZ .

Aside from the di↵erence in production the analysis follows along similar lines as in

the previous subsection. To obtain the limits in this case we have simply rescaled the limits

with the appropriate lower ALP production cross section.

The resulting limits are shown in light green Fig. 4(b). Again the solid line indicates

the Z ! 3� measurement and the dashed one the Z ! 2� limit. As above we see that the

two photon measurement extends the reach to low masses. In the overlapping region our

limits are slightly weaker than those of [28] which also used data based on more integrated

luminosity at energies o↵ the Z-peak (since the production via photons is always o↵-shell

there is no special benefit in Z-peak data).

3 ALPs at LHC and Future Colliders

3.1 Future electron-positron machines

Let us first consider the sensitivity of future lepton colliders such as ILC [48, 49], CEPC [50],

and FCC-ee [51, 52]. For these the analysis that one can perform is exactly as in the

previous section and limits can be obtained for both the pure photon and the hyperacharge

coupling in Eq. (1.1).

Indeed with at FCC-ee running at the Z-peak we can hope for about 107 times as

many Z-bosons as were produced with LEP-I running at the Z-peak. Naively, we can scale

the improvement in the branching ratio as
p
NZ . We therefore expect that the branching

ratios could be improved by a factor 103�105. Accordingly the limits on the couplings are

– 6 –
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Jaeckel, Spannowsky 15



How to trigger?

Two photons with E > 2 GeV and no hadronic 
activity in one of the forward calorimeters

One photon E > 5 GeV and no hadronic 
activity in one of the forward calorimeters

Two new triggers prepared (CMS Ultra-Peripheral 
Collisions working group analysis released soon)
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Gamma-gamma gateway…
What else can you do with the worlds highest 
energy ‘Lead flashlight’?
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LHCLHCLHCThe discovery potential of 
colliding frontiers…

Figure 14: Comparison of one-dimensional limits at 95% CL on the anomalous coupling parameters using a cut-
o↵ scale of ⇤co = 2 TeV and obtained from the analysis of W

±
Z events by the ATLAS [3], D0 [84], and CDF

experiments [1].

Table 9 presents the observed and expected one-dimensional intervals at 95% CL on c

WWW

/⇤2, c

B

/⇤2,
and c

W

/⇤2. The sensitivity of the W

±
Z final state to the EFT parameter c

B

/⇤2 is much weaker.

EFT coupling Expected [TeV�2] Observed [TeV�2]

c

W

/⇤2 [�3.7 ; 7.6] [�4.3 ; 6.8]
c

B

/⇤2 [�270 ; 180] [�320 ; 210]
c

WWW

/⇤2 [�3.9 ; 3.8] [�3.9 ; 4.0]

Table 9: One-dimensional intervals at 95% CL on the EFT parameters expected and observed in data.

13 Anomalous quartic gauge Couplings

To extract limits on aQGC, the EFT approach introduced in the previous section is used. Several ways of
parameterizing possible deviations with respect to the SM exist. In this analysis, the choice is to express
the deviation using two parameters ↵4 and ↵5 following existing notations [49, 85–87]. They are the
coe�cients of the two linearly independent dimension-four operators contributing to the quartic gauge
couplings beyond the SM.

The Whizard event generator is used to compute the ratio in the aQGC fiducial phase space, at particle
level, of the expected fiducial cross section for di↵erent values of ↵4 and ↵5, to the SM cross section.
Whizard includes a unitarization scheme in order to ensure the unitary of the scattering amplitude, which
would be violated for values of the quartic gauge couplings di↵erent from the SM value.
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Figure 14: Comparison of one-dimensional limits at 95% CL on the anomalous coupling parameters using a cut-
o↵ scale of ⇤co = 2 TeV and obtained from the analysis of W

±
Z events by the ATLAS [3], D0 [84], and CDF

experiments [1].

Table 9 presents the observed and expected one-dimensional intervals at 95% CL on c

WWW

/⇤2, c

B

/⇤2,
and c

W

/⇤2. The sensitivity of the W

±
Z final state to the EFT parameter c

B

/⇤2 is much weaker.

EFT coupling Expected [TeV�2] Observed [TeV�2]

c

W

/⇤2 [�3.7 ; 7.6] [�4.3 ; 6.8]
c

B

/⇤2 [�270 ; 180] [�320 ; 210]
c

WWW

/⇤2 [�3.9 ; 3.8] [�3.9 ; 4.0]

Table 9: One-dimensional intervals at 95% CL on the EFT parameters expected and observed in data.

13 Anomalous quartic gauge Couplings

To extract limits on aQGC, the EFT approach introduced in the previous section is used. Several ways of
parameterizing possible deviations with respect to the SM exist. In this analysis, the choice is to express
the deviation using two parameters ↵4 and ↵5 following existing notations [49, 85–87]. They are the
coe�cients of the two linearly independent dimension-four operators contributing to the quartic gauge
couplings beyond the SM.

The Whizard event generator is used to compute the ratio in the aQGC fiducial phase space, at particle
level, of the expected fiducial cross section for di↵erent values of ↵4 and ↵5, to the SM cross section.
Whizard includes a unitarization scheme in order to ensure the unitary of the scattering amplitude, which
would be violated for values of the quartic gauge couplings di↵erent from the SM value.
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LHC has run-time 
outlined -2035…LHC

…more colliders on 
the way
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Figure 14: Comparison of one-dimensional limits at 95% CL on the anomalous coupling parameters using a cut-
o↵ scale of ⇤co = 2 TeV and obtained from the analysis of W

±
Z events by the ATLAS [3], D0 [84], and CDF

experiments [1].

Table 9 presents the observed and expected one-dimensional intervals at 95% CL on c

WWW

/⇤2, c

B

/⇤2,
and c

W

/⇤2. The sensitivity of the W

±
Z final state to the EFT parameter c

B

/⇤2 is much weaker.

EFT coupling Expected [TeV�2] Observed [TeV�2]

c

W

/⇤2 [�3.7 ; 7.6] [�4.3 ; 6.8]
c

B

/⇤2 [�270 ; 180] [�320 ; 210]
c

WWW

/⇤2 [�3.9 ; 3.8] [�3.9 ; 4.0]

Table 9: One-dimensional intervals at 95% CL on the EFT parameters expected and observed in data.

13 Anomalous quartic gauge Couplings

To extract limits on aQGC, the EFT approach introduced in the previous section is used. Several ways of
parameterizing possible deviations with respect to the SM exist. In this analysis, the choice is to express
the deviation using two parameters ↵4 and ↵5 following existing notations [49, 85–87]. They are the
coe�cients of the two linearly independent dimension-four operators contributing to the quartic gauge
couplings beyond the SM.

The Whizard event generator is used to compute the ratio in the aQGC fiducial phase space, at particle
level, of the expected fiducial cross section for di↵erent values of ↵4 and ↵5, to the SM cross section.
Whizard includes a unitarization scheme in order to ensure the unitary of the scattering amplitude, which
would be violated for values of the quartic gauge couplings di↵erent from the SM value.
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LHCLHC
…colliding frontiers 

are an exciting 
place to be!




