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A Core-Collapse
Supernova 1s the

knell of a massive
star (~104+ My).

The explosion
enriches the
interstellar
medium with
elements from
Oxygen to Nickel
and potentially
the r-process
elements as well.



CHIMERA

CHIMERA has 3 “heads”

Spectral Neutrino Transport (MGFLD-TRANS, Bruenn)
in Ray-by-Ray Approximation

Shock-capturing Hydrodynamics (VH1, Blondin)
Nuclear Kinetics (XNet, Hix & Thielemann)

Plus Realistic Equations of State, Newtonian Gravity
with Spherical GR Corrections.

Models use a variety of approximations

Self-consistent (ab initio) models use
full physics to the center.

Leakage & IDSA models simplify the
transport.

Parameterized models replace the core

with a specified neutrino luminosity. Ray-by-Ray Approximation
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THE EARLY PHASE

For the first ~0.1 s after bounce, the supernova shock 1s essentially
spherical, with 1D models i1dentical to 2D models.

In multi-dimensions, fluid instabilities begin to deform the shock and
gradually push i1t outwards.
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THE EARLY PHASE

For the first ~0.1 s after bounce, the supernova shock 1s essentially

spherical, with 1D models i1dentical to 2D models.

In multi-dimensions, fluid instabilities begin to deform the shock and

gradually push i1t outwards.
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THE EARLY PHASE

For the first ~0.1 s after bounce, the supernova shock 1s essentially
spherical, with 1D models i1dentical to 2D models.

In multi-dimensions, fluid instabilities begin to deform the shock and
gradually push i1t outwards.
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THE EARLY PHASE

For the first ~0.1 s after bounce, the supernova shock 1s essentially
spherical, with 1D models i1dentical to 2D models.

In multi-dimensions, fluid instabilities begin to deform the shock and
gradually push i1t outwards.
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Bruenn, Mezzacappa, Hix, ... (2013)



EXPLOSION ENERGIES

Once we achieve the most basic observable, an explosion, we can
begin to compare to the myriad of other potential observations.
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begin to compare to the myriad of ot

Foremost 1s the kinetic energy

of the explosion.

Unfortunately, models are still in %
the stage where internal energy 5
dominates, so we must estimate the %
explosion energy by assuming £
efficient conversion of E; = E,.

1.6

1.4

1.2

1 b

0.8

0.6

0.4

02 L

ner potential observations.

B T | T T T | T T T | T T T | T T T | T T T i

- ---. E"= Energy sum over positive energy zones ==

[ - E'w=E"{Overburden) __--"77 ]

— E+0V,rec = E o 1 Nuclear recombination ’,/’

[ —— B12-WHO07 et -

[ —— B15-WHO7 ]
B20-WHO7 N

- —— B25-WHO7

0 200 400 600 800 1000 1200 1400

Time after Bounce [ms]

One can construct a “diagnostic”
energy, B = E; + E, + E;, summed
over zones where E* > 0.

To this we add contributions from nuclear
recombination and removing the envelope.
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One can construct a “diagnostic”
energy, B = E; + E, + E;, summed
over zones where E* > 0.

To this we add contributions from nuclear
recombination and removing the envelope.
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END OF THE EXPLOSION?
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END OF

Even 1n our most fully
developed model, the
explosion energy has
not leveled off 1.3
seconds after bounce.

The reason 1s that
accretion continues at
an appreciable rate,
showing no sign of
abating.

This extends the “hot
bubble” phase and
suppresses the
development of the

PNS wind.

W. R. Hix (ORNL/UTK)

THE EXPLOSION?
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THE PROBLEM OF FALLBACK

Some of the infalling matter at late times 1s making its first approach
to the PNS, but much of the matter has been here before, having
expended energy lifting the remainder of the star.

This continued accretion & heating impacts the nucleosynthesis.
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ANATOMY OF A GW SIGNAL

Gravity Wave signal shows 3 separate phases

1) Prompt
Convection & Early
Shock Deceleration

2a) Shock Motions

lead to lower-
1 2
frequency envelope.

2b) Impingement of
downflows on the
PNS, leads to
higher-frequency
variations.

3) Prolate Explosion/Deceleration at Shock
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How DOES 3D COMPARE?

2D models tend to explode preferentially along the symmetry axis.

This tendency alone points to the need for 3D models, .

W. R. Hix (ORNL/ ) APEC Seminar, Kavli Institute for the Physics and Mathematics of the Universe, June 2016



GROWING PLUMES

The explosion in
3D (as well as
2D) 1s preceded
by the progress to
fewer, larger
plumes, see

Fernandez (201)5).

However, 1n 2D
this progress 1s
very rapid.

These larger
plumes allow
neutrino heating

to do work on
the shock.
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RAYLEIGH-TAYLOR VS
TURBULENCE

The Rayleigh-Taylor Instability, driven in CCSN by neutrino heating,
favors large scale plumes, regardless of dimensionality.

In 2D, the turbulent
cascade also favors
organizing small scale
motion into larger scale
flows.

However, in 3D, the
cascade favors tearing
apart large scale flows.

Thus 1n 3D, without the
assistance of the cascade,
R-T requires more heating, and hence more time, to develop.
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3D DELAYS

In both 2D and 3D, explosions are preceded by the development of
large scale convective flows that span the heating region.
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3D (IN)VARIABILITY
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3D (IN)VARIABILITY

One fascinating
difference between 2D
and 3D 1s the strong
reduction in variability
in the 3D models.

In place of the single
downflow often seen 1n
2D, accretion 1n 3D
flows more paths and 1s
therefore steadier.
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3D (IN)VARIABILITY

One fascinating
difference between 2D
and 3D 1s the strong
reduction in variability
in the 3D models.

In place of the single
downflow often seen 1n
2D, accretion 1n 3D
flows more paths and 1s
therefore steadier.

Timing of explosion 1s
also evident 1n the 2D
model, but less so (at
least thus far) in the 3D
model.

W. R. Hix (ORNL/UTK)
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SUPERNOVA NUCLEOSYNTHESIS

V=Pr-ocess /

Infall / | nter mediate mass-elements

Shock |\ / Shock ejection
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TUNING THE EXPLOSION

Spyromilio 1994

Nomoto et al. 1993

In parameterized nucleosynthesis models, 2 parameters, the Bomb/
Piston energy and the mass cut, are constrained by observations of
explosion energy and mass of *°Ni ejected.
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UNLEARN THE ONION

Observations tell us that the explosion, and the ejected elements, are
asymmetric. Yet we rely on spherically symmetric models to
understand supernova nucleosynthesis.

Ni, O+Ne+Mg,
Fe, Si O, 5

£

1D
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UNLEARN THE ONION

Observations tell us that the explosion, and the ejected elements, are
asymmetric. Yet we rely on spherically symmetric models to
understand supernova nucleosynthesis.

This colors our discussion, for example
the notion that the matter created
closest to the neutron star 1s most
sensitive to the “mass cut”.

Fe, S1 O,

|| -~

Wongwathanarat, Muller &
Janka (2015)
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NUCLEOSYNTHESIS: THE MOVIE



FINISHED COOKING?

By 800-900 ms after bounce, shock burning in the 12 Mz model is
nearly complete with shock temperature ~ 2 GK.
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Matter continues to fall inward of 300 km beyond one second,
predominantly from cut-off down flows.
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NUCLEOSYNTHESIS LIMITS

We can calculate nucleosynthesis directly with the a-network (plus
neutrons, protons and auxiliary heavy) in CHIMERA.

B12-WHO07

As the mass cut resolves, we can 13 sec posbounce
examine the nucleosynthesis with
Increasing accuracy.

But parameterized models consider
hundreds (or even thousands) of
species within the supernova
simulation.

Doing the same in CHIMERA
requires post-processing of
Lagrangian tracer particles, or
using a larger network within the
supernova models.
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TRACING THE MASsS CUT

1s required for nucleosynthesis
1n network, a-network or otherwise.

Post-processing of tracer particles
predictions beyond the built

Their Lagrangian view also reveals the complexity of the mass cut.
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TRACING THE MASsS CUT

Post-processing of tracer particles 1s required for nucleosynthesis
predictions beyond the built-in network, a-network or otherwise.

Their Lagrangian view also reveals the complexity of the mass cut.
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LATITUDE DEPENDENCE

With 40 columns of
tracers 1n each model,

° 108 S //:/// _
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.\\‘\‘\ ) — {lshock 0 :

fate of the star as a ' Riock (6)
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Near the pole, | \
separation between =~ L e
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NICKEL MASS

Beyond the explosion energy, perhaps the most important observable
is the mass of *°Ni, because of its relation to the light curve.
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The ejected °°Ni mass saturates in time with the explosion energy.
Results are reasonable, when compared to observations.

Fallback over longer timescales 1s uncertain. Recent studies are
finding differing results on fallback and °°Ni has higher velocity.
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VELOCITY DISTRIBUTION

Unlike 1D, Nickel and Titanium have higher velocities than Silicon
and Oxygen, thus they are not preferentially sensitive to fallback.
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NEUTRINOS & NUCLEOSYNTHESIS

Despite the perceived importance of neutrinos to the core collapse

mechanism, models of the nucleosynthesis have largely ignored this

important effect.
Frohlich, ... Hix, ... 2006

Nucleosynthesis from v-powered
supernova models shows several
notable improvements.

1.Over production of neutron-
rich 1ron and nickel reduced.

2.Elemental abundances of Sc,
Cu & Zn closer to those Frohlich, ... Hix, ... 2006
observed 1n metal-poor stars.

3.Potential source of light p-

process nuclei ("°Se, 3'Kr,34Sr,
9294\ [0 %698R ).
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VP-PROCESS ...

1 ' ' = | Neutrino rates

Mass fraction

—_— 84MO

Our preliminary results show proton-rich ejecta, but the vp-process
(dotted lines) occurs for only a handtul of particles.
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.o IS MISSING

The vp-process 1s very weak in these models.
107
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The suppression of the PNS wind is delaying or preventing a strong
Vvp-process from occuring.
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NUCLEOSYNTHESIS TESTING

By computing the post-process nucleosynthesis in the same fashion as
that built into CHIMERA, we learn about the limits of the tracers.

Products of a-rich
freezeout are poorly
captured by the post-
processing.
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NUCLEOSYNTHESIS TESTING

By computing the post-process nucleosynthesis in the same fashion as
that built into CHIMERA, we learn about the limits of the tracers.

Products of a-rich
freezeout are poorly
captured by the post-
processing.

Accurately capturing

the a-rich freezeout I
also requires

transitioning out of

NSE at temperatures

> 6 GK.

The limitations of the a-network, when compared to a more realistic
network, are most evident in the o-rich freezeout and for A > 56.
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TRACKING LOW DENSITY



TRACER RESOLUTION
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COMPARING TO 1D
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Iron peak and heavier, up to A=90, the differences get larger.
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ISOTOPIC COMPARISON

. . —e— CHIMERA - o- WHO7
Isotopic comparisons

reveal significant
differences from 1D on
both the proton-rich and
neutron-rich sides.

Ejection of small
quantities of neutron-rich,
(Y.<0.45), low entropy
matter produces significant
amounts of neutron-rich
intermediate mass 1sotopes

like *°Ca and °“Cr.

Production Factor (X/Xg)
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MAGIC OF 48CA

*Ca, with 20 protons and 28 neutrons, is a doubly-magic nucleus.
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Making **Ca requires neutron-rich conditions, but if temperature gets
too high, 1t will burn to form neutron-rich iron or nickel.
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STRIPPING A NEUTRON STAR

Relatively cold, but neutron-rich, matter 1s trapped 1n the neutron star
and not ejected 1n the parameterized spherically symmetric models.

In the self-consistent, multi-dimensional models,
accretion streams occasionally dredge neutron-rich
matter off the neutron-star.

If this matter 1s not heated too much by subsequent
interactions, such matter can be the source of “®Ca.
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THERMODYNAMIC VARIETY

Multi-dimensional dynamics allows the ejecta to experience a wider
variety of temperature, density, electron fraction and neutrino
exposure.
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Deeper Mass Cut results in modest increase 1n intermediate mass and
iron-group elements.
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CONCLUSIONS

Examining the nucleosynthesis of CCSN with models that self-
consistently treat the explosion mechanism requires running the
models to times > 1 second after bounce for uncertainties like the
mass cut, thermodynamic extrapolation, etc. to become tractable.

Even then, low post-processing resolution 1s a significant uncertainty.

Differences from 1D models are seen in differing amounts of iron
peak and intermediate mass elements as a result of changes in the
explosion timing and mass cut.

The ejection of significantly more proton-rich matter as well as small
quantities of neutron-rich matter can change the production of
individual 1sotopes by orders of magnitude.

Neutrino-Driven wind 1s strongly suppressed by accretion.

There 1s considerable commonality in the production of species from
NSE freezeout between lower mass CCSN and ECSN.
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PEEK AT THE FUTURE




