Towards a complete $\Delta(27) \times SO(10)$ SUSY GUT

Fredrik Björkeroth¹

in collaboration with: Francisco José de Anda², Ivo de Medeiros Varzielas¹, Steve King¹

> ¹ University of Southampton, UK ² CUCEI, Universidad de Guadalajara, México

> > IPMU seminar, 24.05.16

Outline

- $\left(1
 ight)$ Motivation
 - Unanswered questions
 - Grand unification
 - o Non-Abelian flavour symmetry
- (2) The model
 - Yukawa structure
 - Mass matrices
 - Proton decay
 - Solving doublet-triplet splitting
- (3) Summary & Outlook

Based on work in **1512.00850** (hep-ph)

F. Björkeroth 1 / 28

Unanswered questions in model-building

Why are there three generations of fermions?

Are neutrinos Majorana or Dirac fermions?

Why is there such a strong hierarchy in particle masses?

What is the origin of large lepton mixing?

How large is leptonic CP violation?

Why is there a Baryon Asymmetry of the Universe (BAU)?

Why do the gauge couplings appear to converge at $\sim 10^{15-16}$ GeV?

F. Björkeroth 2 / 28

Unanswered questions in model-building

Why are there three generations of fermions?

Are neutrinos Majorana or Dirac fermions?

Why is there such a strong hierarchy in particle masses?

What is the origin of large lepton mixing?

How large is leptonic CP violation?

Why is there a Baryon Asymmetry of the Universe (BAU)?

Why do the gauge couplings appear to converge at $\sim 10^{15-16}$ GeV?

Discrete flavour symmetry

Leptogenesis

SUSY

F. Björkeroth 2 / 28

Unanswered questions in model-building

Why are there three generations of fermions?

Are neutrinos Majorana or Dirac fermions?

Why is there such a strong hierarchy in particle masses?

What is the origin of large lepton mixing?

How large is leptonic CP violation?

Why is there a Baryon Asymmetry of the Universe (BAU)?

Why do the gauge couplings appear to converge at $\sim 10^{15-16}$ GeV?

What is the lifetime of the proton?

How is doublet-triplet splitting achieved?

What is the scale of the MSSM μ -term?

F. Björkeroth 3 / 28

Fermion masses

[King, 1301.1340]

F. Björkeroth 4 / 28

[Stone, 1212.6374]

F. Björkeroth 5 / 28

Grand unification

[Bhattacharyya, 0807.3883]

F. Björkeroth 6 / 28

Grand unification

In SO(10), MSSM Higgs doublets are contained in larger reps, such as a $\bf 10$. When gauge symmetry is broken via SU(5),

$$\mathbf{10} \rightarrow \mathbf{5} + \mathbf{\bar{5}} \rightarrow \mathbf{3} + \mathbf{2} + \mathbf{\bar{3}} + \mathbf{2}.$$

Explaining why doublets are light, while triplets are heavy, is the doublet-triplet splitting problem.

F. Björkeroth 7 / 28

Grand unification

In SO(10), MSSM Higgs doublets are contained in larger reps, such as a 10. When gauge symmetry is broken via SU(5),

$$10 \rightarrow 5 + \overline{5} \rightarrow 3 + 2 + \overline{3} + 2.$$

Explaining why doublets are light, while triplets are heavy, is the doublet-triplet splitting problem.

Furthermore, we need at least two $\mathbf{10}$ s, H^u_{10} and H^d_{10} (otherwise no mixing). This means we have (at least) four doublets in the theory, when we only want two \rightarrow **doublet-doublet splitting**.

Analogous scale splitting problems are ubiquitous: any good GUT should resolve them.

Naturalness problem

F. Björkeroth 7 / 28

Non-abelian discrete flavour symmetry

Aim: explain the existence of 3 families of fermions and describe

the internal Yukawa structure

Proposal: introduce discrete global symmetry G_F that has triplet

representations.

History:

- o (Constrained) sequential dominance [King 1999]
- \circ A_4 symmetry to explain large mixing angles [Ma, Rajasekaran 2001]
- A₄ flavon model giving tribimaximal (TBM) mixing [Altarelli, Feruglio 2005]

F. Björkeroth 8 / 28

Sequential dominance (SD)

Sequential dominance conditions:

- 1. First RH neutrino (often lightest) primarily responsible for $m_3 \sim 50$ meV
- 2. Second RH neutrino responsible for $m_2 \sim 9$ meV
- 3. Last RH nearly decoupled, gives $m_1 \lesssim 1~{\rm meV}$

Predictions:

- o Normal Ordering + mass hierarchy
- Naturally large mixing angles: $\theta_{13} \gtrsim \left| \frac{m_2}{m_3} \right| \sim 0.1 \ (\approx 6^\circ)$ [King, hep-ph/0204360]

F. Björkeroth 9 / 28

Constrained sequential dominance (CSD)

SD yields neutrino parameters in terms of Yukawa + RH Majorana matrices. Define

$$M_R = \begin{pmatrix} X & 0 & 0 \\ 0 & Y & 0 \\ 0 & 0 & Y' \end{pmatrix} \quad Y^{\nu} = \begin{pmatrix} a & b & b' \\ c & d & d' \\ e & f & f' \end{pmatrix}$$

SD condition:
$$\frac{\{a, c, e\}^2}{X} \gg \frac{\{b, d, f\}^2}{Y} \gg \frac{\{b', d', f'\}^2}{Y'}$$

CSD proposes relationships between elements of Y^{ν} , increasing predictivity. Original CSD(n) in flavour basis:

$$Y^{\nu} = \begin{pmatrix} 0 & b & * \\ a & nb & * \\ a & (n-2)b & * \end{pmatrix}, \quad a, b \in \mathbb{C}, \ n \in \mathbb{Z}_{+}$$

F. Björkeroth 10 / 28

Constrained sequential dominance (CSD)

$$Y^{\nu} = \begin{pmatrix} 0 & b & * \\ a & nb & * \\ a & (n-2)b & * \end{pmatrix}, \quad a, b \in \mathbb{C}, \ n \in \mathbb{Z}_{+}$$

This arrangement can be produced by coupling fermions to triplet flavons ϕ , which get VEVs like

$$\phi_{
m atm} \propto \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \phi_{
m sol} \propto \begin{pmatrix} 1 \\ n \\ n-2 \end{pmatrix}$$

Successful model based on SU(5) with CSD(3) has been built [FB, de Anda, de Medeiros Varzielas, King, 1503.03306]

In our SO(10) model, Y^{ν} does *not* look like this (is symmetric), but flavons with these alignments (n=3) will be used again.

F. Björkeroth

The model

Symmetries of the model

MSSM fields

$$\begin{array}{ccccc} \Psi & = & ({\bf 16},3) & \to & {\rm fermions} \\ H^u_{10},\,H^d_{10} & = & ({\bf 10},1) & & \to & H_u,\,H_d \\ H_{16},\,H_{\overline{16}} & = & ({\bf 16},1), (\overline{\bf 16},1) & & & \end{array}$$

F. Björkeroth 12 / 28

Field content

	Representation			
Field	Δ(27)	<i>SO</i> (10)	\mathbb{Z}_4^R	
Ψ	3	16	1	Contains SM fermions
$H_{10}^{u,d}$	1	10	0	Break electroweak symmetry
$H_{16,\overline{16}}$	1	$16, \overline{16}$	0	Break SO(10)
H ₄₅	1	45	0	Break SU(5)
H_{DW}	1	45	2	Gives DT splitting via DW mechanism
$\overline{\phi}_i$	3	1	0	Produces CSD(n) mass matrices
ξ	1	1	0	Gives mass hierarchies, μ term
Z,Z''	1	1	2	Break $\mathbb{Z}_4^R \to \mathbb{Z}_2^R$ R-parity
A_i	3	1	2	Alimos triplet flavores 7
O _{ij}	1_{ij}	1	2	Aligns triplet flavons $\bar{\phi}_i$

F. Björkeroth 13 / 28

Yukawa superpotential

$$\begin{split} \mathcal{W}_{Y} &= \Psi_{i} \Psi_{j} H_{10}^{u} \left[\bar{\phi}_{\mathrm{dec}}^{i} \bar{\phi}_{\mathrm{dec}}^{j} \sum_{n=0}^{2} \frac{\lambda_{\mathrm{dec},n}^{(u)}}{\langle H_{45} \rangle^{n} M_{\chi}^{2-n}} + \bar{\phi}_{\mathrm{atm}}^{i} \bar{\phi}_{\mathrm{atm}}^{j} \xi \sum_{n=0}^{3} \frac{\lambda_{\mathrm{atm},n}^{(u)}}{\langle H_{45} \rangle^{n} M_{\chi}^{3-n}} \right. \\ & + \bar{\phi}_{\mathrm{sol}}^{i} \bar{\phi}_{\mathrm{sol}}^{j} \xi^{2} \sum_{n=0}^{4} \frac{\lambda_{\mathrm{sol},n}^{(u)}}{\langle H_{45} \rangle^{n} M_{\chi}^{4-n}} + \bar{\phi}_{\mathrm{sol}}^{i} \bar{\phi}_{\mathrm{dec}}^{j} \xi \left(\frac{\lambda_{\mathrm{sd},1}^{(u)}}{\langle H_{45} \rangle^{2} M_{\chi}} + \frac{\lambda_{\mathrm{sd},2}^{(u)}}{\langle H_{45} \rangle^{2} \langle H_{45} \rangle} \right) \right] \\ & + \Psi_{i} \Psi_{j} H_{10}^{d} \left[\bar{\phi}_{\mathrm{dec}}^{i} \bar{\phi}_{\mathrm{dec}}^{j} \xi^{2} \sum_{n=0}^{3} \frac{\lambda_{\mathrm{dec},n}^{(d)}}{\langle H_{45} \rangle^{n} M_{\chi}^{3-n}} + \bar{\phi}_{\mathrm{atm}}^{i} \bar{\phi}_{\mathrm{atm}}^{j} \xi^{2} \sum_{n=0}^{4} \frac{\lambda_{\mathrm{atm},n}^{(u)}}{\langle H_{45} \rangle^{n} M_{\chi}^{4-n}} \right. \\ & + \bar{\phi}_{\mathrm{sol}}^{i} \bar{\phi}_{\mathrm{sol}}^{j} \xi^{3} \sum_{n=0}^{5} \frac{\lambda_{\mathrm{sol},n}^{(d)}}{\langle H_{45} \rangle^{n} M_{\chi}^{5-n}} \right] \\ & + \Psi_{i} \Psi_{j} H_{\overline{16}} H_{\overline{16}} \left[\bar{\phi}_{\mathrm{dec}}^{i} \bar{\phi}_{\mathrm{dec}}^{j} \xi^{3} \frac{\lambda_{\mathrm{dec}}^{(M)}}{M_{\chi}^{2} M_{\Omega_{\mathrm{dec}}}^{4}} + \bar{\phi}_{\mathrm{atm}}^{i} \bar{\phi}_{\mathrm{atm}}^{j} \xi^{4} \frac{\lambda_{\mathrm{atm}}^{(M)}}{M_{\chi}^{3} M_{\Omega_{\mathrm{atm}}}^{4}} \right. \\ & + \bar{\phi}_{\mathrm{sol}}^{i} \bar{\phi}_{\mathrm{sol}}^{j} \xi^{5} \frac{\lambda_{\mathrm{sol}}^{(M)}}{M_{\gamma}^{4} M_{\Omega_{\mathrm{dec}}}^{4}} \right] \end{split}$$

F. Björkeroth 14 / 28

Yukawa superpotential

$$\begin{split} \mathcal{W}_{Y} &= \Psi_{i} \Psi_{j} H_{10}^{d} \xi \left[\bar{\phi}_{\mathrm{dec}}^{i} \bar{\phi}_{\mathrm{dec}}^{j} C_{\mathrm{dec}}^{(d)}(3) + \bar{\phi}_{\mathrm{atm}}^{i} \bar{\phi}_{\mathrm{atm}}^{j} \xi C_{\mathrm{atm}}^{(d)}(4) + \bar{\phi}_{\mathrm{sol}}^{i} \bar{\phi}_{\mathrm{sol}}^{j} \xi^{2} C_{\mathrm{sol}}^{(d)}(5) \right] \\ &+ \Psi_{i} \Psi_{j} H_{10}^{u} \left[\bar{\phi}_{\mathrm{dec}}^{j} \bar{\phi}_{\mathrm{dec}}^{j} C_{\mathrm{dec}}^{(u)}(2) + \bar{\phi}_{\mathrm{atm}}^{j} \bar{\phi}_{\mathrm{atm}}^{j} \xi C_{\mathrm{atm}}^{(u)}(3) + \bar{\phi}_{\mathrm{sol}}^{i} \bar{\phi}_{\mathrm{sol}}^{j} \xi^{2} C_{\mathrm{sol}}^{(u)}(4) \right. \\ &\left. + \bar{\phi}_{\mathrm{sol}}^{i} \bar{\phi}_{\mathrm{dec}}^{j} \xi C_{\mathrm{sd}}^{(u)}(3) \right] \\ &+ \Psi_{i} \Psi_{j} H_{\overline{16}} H_{\overline{16}} \xi^{3} \\ &\times \left[\bar{\phi}_{\mathrm{dec}}^{i} \bar{\phi}_{\mathrm{dec}}^{j} C_{\mathrm{dec}}^{(M)}(2) + \bar{\phi}_{\mathrm{atm}}^{i} \bar{\phi}_{\mathrm{atm}}^{j} \xi D_{\mathrm{atm}}^{(M)}(3) + \bar{\phi}_{\mathrm{sol}}^{i} \bar{\phi}_{\mathrm{sol}}^{j} \xi^{2} D_{\mathrm{sol}}^{(M)}(4) \right] \end{split}$$

where

$$\begin{split} C_{\text{flavon}}^{(f)}(N) &= \sum_{n=0}^{N} \frac{\lambda_{\text{flavon},n}^{(f)}}{\langle H_{45} \rangle^{n} M_{\chi}^{N-n}} \sim \frac{1}{M_{\text{GUT}}^{N}}, \\ D_{\text{flavon}}^{(M)}(N) &= \frac{\lambda_{\text{flavon}}^{(M)}}{M_{\chi}^{N} M_{\Omega_{\text{flavon}}}^{4}} \sim \frac{1}{M_{\text{GUT}}^{N+4}}. \end{split}$$

F. Björkeroth 15 / 28

Mass matrices

Schematically, Yukawa superpotential looks like

$$\mathcal{W} \sim \Psi \Psi \mathcal{H} \left(\bar{\phi}_{\rm dec} \bar{\phi}_{\rm dec} \xi^n + \bar{\phi}_{\rm atm} \bar{\phi}_{\rm atm} \xi^{n+1} + \bar{\phi}_{\rm sol} \bar{\phi}_{\rm sol} \xi^{n+2} \right) + \dots$$

- $\circ~\xi$ gets a VEV below the GUT scale, i.e. $\langle \xi \rangle \sim 0.1 M_{\rm GUT}.$ [Froggatt, Nielsen 1979]
- o In our model, flavon VEVs $\langle \bar{\phi} \rangle$ also have scale differences: $\langle \bar{\phi}_{\rm dec} \rangle \gg \langle \bar{\phi}_{\rm atm} \rangle \gtrsim \langle \bar{\phi}_{\rm sol} \rangle$.

Coupling of flavons $\bar{\phi}$ to ξ^n explains the existence of mass hierarchies

F. Björkeroth 16 / 28

Mass matrices

Schematically, Yukawa superpotential looks like

$$\mathcal{W} \sim \Psi \Psi H \left(\overline{\phi}_{
m dec} \overline{\phi}_{
m dec} \xi^n + \overline{\phi}_{
m atm} \overline{\phi}_{
m atm} \xi^{n+1} + \overline{\phi}_{
m sol} \overline{\phi}_{
m sol} \xi^{n+2} \right) + \dots$$

- $\circ~\xi$ gets a VEV below the GUT scale, i.e. $\langle \xi \rangle \sim 0.1 M_{\rm GUT}.$ [Froggatt, Nielsen 1979]
- o In our model, flavon VEVs $\langle \bar{\phi} \rangle$ also have scale differences: $\langle \bar{\phi}_{\rm dec} \rangle \gg \langle \bar{\phi}_{\rm atm} \rangle \gtrsim \langle \bar{\phi}_{\rm sol} \rangle$.

Coupling of flavons $\bar{\phi}$ to ξ^n explains the existence of mass hierarchies

Flavons gain vacuum alignments

$$ar{\phi}_{
m atm} = v_{
m atm} egin{pmatrix} 0 \ 1 \ 1 \end{pmatrix}, \quad ar{\phi}_{
m sol} = v_{
m sol} egin{pmatrix} 1 \ 3 \ 1 \end{pmatrix}, \quad ar{\phi}_{
m dec} = v_{
m dec} egin{pmatrix} 0 \ 0 \ 1 \end{pmatrix}$$

F. Björkeroth 16 / 28

Mass matrix

SO(10) unification \Rightarrow all* Yukawa matrices have the **same structure**:

$$m \sim m_a \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + m_b \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix} + m_c \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Exception: additional terms that couple to H_{10}^u involving new field H_{45}^\prime :

$$ar{\phi}_{
m sol}^{i} ar{\phi}_{
m dec}^{j} \xi \left(\frac{\lambda_{
m sd,1}^{(u)}}{\langle H_{45}^{\prime} \rangle^{2} M_{\chi}} + \frac{\lambda_{
m sd,2}^{(u)}}{\langle H_{45}^{\prime} \rangle^{2} \langle H_{45} \rangle} \right)$$

Gives additional contribution to up-quark matrix:

$$m_{sd} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$

F. Björkeroth 17 / 28

Neutrino mass matrix

Neutrino mass matrix also has this structure after seesaw!

Relevant superpotential:

$$\kappa_{\rm atm}^{\nu}(\bar{\phi}_{\rm atm}F)(\bar{\phi}_{\rm atm}N^c) + \kappa_{\rm sol}^{\nu}(\bar{\phi}_{\rm sol}F)(\bar{\phi}_{\rm sol}N^c) + \kappa_{\rm dec}^{\nu}(\bar{\phi}_{\rm dec}F)(\bar{\phi}_{\rm dec}N^c) \\ + \kappa_{\rm atm}^{M}(\bar{\phi}_{\rm atm}N^c)(\bar{\phi}_{\rm atm}N^c) + \kappa_{\rm sol}^{M}(\bar{\phi}_{\rm sol}N^c)(\bar{\phi}_{\rm sol}N^c) + \kappa_{\rm dec}^{M}(\bar{\phi}_{\rm dec}N^c)(\bar{\phi}_{\rm dec}N^c) \\ \downarrow \downarrow \\ \bar{\phi}_{\rm atm}F - \bar{\phi}_{\rm sol}F - \bar{\phi}_{\rm dec}F - \bar{\phi}_{\rm atm}N^c - \bar{\phi}_{\rm sol}N^c - \bar{\phi}_{\rm dec}N^c \\ \bar{\phi}_{\rm atm}F - \bar{\phi}_{\rm sol}F - \bar{\phi}_{\rm dec}F - \bar{\phi}_{\rm atm}N^c - \bar{\phi}_{\rm sol}N^c - \bar{\phi}_{\rm dec}N^c \\ \bar{\phi}_{\rm sol}F - \bar{\phi}_{\rm dec}F - \bar{\phi}_{\rm sol}F - \bar{$$

F. Björkeroth

Neutrino mass matrix

Diagonalisation gives effective terms

$$-\frac{(\kappa_{\rm atm}^{\nu})^2}{\kappa_{\rm atm}^{\mathcal{M}}}(\bar{\phi}_{\rm atm}F)(\bar{\phi}_{\rm atm}F)-\frac{(\kappa_{\rm sol}^{\nu})^2}{\kappa_{\rm sol}^{\mathcal{M}}}(\bar{\phi}_{\rm sol}F)(\bar{\phi}_{\rm sol}F)-\frac{(\kappa_{\rm dec}^{\nu})^2}{\kappa_{\rm dec}^{\mathcal{M}}}(\bar{\phi}_{\rm dec}F)(\bar{\phi}_{\rm dec}F)$$

This produces the effective light neutrino mass matrix

$$m^{\nu} = \mu_{a} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} + \mu_{b} e^{i\eta} \begin{pmatrix} 1 & 3 & 1 \\ 3 & 9 & 3 \\ 1 & 3 & 1 \end{pmatrix} + \mu_{c} e^{i\eta'} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

(as before)

The phases η , η' are determined by the VEVs of $\bar{\phi}_{\rm atm}$, $\bar{\phi}_{\rm sol}$ and $\bar{\phi}_{\rm dec}$, and are fixed by the model:

$$\eta = 2\pi/3, \qquad \eta' = 0$$

F. Björkeroth

Fit

Observables	Model	Data fit 1σ range
$\theta_{12}^{q} /^{\circ} \\ \theta_{13}^{q} /^{\circ}$	13.024 0.1984	$12.985 \rightarrow 13.067$ $0.1866 \rightarrow 0.2005$
θ_{23}^q /° δ^q /°	2.238 69.32	$2.202 \rightarrow 2.273$ $66.12 \rightarrow 72.31$
m_u /MeV m_c /MeV	0.575 248.4	$0.351 \rightarrow 0.666$ $240.1 \rightarrow 257.5$
m_t /GeV m_d /MeV	92.79 0.824	$89.84 \rightarrow 95.77$ $0.744 \rightarrow 0.929$
m _s /MeV m _b /GeV	15.55 0.939	$15.66 \rightarrow 17.47$ $0.925 \rightarrow 0.948$
$m_{ m e}$ /MeV $m_{ m \mu}$ /MeV	0.342 72.25	$0.340 \rightarrow 0.344$ $71.81 \rightarrow 72.68$
$m_{ au}$ /GeV	1.229	$1.223 \to 1.236$

F. Björkeroth 20 / 28

Observables	Model	Data fit 1σ range	
$ \theta_{12}^{I} $	33.13 8.59 40.81 280	$32.83 \rightarrow 34.27$ $8.29 \rightarrow 8.68$ $40.63 \rightarrow 43.85$ $192 \rightarrow 318$	
Δm_{21}^2 /eV ² Δm_{31}^2 /eV ²	7.58×10^{-5} 2.44×10^{-3}	$(7.33 \rightarrow 7.69) \times 10^{-5}$ $(2.41 \rightarrow 2.50) \times 10^{-3}$	
m_1 /meV m_2 /meV m_3 /meV $\sum m_i$ /meV	0.32 8.64 49.7 58.7	- - - < 230	
$egin{array}{lll} lpha_{21} & /^\circ \ lpha_{31} & /^\circ \ m_{ee} & /{ m meV} \end{array}$	264 323 2.46	- - -	

F. Björkeroth 21 / 28

Flavon VEVs

The model

- 1. Aligns triplet flavons $\bar{\phi}_{\mathrm{atm,sol,dec}}$ in the CSD3 directions
- 2. Drives their VEVs and fixes the relative phases between them

1. Alignment

Flavons $\bar{\phi}$ couple to driving fields \bar{A}_i whose **F-term conditions** force $\bar{\phi}$ VEVs to be aligned along symmetry-preserving directions in flavour space.

O-fields force orthogonality between different flavons, which completely breaks $\Delta(27)$.

2. **Driving**

Additional interactions with driving fields fix the VEVs of $\bar{\phi}_{\rm atm.sol.dec}$, with sol phase equal to $\omega = 2\pi/3$ (from $\Delta(27)$)

F. Björkeroth 22 / 28

Proton decay

Proton decay can be mediated by (SUSY) dim-5 operators like $\Psi\Psi\Psi\Psi$.

- Forbidden at the GUT scale by the symmetries, messenger sector.
- \circ May be produced by operators suppressed by the Planck mass M_P .

Lowest-order non-zero term:

$$g\Psi\Psi\Psi\Psi\frac{Z\bar{\phi}_{\mathrm{dec}}\xi^3}{M_P^6}\to g\Psi\Psi\Psi\Psi\frac{\langle X\rangle}{M_P^2}$$

To obey limits for proton lifetime $\tau_p > 10^{32}$ yrs, we require $q\langle X \rangle < 3 \times 10^9 \text{ GeV}$ [Kaplan, Murayama, hep-ph/9406423]

Our model gives

$$\langle X \rangle \sim 150 \text{ GeV} \Rightarrow \text{Proton decay is highly suppressed}$$

F. Björkeroth

Doublet-triplet splitting

In SO(10), DT splitting may be achieved by the Dimoupoulos-Wilczek mechanism [Dimopoulos, Wilczek 1981, Srednicki 1982]:

o Introduce a field H_{DW} (a **45** of SO(10)), with VEV

$$\langle H_{DW} \rangle = \begin{pmatrix} 0 & \langle H_{U(5)} \rangle \\ -\langle H_{U(5)} \rangle & 0 \end{pmatrix}.$$

∘ Take $\langle H_{U(5)} \rangle \propto \mathrm{diag}(1, 1, 1, 0, 0)$ ⇒ only terms coupling triplets survive.

 H^u_{10} , H^d_{10} and $H_{16,\overline{16}}$ all contain SU(3) triplets. After GUT breaking, we find that all Higgs triplets have GUT scale masses .

F. Björkeroth 24 / 28

Doublet-doublet splitting and the μ term

 $H^u_{10},\ H^d_{10}$ and $H_{16,\overline{16}}$ all contain SU(2) doublets.

We only expect two at the MSSM level.

All others should be at least unification scale.

Introducing specific **messenger fields** Z_i , Σ_i that couple pairs of H fields to powers of ξ , we arrive at a superpotential

$$\begin{split} \mathcal{W}_{\mu} \sim Z H_{10}^{u} H_{10}^{u} \frac{\xi^{6}}{M_{Z}^{6}} + Z H_{10}^{u} H_{10}^{d} \frac{\xi^{7}}{M_{Z}^{7}} + Z H_{10}^{d} H_{10}^{d} \frac{\xi^{8}}{M_{Z}^{8}} + \xi H_{16} H_{\overline{16}} \\ + \frac{Z}{M_{\Sigma}} \left(H_{16} H_{16} H_{10}^{d} + \frac{\xi^{8}}{M_{\Sigma}^{8}} H_{16} H_{16} H_{10}^{u} + H_{\overline{16}} H_{\overline{16}} H_{10}^{u} + \frac{\xi}{M_{\Sigma}} H_{\overline{16}} H_{\overline{16}} H_{\overline{10}}^{d} \right) \end{split}$$

F. Björkeroth 25 / 28

Doublet-doublet splitting and the μ term

From that superpotential, may write the SU(2) doublet mass matrix as:

$$M_{D} \sim \begin{array}{cccc} H_{u}^{u} & H_{u}^{d} & H_{u}^{16} \\ H_{d}^{u} & \tilde{\xi}^{6} & \tilde{\xi}^{7} & \tilde{H}_{\overline{16}} \\ H_{d}^{16} & \tilde{\xi}^{7} & \tilde{\xi}^{8} & \tilde{\xi}\tilde{H}_{\overline{16}} \\ H_{16}\tilde{\xi}^{8} & \tilde{H}_{16} & \xi/M_{\rm GUT} \end{array} \right) M_{\rm GUT}$$

where
$$ilde{\xi} \equiv \frac{\langle \xi
angle}{M_{
m GUT}} \sim 0.1.$$

Eigenvalues: $m_D \sim \tilde{\xi} M_{\rm GUT}$, $\tilde{\xi} M_{\rm GUT}$, $\tilde{\xi}^8 M_{\rm GUT}$.

MSSM μ term: $\frac{\langle \xi \rangle^8}{M_{\rm GUT}^7} H_d^d H_u^u \ll M_{\rm GUT}$

 \Rightarrow explains the smallness of the μ term.

26 / 28 F. Biörkeroth

Notes

Many open questions in HEP and model-building.

Flavour GUTs can answer many of these questions!

The two models presented here are among the most **complete** and **realistic** models:

- Renormalisable!
- Good fits to data, with some tension that may allow for future tests of the models.
- But: they require a large GUT-scale field content, as well as SUSY (which has not yet been found!)

F. Björkeroth 27 / 28

Conclusion

Why are there three generations of fermions?	✓
Are neutrinos Majorana or Dirac fermions?	✓
Why is there such a strong mass hierarchy?	✓
What is the origin of large lepton mixing?	✓
How large is leptonic CP violation?	✓
Why is there a BAU?	?
Why do the gauge couplings appear to converge?	✓
+	
What is the lifetime of the proton?	✓
How is doublet-triplet splitting achieved?	✓
What is the scale of the MSSM μ -term?	/

F. Björkeroth 28 / 28

