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• Remarkable agreement between experimental results 
and perturbative calculations.

How well do we know about EW theory?

• How about non-perturbative part of EW theory?   
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Vacua of EW theory
Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

Aµ → U †AµU + U †∂µU

SEW → SEW

U ∈ SU(2) U = a+ i(b · σ)

a2 + b2 = 1

Aµ = 0 ↔ A = U †∂µU

The space of vacua is equivalent to the space of these maps.

At a given t, U(x) is a function that maps from x ∈ R3 to U ∈ SU(2).

action:

a vacuum:

gauge trans.:

SEW =
1

2g2

∫
d4xFµνF

µν
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Vacua of EW theory
Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]

Aµ → U †AµU + U †∂µU

action:

SEW → SEW

U ∈ SU(2) U = a+ i(b · σ)

a2 + b2 = 1

a vacuum: Aµ = 0 ↔ A = U †∂µU

π3(S3) = Z

R3 = S3 + (·), SU(2) = S3

The map has distinctive sectors classified by the winding number!

SU(2)

gauge trans.:

The space of vacua is equivalent to the space of these maps.

At a given t, U(x) is a function that maps from x ∈ R3 to U ∈ SU(2).

SEW =
1

2g2

∫
d4xFµνF

µν
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E

perturbative

n

· · ·

An,µ(x) = Un(x)†∂µUn(x)

Un(x) = exp
(
inπ

x · σ√
x2 − ρ2

)
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E

instanton

sphaleron

n

· · ·

An,µ(x) = Un(x)†∂µUn(x)

Un(x) = exp
(
inπ

x · σ√
x2 − ρ2

)

perturbative
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Instantons

F̃µν = ϵµνρσFρσ

∫
K0(An(x))d

3x = n
1

16π2
Fµν F̃

µν = ∂µKµ

Kµ =
1

8π2
ϵµνρσtrA

ν(∂ρAσ +
2

3
AρAσ)

∫
1

16π2
Fµν F̃

µνd4x =

∫
∂µKµd

3xdt =
h Z

K0(t,x)d
3
x

it=1

t=�1
(1)

= , a (2)

1

= n(t = 1)� n(t = �1) (1)

= �n (2)

1

= n(t = 1)� n(t = �1) (1)

= �n (2)

1

Define a current K as

Then it follows

Fµν(x) → 0 for x → ∞

therefore

finite energy condition:

, , ,

There exist evolutions of field configuration that change the winding number.

• What do such processes look like? 

• How large is the event rate?
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The triangle anomaly gives

J (i)
µ = ψ̄(i)

L γµψ
(i)
L

ψ(i)
L = {ûα

L, ĉ
α
L, t̂

α
L, ℓe, ℓµ, ℓτ}

ûL =

(
uL

dL

)
, ℓe =

(
νe
eL

)
, · · ·

with∂µJ (i)
µ =

1

16π2
Fµν F̃

µν
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The triangle anomaly gives

J (i)
µ = ψ̄(i)

L γµψ
(i)
L

ψ(i)
L = {ûα

L, ĉ
α
L, t̂

α
L, ℓe, ℓµ, ℓτ}

ûL =

(
uL

dL

)
, ℓe =

(
νe
eL

)
, · · ·

with

We have

∂µJ (i)
µ =

1

16π2
Fµν F̃

µν

= ∆N (i)
F

∆n =

∫
1

16π2
Fµν F̃

µνd4x

=
[ ∫

J (i)
0 d3x

]t=∞

t=−∞

∆n = ∆NûL = ∆NûL = ∆NûL

We find 12 related equalities

= ∆NĉL = · · ·

= ∆Nt̂L = · · ·

= ∆Nℓe = ∆Nℓµ = ∆Nℓτ
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ĉL

t̂L

t̂L ĉL

ûL

∆n = 1

The triangle anomaly gives

J (i)
µ = ψ̄(i)

L γµψ
(i)
L

ψ(i)
L = {ûα

L, ĉ
α
L, t̂

α
L, ℓe, ℓµ, ℓτ}

ûL =

(
uL

dL

)
, ℓe =

(
νe
eL

)
, · · ·

with∂µJ (i)
µ =

1

16π2
Fµν F̃

µν

= ∆N (i)
F

∆n =

∫
1

16π2
Fµν F̃

µνd4x

=
[ ∫

J (i)
0 d3x

]t=∞

t=−∞

∆n = ∆NûL = ∆NûL = ∆NûL

= ∆NĉL = · · ·

= ∆Nt̂L = · · ·

The event looks like 
a fire ball!

= ∆Nℓe = ∆Nℓµ = ∆Nℓτ

We have

We find 12 related equalities
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⟨n|n+∆n⟩ ∼ e−ŜE

SE is the Euclidean action at the stationary point, which is given by

The tunnelling rate can be estimated using the WKB approximation as

ŜE =
1

2g2

∫
FFd4x
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⟨n|n+∆n⟩ ∼ e−ŜE

∫
FFd4x ≥

∣∣ ∫ FF̃d4x
∣∣

∫
(F ± F̃ )2d4x ≥ 0

=⇒

Note that:

SE is the Euclidean action at the stationary point, which is given by

The tunnelling rate can be estimated using the WKB approximation as

ŜE =
1

2g2

∫
FFd4x
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E

n n+1

⟨n|n+∆n⟩ ∼ e−ŜE

∫
FFd4x ≥

∣∣ ∫ FF̃d4x
∣∣

∫
(F ± F̃ )2d4x ≥ 0

=⇒

e−
4π
αW ∼ 10−170 The tunnelling rate is 

unobservably small

Note that:

SE is the Euclidean action at the stationary point, which is given by

The tunnelling rate can be estimated using the WKB approximation as

ŜE =
1

2g2

∫
FFd4x

=
1

2g2

∣∣∣
∫

FF̃d4x
∣∣∣

=
8π2

g2
∣∣∆n

∣∣
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E

n n+1

ESph

sphaleron

ESph =
2mW

αW
B
(mH

mW

)

The barrier hight was calculated by 
F.R.Klinkhamer and N.S.Manton (1984)

≃ 9TeV (for mH = 125GeV)

• At high temperature, the sphaleron rate may be unsuppressed.

It plays an important role in baryo(lepto)genesis.

Γ ∝ exp
(
− ESph(T )

T

)
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• At high energy, the tunnelling exponent was calculated by a semi-
classical approach (perturbation in the instanton background).

10 20 30 40

-1.0

-0.5

0.0

0.5

(c ≃ 2)

instanton

E [TeV]

S(E)

instanton

σ(∆n = ±1) ∝ exp
[
c
4π

αW
S(E)

]

S(E) = −1 +
9

8

( E

E0

) 4
3 − 9

16

( E

E0

)2
+ · · · E0 =

√
6πmW /αW

≃ 18TeV
+ · · ·
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S.Khlebnikov, V.Rubakov, P.Tinyakov 1991,
M.Porrati 1990, V.Zakharov 1992, … 

(c ≃ 2)
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• At high energy, the tunnelling exponent was calculated by a semi-
classical approach (perturbation in the instanton background).

σ(∆n = ±1) ∝ exp
[
c
4π

αW
S(E)

]

S(E) = −1 +
9

8

( E
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) 4
3 − 9

16

( E

E0

)2
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√
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≃ 18TeV
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S.Khlebnikov, V.Rubakov, P.Tinyakov 1991,
M.Porrati 1990, V.Zakharov 1992, … 

P.Arnold, M.Mattis 1991, A.Mueller 1991,
D.Diakonov, V.Petrov 1991, … 

σ(∆n = ±1) ∝ exp
[
c
4π

αW
S(E)

]

S(E) = −1 +
9

8

( E

E0

) 4
3 − 9

16

( E

E0

)2
+ · · · E0 =

√
6πmW /αW

≃ 18TeV

(c ≃ 2)

E [TeV]

S(E)

instanton
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0.0

0.5

• At high energy, the tunnelling exponent was calculated by a semi-
classical approach (perturbation in the instanton background).
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Recently Tye and Wong (TW) have pointed out that the periodic nature of 
the EW potential is important and this effect was not taken into account in 
the previous calculations.  They evaluated the sphaleron rate by constructing 
a 1D quantum mechanical system [1505.03690].   

(
− 1

2m

∂2

∂Q2
+ V (Q)

)
Ψ(Q) = EΨ(Q)

Q = µ/mW nπ = µ− sin(2µ)/2,

where Q is related to the winding number n as

r = 0. In fact, as we shall see, Ar = µ�(r). Here, we can ignore this for the moment. In the

spherically symmetric ansatz, we can write the fields in the following forms

�̃ = v (1� h(r))U

 
0

cosµ

!
+ h(r)

 
0

v

!
,

Ai =
i

g
(1� f(r))U@iU

†,

U =

 
cosµ+ i sinµ cos ✓ � sinµ sin ✓ei'

sinµ sin ✓e�i' cosµ� i sinµ cos ✓

!
,

lim
r!0

f(r)

r
= h(0) = 0, f(1) = h(1) = 1, (2.4)

where {µ, ✓,'} are the polar angles of S3 and the SU(2) matrix U maps this S3 to the group

manifold S3
SU(2). With the above Higgs field profile h(r) and gauge field profile f(r), µ = 0

and µ = ⇡
2 correspond to the vacuum and the sphaleron respectively. Note that the asymptotic

Higgs vacuum expectation value is always �t = [0, v] for every 0  µ < ⇡ (shown in Fig. 3 (b)),

which is di↵erent from the Manton setup [5] (shown in Fig. 3(a)). This di↵erence is explained

in Sec. 4 as it is important in the determination of the mass. To avoid confusion, we shall call

this ansatz the constant mass construction.

The energy of the sphaleron is given by

VM(µ) =
4⇡

g2

Z
dr

⇢
4f 02 +

8

r2
[f(f � 1)]2 sin2 µ+ 2r2h02 + 4m2

W (f � h)2

+4m2
W [f(h� 1)(hf + f � 2h)] sin2 µ+

1

2
m2

Hr
2(h2 � 1)2 sin2 µ

�
sin2 µ, (2.5)

where the static equations of motion at the sphaleron (µ = ⇡/2) are

r2f 00 = 2f(1� f)(1� 2f) +m2
W r2h(f � 1),

�
r2h0�0 = 2h(1� f)2 +

1

2
m2

Hr
2(h2 � 1)h. (2.6)

Using the above boundary conditions, f(r) and h(r) can be easily solved numerically. As

mentioned in Ref [6], the sphaleron solution indeed has topological number 1
2 . Its energy Esph =

9.11 TeV measures the potential barrier height. As shown in Fig. 2(b), varying µ from 0 to

⇡ spans a 3-sphere, which also goes from the |n = 0i vacuum over the potential barrier to the

|n = 1i vauum. So it is a reasonable approximation to take the f(r) and h(r) solution of Eq.(2.6)

for µ = ⇡/2 and insert them directly into VM(µ) (2.5) to obtain V (µ) (1.2).

8

By following a sphaleron trajectory in the original YM Lagrangian, they found:and the Higgs Boson mass mH = 125 GeV, we obtain

V (Q) ' 4.75 TeV
�
1.31 sin2(mWQ) + 0.60 sin4(mWQ)

�
,

Esph = max[V (Q)] = V

✓
⇡

2mW

◆
= 9.11 TeV, m = 17.1 TeV, (1.2)

where the potential V (Q) was obtained by Manton (see Fig. 1). Determining the value of this

mass m is a main result of this paper. Note that a rescaling of Q rescales m, though the physics

is unchanged.

Figure 1: The periodic sphaleron potential in the electroweak theory. The barrier height is

9 TeV. The co-ordinate is labelled by µ which is related to the Chern-Simons number n via

n⇡ = µ � sin(2µ)/2; so the minima are at integers n = �1, ...,�2,�1, 0,+1,+2, ...,+1 and

the peaks (i.e., the sphaleron) are at n+ 1/2 [5].

To find the mass m, we have to make a couple of appropriate changes (gauge rotations) in

the existing works. This is necessary because, although the static potential is gauge-invariant,

di↵erent choices of static gauges tend to yield di↵erent masses in the time dependent kinetic

term. The static sphaleron potential barrier has been calculated in 2 ways, namely the Manton

method [5] and the method due to Akiba, Kikuchi and Yanagida (AKY) [18]. After the necessary

modifications just mentioned, we find that the mass m in the Manton approach is a constant,

as given in Eq.(1.2), while the AKY mass m(n) diverges (close to a linear divergence) as n ! 0.

This divergent behavior is close to the simple example of ẏ2/(4|y|) + |y| ! ẋ2 + x2 if y = x2.

After the redefinition, the constant AKY mass m = 22.5 TeV (with co-ordinate Q) is somewhat

larger than the Manton mass m = 17.1 TeV, while the potentials are close but not the same. So

the overall features stay the same. Clearly a fully time-dependent evaluation of m may improve

its value. Fortunately, the present approximation is good enough for our purpose.

It was pointed out in [5, 19, 20] that turning on the U(1) coupling (i.e., Weinberg angle

sin2 ✓W = 0.23) will lower the sphaleron energy by about a percent. So it is reasonable to use

Esph = 9.0 TeV in phenomenological studies.
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The wave functions in periodic potentials are given by Bloch waves. 

0

k2

2m E

The spectrum exhibits a band structure. 

k
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After the redefinition, the constant AKY mass m = 22.5 TeV (with co-ordinate Q) is somewhat

larger than the Manton mass m = 17.1 TeV, while the potentials are close but not the same. So

the overall features stay the same. Clearly a fully time-dependent evaluation of m may improve

its value. Fortunately, the present approximation is good enough for our purpose.

It was pointed out in [5, 19, 20] that turning on the U(1) coupling (i.e., Weinberg angle
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3

The spectrum exhibits a band structure. 

The wave functions in periodic potentials are given by Bloch waves. 

|Ψ(Q)|2 = |Ψ(Q+ π
mW

)|2

Ψ(Q) = eikQ uk(Q), uk(Q) = uk(Q+ π
mW

)

⇒
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Figure 6: The Brillouin zone (6 conducting bands shown) near the barrier top for the Manton

case: (a) The energy eigenvalue E(k) of the Schrödinger equation (3.5) is shown as a function of

the propagation wave vector k; (b) The dark regions are the conducting bands while the gaps are

regions where there is no solution to the the Schrödinger equation ((3.5) or (6.2)). The energy

spectrum is almost continuous above the barrier while bandwidths below the barrier decrease

exponentially as the energy goes down. The band structures in the AKY case are similar (see

Table 1).

It is well known that the energy spectrum of a periodic potential has a band structure: continuous

bands (solutions to the the Schrödinger equation (3.5)) of certain widths separated by bandgaps

(i.e., regions with no solution).

It is convenient to solve the Hamiltonian in momentum space using Bloch-waves,

1X

l=�1


1

2m
(2l + k)2�l,m + Vl�m

�
uk,l = E uk,m, (6.2)

where Vn, uk,n are Fourier coe�cients of V (Q), uk(Q). One can also approximate the band

edge energy by semi-classical method [28],

Z Q0

0

p(Q,E)dQ = n
⇡

2
± arctan

"
tanh

 Z ⇡
2mW

Q0

p(Q,E)dQ

!#
, n 2 N (6.3)

where p(Q,E) =
p
2m|E � V (Q)|. This approximation is very accurate when the integral (6.3)

is large. Here we solve Eq.(6.2) numerically for the band structure. Table 1 lists the band center

energies and their bandwidths near the top of the potential barrier and around the bottom of

the potential. Six bands near the top are shown in Fig. 6.

Note that the bandwidths � for bands close to the bottom are well approximated by tight-
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derivative) to obtain the corresponding one-dimensional
time-independent Schrödinger equation in which the CS
number n is the coordinate to be quantized. For values
away from half-integers, n ≠ 0;!1=2;!1;…, the defini-
tion of n is not unique, as the CS current is not gauge
invariant. We find that μ=π, instead of the standard choice
of n, is the most appropriate CS number that takes
continuous values [where nπ ¼ μ − sinð2μÞ=2].
Introducing Q ¼ μ=mW (so Q has the dimension of a
coordinate) we obtain a constant mass m and

!
−

1

2m
∂2

∂Q2
þ VðQÞ

"
ΨðQÞ ¼ EΨðQÞ: ð1Þ

Using the known Higgs vacuum expectation value
v ¼ 246 GeV, W-boson mass mW ¼ 80 GeV and the
Higgs boson mass mH ¼ 125 GeV, we obtain

VðQÞ≃ 4.75 TeVð1.31sin2ðmWQÞ þ 0.60sin4ðmWQÞÞ;

Esph ¼ max½VðQÞ' ¼ V
!

π
2mW

"
¼ 9.11 TeV;

m ¼ 17.1 TeV; ð2Þ

where the potential VðQÞ was obtained by Manton (see
Fig. 1). Determining the value of this mass m is a main
result of this paper. Note that a rescaling of Q rescales m,
though the physics is unchanged.
To find the mass m, we have to make a couple of

appropriate changes (gauge rotations) in the existing works.
This is necessary because, although the static potential is
gauge invariant, different choices of static gauges tend to
yield different masses in the time-dependent kinetic term.
The static sphaleron potential barrier has been calculated in
two ways, namely the Manton method [9] and the method
due to Akiba, Kikuchi and Yanagida (AKY) [22]. After the
necessary modifications just mentioned, we find that the
mass m in the Manton approach is a constant, as given in
Eq. (2), while the AKY mass mðnÞ diverges (close to a
linear divergence) as n → 0. This divergent behavior is

close to the simple example of _y2=ð4jyjÞ þ jyj → _x2 þ x2 if
y ¼ x2. After the redefinition, the constant AKY massm ¼
22.5 TeV (with coordinate Q) is somewhat larger than the
mass m ¼ 17.1 TeV in the Manton case, while the poten-
tials are close but not the same. So the overall features stay
the same. Clearly a fully time-dependent evaluation of m
may improve its value. Fortunately, the present approxi-
mation is good enough for our purpose.
It was pointed out in [9,23,24] that turning on the Uð1Þ

coupling (i.e., Weinberg angle sin2θW ¼ 0.23) will lower
the sphaleron energy by about a percent. So it is reasonable
to use Esph ¼ 9.0 TeV in phenomenological studies.
Once we have the one-dimensional time-independent

Schrödinger equation (1) with the mass m and the periodic
potential VðQÞ (2), it is straightforward to solve for the
Bloch wave function, the conducting (pass) bands, their
widths and the gaps between the bands. In Table I, we give
the lowest few bands and the ones that are close to the
barrier height Esph ¼ 9.11 TeV. (Because of the higher
mass m and higher potential away from the extrema, there
are more bands in the AKY estimate.) We see that the first

FIG. 1. The periodic sphaleron potential VðQÞ as a function of
the coordinate Q in the electroweak theory. The barrier height is
9 TeV. The dimensionless μ ¼ mWQ is related to the Chern-
Simons number n via n ¼ μ=π − sinð2μÞ=ð2πÞ. The extrema of
VðQÞ are at sinð2μÞ ¼ 0: the minima (vacua) are at integers
n ¼ μ=π ¼ …;−2;−1; 0;þ1;þ2;… and the peaks (i.e., the
sphaleron) are at nþ 1=2 [9].

TABLE I. Some of the top and the bottom band energies and
their widths (in TeVs) are shown. There are 148 bands up to
Esph ¼ 9.11 TeV in the Manton case and 164 bands in the AKY
case. The band gap is about 70 GeVat low energies and decreases
to about 30 GeV close to Esph.

Manton AKY

Band center
energy(TeV) Width (TeV)

Band center
energy(TeV) Width (TeV)

9.113 0.01555 9.110 0.01134
9.081 7.192 × 10−3 9.084 4.957 × 10−3

9.047 2.621 × 10−3 9.056 1.718 × 10−3

9.010 8.255 × 10−4 9.026 5.186 × 10−4

8.971 2.382 × 10−4 8.994 1.438 × 10−4

8.931 6.460 × 10−5 8.961 3.747 × 10−5

8.890 1.666 × 10−5 8.927 9.279 × 10−6

8.847 4.114 × 10−6 8.892 2.198 × 10−6

8.804 9.779 × 10−7 8.857 5.008 × 10−7

8.759 2.245 × 10−7 8.802 1.101 × 10−7

8.714 4.993 × 10−8 8.783 2.341 × 10−8

8.668 1.078 × 10−8 8.745 4.828 × 10−9

8.621 2.262 × 10−9 8.707 9.673 × 10−10

8.574 4.622 × 10−10 8.668 1.886 × 10−10

8.526 9.210 × 10−11 8.628 3.580 × 10−11

8.477 1.792 × 10−11 8.588 6.622 × 10−12

8.428 3.411 × 10−12 8.548 1.211 × 10−12

8.379 6.395 × 10−13 8.506 2.167 × 10−13

8.328 1.208 × 10−13 8.465 3.553 × 10−14
..
. ..

. ..
. ..

.

0.3084 ∼10−169 0.3146 ∼10−204
0.2398 ∼10−171 0.2454 ∼10−207
0.1712 ∼10−174 0.1759 ∼10−209
0.1027 ∼10−177 0.1061 ∼10−212
0.03421 ∼10−180 0.03574 ∼10−216

S.-H. HENRY TYE AND SAM S. C. WONG PHYSICAL REVIEW D 92, 045005 (2015)

045005-2

For E ≪ ESph, TW found the band width is 
exponentially small compared to the gap, 
corresponding to the small tunnelling 
rate found in the previous calculations.  

For E > ESph, the wave functions are 
approximately plane waves with their 
momentum larger than the potential 
barrier, implying the exponential 
suppression disappears! 

10 20 30 40

-1.0

-0.5

0.0

0.5 TW

E [TeV]

S(E)
σ(∆n = ±1) ∝ exp

[
c
4π

αW
S(E)

]
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S(E) = { (1− a)Ê + aÊ2 − 1

0

for Ê < 1

for Ê ≥ 1

Ê = E/ESph

σ(∆n = ±1) =

We parametrise the sphaleron production rate as:

The typical scale is given by 1/mW, and the unknown pre-factor 
is given by p(E), which we assume a constant p = p(ESph), 
because σ(E) very sharply peaks at E=ESph. 

1

mW

σ0

(c ≃ 2)

We parametrise and use the TW’s exponent as

As was discussed in detail in [14], the Bloch wave function for the periodic potential

(2) is straightforwardly obtained, and the corresponding conducting (pass) bands can be

calculated, as well as their widths and the gaps between the bands. The lowest-lying bands

are very narrow, but the widths increase with the heights of the bands. Averaging over the

energies E1,2 of the colliding quark partons yields a strong suppression at E1 + E2 ⌧ ESph,

which corresponds to the exponential suppression found in a conventional tunnelling calcu-

lation. However, this suppression decreases as E1 +E2 ! ESph, and there is no suppression

for E1 + E2 � ESph.

The result of the analysis in [14] can be summarized in the partonic cross-section

�(�n = ±1) / exp

✓
c
4⇡

↵W
S(E)

◆
, (4)

where E is the centre-of-mass energy of the parton-parton collision, c ⇠ 2 and the suppression

factor S(E) is shown in Fig. 8 of [14]. As seen there, it rises from the value S(E) = �1

in the low-energy limit (E ⌧ ESph) to S(E) = 0 for energies E � ESph, with very similar

results being found in [14] for calculations based on the work of [2] and [23]. For the purpose

of our numerical calculations, we approximate S(E) at intermediate energies by

S(E) = (1� a)Ê + aÊ2 � 1 for 0  Ê  1 , (5)

where Ê ⌘ E/ESph and a = �0.005.

The overall magnitude of Eq. (4) is not given. We speculate that the relevant scale should

be proportional to the non-perturbative electro-weak cross-section for q-q scattering, �EW
qq .

Analogously to the fact that the inelastic p-p cross-section is given roughly by ⇠ 1/m2
⇡, we

take �EW
qq ⇠ 1/m2

W . Our cross-section formula is, thus, given as

�(�n = ±1) =
1

m2
W

X

ab

Z
dE

dLab

dE
p exp

⇣
c
4⇡

↵W
S(E)

⌘
, (6)

where p is an unknown factor (that might well depend 3 on the subprocess energy E) and
dLab
dE is the parton luminosity function of the colliding quarks a and b, which are obtained

from the parton distribution functions at a momentum fraction x, fa(x), evaluated at the

appropriate energy scale E:

dLab

dE
=

2E

E2
CM

Z � ln
p
⌧

ln
p
⌧

dyfa(
p
⌧ey)fb(

p
⌧e�y), (7)

where ECM is the centre-of-mass energy of the p-p collision and ⌧ = E2/E2
CM.

3S.-H. Henry Tye and Sam S. C. Wong, private communication and to appear.

3

(τ = E2/E2
Sph)

The parton luminosity function is given as usual as

a = −0.05

∫
p(E)

m2
W

∑

a,b

dLab

dE
exp

(
c
4π

αW
S(E)

)
dE
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ûL

ĉL

t̂L

ℓτ

ℓe

ℓµ

ûL

ĉL

t̂L

t̂L ĉL

ûL

∆n = 1

• Only left-handed particles interact.

• For collisions of the same generation particles, their colour charges 
have to differ. 

fa(x) →
1

2
fa(x)

fa(x)fb(x) →
1

3
fa(x)fb(x)

(if a, b are the same generation)
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Figure 1: Upper panel: Contributions to the cross section for sphaleron transitions from the
collisions of di↵erent flavours of quarks, for the nominal case ECM = 14 TeV, ESph = 9 TeV,
c = 2 and p = 1 in (6) with S given by (5). The contributions of di↵erent parton-parton
collision processes are colour-coded as indicated. Lower panels: As above, for the cases
ECM = 13, 33 and 100 TeV.

for them during LHC Run 2, even with just a few fb�1 of luminosity at 13 TeV as already

accumulated.

The dot-dashed and dashed curves in Fig. 2 are for the cases ESph = 8 and 10 TeV, which

lie far outside the uncertainty in ESph ⇠ 1% quoted in [14]. It is clear that the LHC cross

section is smaller for larger ESph, and the energy dependence is steeper, whereas the opposite

statements hold for smaller ESph. However, whereas in the former case sphaleron-induced

processes could be more visible in Run 2 of the LHC, even in the latter case increasing ECM

should be a priority for the LHC.

Looking beyond the LHC, Fig. 2 shows that the sphaleron transition rate would increase
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for them during LHC Run 2, even with just a few fb�1 of luminosity at 13 TeV as already

accumulated.

The dot-dashed and dashed curves in Fig. 2 are for the cases ESph = 8 and 10 TeV, which

lie far outside the uncertainty in ESph ⇠ 1% quoted in [14]. It is clear that the LHC cross

section is smaller for larger ESph, and the energy dependence is steeper, whereas the opposite

statements hold for smaller ESph. However, whereas in the former case sphaleron-induced

processes could be more visible in Run 2 of the LHC, even in the latter case increasing ECM

should be a priority for the LHC.

Looking beyond the LHC, Fig. 2 shows that the sphaleron transition rate would increase

5

Differential Cross Section

J. Ellis, KS [1601.03654]

p(E) = p = 1

ESph = 9TeV
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Figure 2: The energy dependence of the total cross section for sphaleron transitions for the
nominal choices ESph = 9 TeV, c = 2 and p = 1 in (6) with S given by (5) (solid curve), and
for the outlying choices ESph = 8 and 10 TeV (dot-dashed and dashed lines, respectively).
The variations in the curves for 1  c  4 are within the widths of the lines. We recall that
the overall normalization factor p is quite uncertain.

significantly at colliders with higher ECM. Specifically, for our nominal choices ESph = 9 TeV,

c = 2 and p = 1 we find sphaleron cross sections 0.3 (141)⇥ 106 fb at ECM = 33 (100) TeV.

These can be compared with the expected gg ! H cross sections at these centre-of-mass

energies, which are 0.18 (0.74) ⇥ 106 fb at 33 (100) TeV. If these estimates are in the right

ball-park, such higher-energy colliders would be veritable sphaleron factories. However, we

emphasize again that the overall magnitude of the sphaleron transition rate is very uncertain.

One should, perhaps, instead regard Fig. 2 as showing that higher-energy collisions may

provide sensitivity to sphaleron transitions for p ⌧ 1.

4 Simulations of Sphaleron-Induced Processes

We turn now to the prospective observability of sphaleron-induced processes, the simplest

possibility being �n = �1 processes that give rise to e↵ective interactions involving one

member of each electroweak doublet, i.e., e/⌫e, µ/⌫µ, ⌧/⌫⌧ , and 3 colours of u/d, c/s and

6

Sphaleron gg→H
13 TeV 7.3 fb 44 x 103 fb
14 TeV 41 fb 50 x 103 fb
33 TeV 0.3 x 106 fb 0.2 x 106 fb

100 TeV 141 x 106 fb 0.7 x 106 fb

ESph = 9TeV

p = 1

Cross Section

J. Ellis, KS 
[1601.03654]
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Event generation
• We use our own toy MC code. There is a public code HERBVI 

(by M.Gibbs, B.Webber).

• We generate a quanta with its mass √s and decay it to fermions 
according to the phase space.  

⟨I|(ℓ̄eℓ̄µℓ̄τ )(q̄q̄q̄)(q̄q̄q̄)(q̄q̄q̄)|F ⟩

∆n = −1

} qq → 3ℓ̄+ 7q̄⇒

⟨I|(ℓeℓµℓτ )(qqq)(qqq)(qqq) · (q̄q) · (q̄q)|F ⟩}
∆n = +1

⇒ qq → 3ℓ+ 11q

• We randomly picks SU(2) component but takes it only if the net 
EM charge is conserved. 

• We decay t, W and τ in our simulation.

I 

I F

F



| < 2.5)η > 20GeV, |
T

multiplicity (p
6 8 10 12 14 16 18 20

N
or

m
al

is
ed

 E
ve

nt
s

0

0.05

0.1

0.15

0.2

0.25
13TeV

3l7q

3l11q

TS
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
or

m
al

is
ed

 E
ve

nt
s

0

0.02

0.04

0.06

0.08

0.1
13TeV

3l7q

3l11q

lepN
0.5− 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

N
or

m
al

is
ed

 E
ve

nt
s

0

0.05

0.1
0.15

0.2

0.25
0.3

0.35

0.4
0.45 13TeV

3l7q

3l11q

topN
0.5− 0 0.5 1 1.5 2 2.5 3 3.5

N
or

m
al

is
ed

 E
ve

nt
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
13TeV

3l7q

3l11q

Figure 4: Left panel: Normalized invariant-mass distributions for the observable final state
particles in sphaleron-induced transitions in LHC collisions at 13 and 14 TeV (blue and red
histograms, respectively). Right panel: Corresponding invariant-mass distributions for future
colliders at 33 and 100 TeV (green and pink histograms, respectively). These distributions
are also calculated for our nominal choices ESph = 9 TeV, c = 2 and p = 1.

the two LHC energies are very similar, both being peaked at ⇠ 6 TeV. The distributions at

the two future collider energies peak at somewhat higher energies ⇠ 7 TeV, but with longer

tails at higher values of HT , particularly at 100 TeV. The Emiss
T distributions at the two LHC

energies are also very similar, both being peaked at ⇠ 0.5 TeV. The distributions at 33 and

100 TeV are also peaked at ⇠ 0.7 TeV, but with longer tails to higher values, particularly

at 100 TeV.
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the two future collider energies peak at somewhat higher energies ⇠ 7 TeV, but with longer

tails at higher values of HT , particularly at 100 TeV. The Emiss
T distributions at the two LHC

energies are also very similar, both being peaked at ⇠ 0.5 TeV. The distributions at 33 and

100 TeV are also peaked at ⇠ 0.7 TeV, but with longer tails to higher values, particularly

at 100 TeV.

9

 [TeV]TH
0 2 4 6 8 10 12

N
or

m
al

is
ed

 E
ve

nt
s

0

0.05

0.1

0.15

0.2

0.25 3l7q

13 TeV

14 TeV

 [TeV]TH
0 5 10 15 20 25

N
or

m
al

is
ed

 E
ve

nt
s

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 3l7q

33 TeV

100 TeV

 [TeV]miss
TE

0 0.5 1 1.5 2 2.5

N
or

m
al

is
ed

 E
ve

nt
s

0

0.02

0.04

0.06

0.08

0.1
3l7q

13 TeV

14 TeV

 [TeV]miss
TE

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

N
or

m
al

is
ed

 E
ve

nt
s

0

0.02
0.04
0.06

0.08
0.1

0.12
0.14

0.16
0.18 3l7q

33 TeV

100 TeV

Figure 5: Upper panels: Normalized distributions in HT ⌘ P
pjetT for the observable final

state particles in sphaleron-induced transitions in LHC collisions at 13 and 14 TeV in the
left panel and at 33 and 100 TeV in the right panel. Lower panels: Normalized distributions
in Emiss

T for the two LHC energies in the left panel and the two future collider energies in the
right panel. Again, these distributions are calculated for our nominal choices ESph = 9 TeV,
c = 2 and p = 1.

5 Analysis of ATLAS 2015 Data

The ATLAS Collaboration has recently published the (null) results of a search for microscopic

black holes using ⇠ 3 fb�1 of data at 13 TeV recorded in 2015 [22]. This analysis was based

on measurements of the numbers of events in search regions (SRnjet) defined by cuts in the

number of jets with pT > 50 GeV and |⌘| < 2.8: njet � 3 to 8, accompanied by cuts in

HT & 5 TeV. We now compare the ATLAS measurements with our parton-level simulations

of the final states induced by sphaleron transitions. Although we neglect various e↵ects such

as parton showering, hadronization and detector resolution, we expect our limit is in a right

ball-park, for the following reasons. As mentioned above, the event selection is based entirely
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T for the two LHC energies in the left panel and the two future collider energies in the
right panel. Again, these distributions are calculated for our nominal choices ESph = 9 TeV,
c = 2 and p = 1.
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Figure 5: Upper panels: Normalized distributions in HT ⌘ P
pjetT for the observable final

state particles in sphaleron-induced transitions in LHC collisions at 13 and 14 TeV in the
left panel and at 33 and 100 TeV in the right panel. Lower panels: Normalized distributions
in Emiss

T for the two LHC energies in the left panel and the two future collider energies in the
right panel. Again, these distributions are calculated for our nominal choices ESph = 9 TeV,
c = 2 and p = 1.

5 Analysis of ATLAS 2015 Data

The ATLAS Collaboration has recently published the (null) results of a search for microscopic

black holes using ⇠ 3 fb�1 of data at 13 TeV recorded in 2015 [22]. This analysis was based

on measurements of the numbers of events in search regions (SRnjet) defined by cuts in the

number of jets with pT > 50 GeV and |⌘| < 2.8: njet � 3 to 8, accompanied by cuts in

HT & 5 TeV. We now compare the ATLAS measurements with our parton-level simulations

of the final states induced by sphaleron transitions. Although we neglect various e↵ects such

as parton showering, hadronization and detector resolution, we expect our limit is in a right

ball-park, for the following reasons. As mentioned above, the event selection is based entirely
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Figure 4: Left panel: Normalized invariant-mass distributions for the observable final state
particles in sphaleron-induced transitions in LHC collisions at 13 and 14 TeV (blue and red
histograms, respectively). Right panel: Corresponding invariant-mass distributions for future
colliders at 33 and 100 TeV (green and pink histograms, respectively). These distributions
are also calculated for our nominal choices ESph = 9 TeV, c = 2 and p = 1.

the two LHC energies are very similar, both being peaked at ⇠ 6 TeV. The distributions at

the two future collider energies peak at somewhat higher energies ⇠ 7 TeV, but with longer

tails at higher values of HT , particularly at 100 TeV. The Emiss
T distributions at the two LHC

energies are also very similar, both being peaked at ⇠ 0.5 TeV. The distributions at 33 and

100 TeV are also peaked at ⇠ 0.7 TeV, but with longer tails to higher values, particularly

at 100 TeV.
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Figure 6: Comparison of the numbers of events with njet � 3 measured by ATLAS in ⇠ 3/fb
of data at 13 TeV in bins of HT , compared with simulations for ESph = 9 TeV and c = 2
of �n = �1 sphaleron transitions to final states with 3 antileptons and 7 antiquarks (red
histogram) and �n = +1 transitions to final states with 3 leptons and 11 quarks (blue
histogram).

on jets, for which the acceptance is almost 100% for signal jets with pT much higher than

the kinematical threshold of 50 GeV. The primary relevant e↵ect of parton showering is the

splitting of a quark momentum into two (or more) jets. However, HT is not sensitive to this

splitting, because it is defined inclusively as the sum of jet momenta (HT ⌘ P
pjetT ). Also this

e↵ect tends to increase the number of jets, which makes our limit only more conservative.

Fig. 6 compares the ATLAS measurements for njet � 7 in bins of HT  7 TeV with

sphaleron simulations for ESph = 9 TeV and p = 0.2 (the results are insensitive to c). We

see that events due to sphaleron transitions are expected to have a broad distribution in

HT , with a large fraction having HT & 5 TeV. We focus initially on the case of �n = �1

transitions, which yield final states with 3 antilepton + 7 antiquarks (8), corresponding to the

red histogram in Fig. 6. The corresponding values of the acceptances for these final states in

the di↵erent ATLAS search regions SR3, ..., SR8 as functions of the sphaleron barrier height

ESph 2 [8, 10] TeV are shown in the left panel of Fig. 7. We note that characteristic values

of the acceptances for the nominal ESph = 9 TeV are & 0.4 for SR6, SR7 and SR8.
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njet � HT > Hmin
T (TeV) Expected limit (fb) Observed limit (fb)

3 5.8 1.63+0.70
�0.57 1.33

4 5.6 1.77+0.70
�0.57 1.77

5 5.5 1.56+0.73
�0.50 1.75

6 5.3 1.52+0.69
�0.50 2.15

7 5.4 1.02+0.36
�0.0 1.02

8 5.1 1.01+0.29
�0.0 1.01

Table 6: The expected and observed limits on the inclusive cross section in femtobarns for production of events as
a function of njet and the minimum value of HT . The limits are derived from results of the 3.0 fb�1 analysis so Hmin

T
corresponds to the value of S for the last analysis step.
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We confront our sphaleron events with the ATLAS mini black 
hole search results @ 13TeV with 3.6/fb [1512.02586], where the 
signal regions are defined for different # of jets and HT. 

HT =
∑

i

pjet,iT

J.Ellis, KS 
[1601.03654]
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Figure 7: Right panel: Acceptances for sphaleron-induced �n = �1 transitions in ATLAS
event selections with di↵erent cuts in (njet, HT ), as functions of ESph. Left panel: The
exclusion in the (ESph, p) plane of �n = �1 transitions obtained by recasting the ATLAS
2015 search for microscopic black holes using ⇠ 3/fb of data at 13 TeV. The variation in the
exclusion for 1  c  4 is negligible.

We may therefore recast the ATLAS search as a relatively e�cient search for �n = �1

sphaleron-induced transitions. For each value of ESph, we select the SRn that is expected to

yield the best limit, finding that SR8 is expected to be the most sensitive for ESph . 9.3 TeV

whereas SR7 is the most sensitive for ESph & 9.3 TeV. The exclusion limit resulting from this

recasting of the ATLAS black hole search is shown in the right panel of Fig. 7. We display

the 95% CL constraint in the (ESph, p) plane, which is quite insensitive to c 2 [1, 4]. We note

that this preliminary result already excludes p = 1 for the nominal value of ESph = 9 TeV.

Thus far, we have discussed �n = �1 sphaleron transitions in which two quarks collide

to yield 3 antileptons and 7 antiquarks, and now we consider the next simplest possibility

of a �n = +1 sphaleron transition in which two quarks collide to yield 3 leptons and 11

quarks. The left panel of Fig. 6 shows the simulated HT distribution for this possibility as a

blue histogram, which is shifted to larger values than for the �n = �1 sphaleron transitions.

Correspondingly, the acceptances in the ATLAS search regions are higher for �n = +1

transitions, as seen in the left panel of Fig. 8, reaching ⇠ 0.8 for SR8 for the nominal

ESph = 9 TeV. Consequently, the 95% CL exclusion in the (ESph, p) plane for �n = +1

transitions is correspondingly stronger than for �n = �1 transitions, as seen in the right

panel of Fig. 8, excluding p ' 0.2 for the nominal ESph = 9 TeV 7.

7Similarly, there would be even stronger exclusions for |�n| > 1 transitions.
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Figure 8: Left panel: Acceptances as in right panel of Fig. 6, but for �n = +1 sphaleron-
induced transitions to 14-particle final states. Right panel: The exclusion in the (ESph, p)
plane, as in Fig. 7 but for sphaleron-induced transitions to 14-particle final states.

6 Future Prospects

Run 2 of the LHC is expected to yield ⇠ 100 fb�1 of data at 13 TeV, which should enable

the sensitivity to p to be improved to ⇠ 0.01 for ESph = 9 TeV, which could be improved

with an optimized, targeted analysis of the final states in sphaleron-induced transitions.

For example, as was pointed out in [14], �n = �1 sphaleron-induced processes would

yield final states with multiple positively-charged leptons: e+, µ+ and/or ⌧+. In particular,

1/8 of the final states would contain the distinctive combination of all three positively-

charged leptons: e++µ++ ⌧+. Also, every �n = �1 sphaleron-induced event would contain

0, 1, 2 or 3 top antiquarks accompanied by 3, 2, 1 or 0 bottom antiquarks. Therefore,

every sphaleron-induced final state should contain multiple bottom antiquarks, produced

either directly or in antitop decays. Assuming the nominal value ESph = 9 TeV, we have

calculated the phase space factors for final states in �n = �1 processes containing 1, 2 or

3 top antiquarks, which are reduced by 0.90, 0.75 and 0.62 relative to topless final states.

Including combinatorial factors of 3 for the 1- and 2-top final states and the constraint of

charge conservation and detector acceptance we found the ratios of 0-, 1-, 2- and 3-top final

states to be 1 : 2.83 : 1.56 : 0.17, as can be seen from the bottom right panel of Fig. 4. The

final states containing top antiquarks may therefore provide distinctive signatures. Using

such antilepton, bottom and top antiquark signatures might improve the Run-2 sensitivity

significantly, particularly if both ATLAS and CMS searches could be combined.

The sensitivity could be further improved by a factor ⇠ 6 if the LHC could make collisions

13

The best expected SR is SR8 for ESph < 9.3TeV, SR7 otherwise.
J.Ellis, KS [1601.03654]
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If LHC finds an excess in a black hole signature, 
can we distinguish it from sphaleron signature? 



33

Sphalerons @ IceCube
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What neutrino energy is required to create a sphaleron?

(mN , 0)
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FIG. 2. Deposited energies of observed events with predic-
tions. The hashed region shows uncertainties on the sum of
all backgrounds. Muons (red) are computed from simulation
to overcome statistical limitations in our background mea-
surement and scaled to match the total measured background
rate. Atmospheric neutrinos and uncertainties thereon are de-
rived from previous measurements of both the ⇡/K and charm
components of the atmospheric ⌫

µ

spectrum [9]. A gap larger
than the one between 400 and 1000 TeV appears in 43% of
realizations of the best-fit continuous spectrum.

A purely atmospheric explanation for these events is
strongly disfavored by their properties. The observed
deposited energy distribution extends to much higher en-
ergies (above 2 PeV, Fig. 2) than expected from the ⇡/K
atmospheric neutrino background, which has been mea-
sured up to 100 TeV [9]. While a harder spectrum is ex-
pected from atmospheric neutrinos produced in charmed
meson decay, this possibility is constrained by the ob-
served angular distribution. Although such neutrinos
are produced isotropically, approximately half [27, 28]
of those in the southern hemisphere are produced with
muons of high enough energy to reach IceCube and trig-
ger our muon veto. This results in a southern hemisphere
charm rate ⇠50% smaller than the northern hemisphere
rate, with larger ratios near the poles. Our data show no
evidence of such a suppression, which is expected at some
level from any atmospheric source of neutrinos (Fig. 3).

As in [11], we quantify these arguments using a likeli-
hood fit in arrival angle and deposited energy to a com-
bination of background muons, atmospheric neutrinos
from ⇡/K decay, atmospheric neutrinos from charmed
meson decay, and an isotropic 1:1:1 astrophysical E�2

test flux, as expected from charged pion decays in cos-
mic ray accelerators [30–33]. The fit included all events
with 60TeV < E

dep

< 3PeV. The expected muon
background in this range is below 1 event in the 3-year
sample, minimizing imprecisions in modeling the muon
background and threshold region. The normalizations of
all background and signal neutrino fluxes were left free
in the fit, without reference to uncertainties from [9],

FIG. 3. Arrival angles of events with E
dep

> 60TeV, as used
in our fit and above the majority of the cosmic ray muon back-
ground. The increasing opacity of the Earth to high energy
neutrinos is visible at the right of the plot. Vetoing atmo-
spheric neutrinos by muons from their parent air showers de-
presses the atmospheric neutrino background on the left. The
data are described well by the expected backgrounds and a
hard astrophysical isotropic neutrino flux (gray lines). Col-
ors as in Fig. 2. Variations of this figure with other energy
thresholds are in the online supplement [29].

for maximal robustness. The penetrating muon back-
ground was constrained with a Gaussian prior reflecting
our veto e�ciency measurement. We obtain a best-fit
per-flavor astrophysical flux (⌫ + ⌫̄) in this energy range
of E2�(E) = 0.95 ± 0.3 ⇥ 10�8 GeV cm�2 s�1 sr�1 and
background normalizations within the expected ranges.
Quoted errors are 1� uncertainties from a profile like-
lihood scan. This model describes the data well, with
both the energy spectrum (Fig. 2) and arrival directions
(Fig. 3) of the events consistent with expectations for an
origin in a hard isotropic 1:1:1 neutrino flux. The best-fit
atmospheric-only alternative model, however, would re-
quire a charm normalization 3.6 times higher than our
current 90% CL upper limit from the northern hemi-
sphere ⌫

µ

spectrum [9]. Even this extreme scenario is
disfavored by the energy and angular distributions of the
events at 5.7� using a likelihood ratio test.

Fig. 4 shows a fit using a more general model in which
the astrophysical flux is parametrized as a piecewise func-
tion of energy rather than a continuous unbroken E�2

power law. As before, we assume a 1:1:1 flavor ratio and
isotropy. While the reconstructed spectrum is compati-
ble with our earlier E�2 ansatz, an unbroken E�2 flux
at our best-fit level predicts 3.1 additional events above
2 PeV (a higher energy search [10] also saw none). This
may indicate, along with the slight excess in lower en-
ergy bins, either a softer spectrum or a cuto↵ at high
energies. Correlated systematic uncertainties in the first
few points in the reconstructed spectrum (Fig. 4) arise
from the poorly constrained level of the charm atmo-
spheric neutrino background. The presence of this softer
(E�2.7) component would decrease the non-atmospheric

~106 GeV neutrinos have been 
observed.
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all background and signal neutrino fluxes were left free
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for maximal robustness. The penetrating muon back-
ground was constrained with a Gaussian prior reflecting
our veto e�ciency measurement. We obtain a best-fit
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of E2�(E) = 0.95 ± 0.3 ⇥ 10�8 GeV cm�2 s�1 sr�1 and
background normalizations within the expected ranges.
Quoted errors are 1� uncertainties from a profile like-
lihood scan. This model describes the data well, with
both the energy spectrum (Fig. 2) and arrival directions
(Fig. 3) of the events consistent with expectations for an
origin in a hard isotropic 1:1:1 neutrino flux. The best-fit
atmospheric-only alternative model, however, would re-
quire a charm normalization 3.6 times higher than our
current 90% CL upper limit from the northern hemi-
sphere ⌫
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spectrum [9]. Even this extreme scenario is
disfavored by the energy and angular distributions of the
events at 5.7� using a likelihood ratio test.

Fig. 4 shows a fit using a more general model in which
the astrophysical flux is parametrized as a piecewise func-
tion of energy rather than a continuous unbroken E�2

power law. As before, we assume a 1:1:1 flavor ratio and
isotropy. While the reconstructed spectrum is compati-
ble with our earlier E�2 ansatz, an unbroken E�2 flux
at our best-fit level predicts 3.1 additional events above
2 PeV (a higher energy search [10] also saw none). This
may indicate, along with the slight excess in lower en-
ergy bins, either a softer spectrum or a cuto↵ at high
energies. Correlated systematic uncertainties in the first
few points in the reconstructed spectrum (Fig. 4) arise
from the poorly constrained level of the charm atmo-
spheric neutrino background. The presence of this softer
(E�2.7) component would decrease the non-atmospheric
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Cosmic ray spectrum falling sharply 
above 1011 GeV has been observed. 
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A purely atmospheric explanation for these events is
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meson decay, this possibility is constrained by the ob-
served angular distribution. Although such neutrinos
are produced isotropically, approximately half [27, 28]
of those in the southern hemisphere are produced with
muons of high enough energy to reach IceCube and trig-
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charm rate ⇠50% smaller than the northern hemisphere
rate, with larger ratios near the poles. Our data show no
evidence of such a suppression, which is expected at some
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Cosmic ray spectrum falling sharply 
above 1011 GeV has been observed. 
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Figure 2: The allowed proton flux (at the 99% confidence level) for increasing crossover energy Emin. Each fit of the proton
spectrum is marginalized with respect to the experimental energy uncertainty and we show the shifted predictions in comparison
to the HiRes central values [5]. For comparison we also show the Auger data [6, 17] which has not been included in the fit.

distribution for a set of non-negative integer numbers ~k = {k1, ...kr}, P~k(n, �, N , �), is just the product of
the individual Poisson distributions.

According to this r-dimensional probability distribution, the experimental result ~N exp = {N exp
1 , ..., N exp

r }
has a probability P ~Nexp

(n, �, N , �) and correspondingly the experimental probability after marginalizing over
the energy scale uncertainty and normalization is:

Pexp(n, �) = Max�,N P ~Nexp

(n, �, N , �) . (9)

where the maximization is made within some prior for � and N . For the energy shift � we have used two
forms for the prior, either a top hat spanning the energy-scale uncertainty of the experiment, �Es , or a
gaussian prior of width �Es .

For N we impose the prior arising from requiring consistency with the Fermi-LAT measurements [21]
of the di↵use extra-galactic �-ray background. In order to do so we obtain the total energy density of EM
radiation from the proton propagation using Eq. (6) and we require following Ref. [22]:

wcas(N , n, �)  5.8 ⇥ 10�7 eV/cm3 . (10)

The marginalization in Eq. (9) also determines Nbest and �best for the model, which are the values of the
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FIG. 4: Comparison of proton, neutrino and gamma ray fluxes for di�erent crossover energies. We show the best fit values

(solid lines) as well as neutrino and gamma ray fluxes within the 99% C.L. with minimal and maximal energy density (dashed

lines). The gamma ray fluxes at the 99% C.L. are marginally consistent with the highest energy bins of the Fermi LAT data.

Note, that due to the uncertainties of the infrared background the exact contribution around 100 GeV is uncertain.

The marginalization in Eq. ((9)) also determines Nbest and �best for the model which are the values of the energy shift
and normalization that render the best description of the experimental data, i.e. the maximum probability.

The model is compatible with the experimental results at given goodness of the fit (GOF) if
X

~k

P~k(n, �, Nbest, �best)⇥
⇥
P~k(n, �, Nbest, �best) � Pexp(n, �)

⇤
 0.99 (11)

Technically, this is computed by generating a large number Nrep of replica experiments according to the probability
distribution P~k(n, �, Nbest, �best) and counting the fraction of those which verify P~k(n, �, N , �best) � Pexp(n, �)  0.99

Wit h this method we determine the value of (n, �) parameters that are compatible with the HiRes I and HiRes II
experiments [5]. We plot in Fig. 1 the regions with GOF 64%, 95% and 99% for four values of the minimum energy.
We also show the corresponding values of wcas. These results are obtained assuming an energy scale uncertainty
�Es = 25% with a top hat prior for the correspondig energy shifts which are assumed to be uncorrelated for HiRes I
and HiRes II. In Fig. 3 we explore the dependence on the results on these assumptions by using a di↵erent form for
the prior, assuming the energy shifts to be correlated between the two experiments, or reducing the uncertainty to
�Es = 15%. As seen in the figure, the main e↵ect, is associated with the reduction of the energy scale uncertainty
which, as expected, results into a worsening of the GOF for models with larger n. This is directly related to the
normalization constraint from Eq. (10). If one naively ignores the energy scale uncertainty, the constraint in Eq. (10)

Figure 4: Comparison of proton, neutrino and �-ray fluxes for di↵erent crossover energies. We show the best-fit values (solid
lines) as well as neutrino and �-ray fluxes within the 99% C.L. with minimal and maximal energy density (dashed lines). The
values of the corresponding model parameters can be found in Table. 1. The dotted line labeled “maximal cascade” indicates
the approximate limit E2Jcas . c!max

cas /4⇡ log(TeV/GeV), corresponding to a �-ray flux in the GeV-TeV range saturating the
energy density (10). The �-ray fluxes are marginally consistent at the 99% C.L. with the highest energy measurements by
Fermi-LAT. The contribution around 100 GeV is somewhat uncertain due to uncertainties in the cosmic infrared background.

in Fig.2 for illustration only (hence our results are directly comparable to those in Ref.[22]). As described
in Refs. [6, 17], besides the energy scale uncertainty there is also an (energy-dependent) energy resolution
uncertainty which implies that bin-to-bin migrations influence the reconstruction of the flux and spectral
shape. Since the form of the corresponding error matrix is not public, this data [6, 17] cannot be analysed
outside the Auger Collaboration.

4. Discussion

The cosmogenic neutrino fluxes that we have shown in Fig. 4 are compared to present upper limits on
the di↵use neutrino flux in Fig. 5. As before, the solid green line shows the neutrino flux (summed over
flavours) corresponding to the best fit of the proton spectra and the dashed green line indicate the range of
neutrino fluxes within the 99% C.L. For all crossover energies considered, the range of models at the 99%
C.L. is consistent with existing neutrino limits. For illustration, the thin dotted line shows the larger range
of neutrino fluxes at the 99% C.L. corresponding to a fit without the Fermi LAT constraint (cf. the black
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ν ! 108−10 GeV

One could predict GZK neutrino and gamma ray fluxes by modelling 
the cosmic ray spectrum and fit it to the observed spectrum.

While neutrino energy is unchanged apart from redshift, the photons 
loose their energy by interacting with the intergalactic radiation fields. 
γGZK + γ → e+e−
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FIG. 6. (color online). The IceCube neutrino effective area at final selection criteria with different string configurations, IC79
(left panel) and IC86 (middle panel) for each neutrino flavor, averaged over 4π solid angle. The areas are averaged over equal
amounts of neutrinos and anti-neutrinos. Three flavor sums of the effective areas are shown in the right panel. The effective
area from the previous search [9] with 40 string configuration of IceCube (IC40) is also shown for comparison. Exposure of
the sample used in this analysis is obtained by multiplying the effective area with the effective livetime without test samples
(333.5 days, 285.8 days and 330.1 days for IC40, IC79, and IC86 respectively) and 4π solid angle. The sharp peaked structure
at 6.3 PeV for electron neutrinos is due to the Glashow resonance [36].

TABLE II. List of the statistical and systematic errors on the signal, atmospheric muon and neutrino, prompt neutrino and
the total background rate. The uncertainties in the signal rate are estimated for the cosmogenic flux of Yoshida et al. [6]
for (m, zmax) = (4, 4). The uncertainties in the background rates are evaluated against the baseline estimation by CORSIKA-
SIBYLL [25, 26] with a pure iron composition hypothesis for atmospheric muons and the Gaisser-H3a model [29] for atmospheric
neutrinos. The uncertainties in the prompt neutrino rate are estimated using the prediction by Ref. [32]. The systematic and
statistical errors listed here are relative to the event rates for each signal and background source.

Conventional
Sources Cosmogenic Atmospheric atmospheric Prompt Total

ν signal (%) muon (%) neutrino (%) neutrino (%) background (%)
Statistical error ±0.4 ±9.1 ±9.8 ±1.1 ±4.5

DOM efficiency +1.5
−5.1

+41.9
−42.7

+73.2
−17.9

+33.6
−9.6

+43.1
−26.1

Ice properties/Detector response −7.2 −47.7 −44.8 −30.8 −41.7
Neutrino cross section ±9.0 − − − −

Photo-nuclear interaction +10.0 − − − −

LPM effect ±1.0 − − − −

Angular shift for cascades −0.5 − − − −

Cosmic-ray flux variation − +30.0
−50.0 ±30.0 ±30.0 +18.7

−26.3

Cosmic-ray composition − −79.1 − − −36.7
Hadronic interaction model − +17.7 − − +8.1

ν yield from cosmic-ray nucleon − − ±15.0 − ±2.2

Prompt model uncertainty − − − +31.6
−40.4

+12.6
−16.1

Total ±0.4(stat.) ±9.1(stat.) ±9.8(stat.) ±1.1(stat.) ±4.5(stat.)
+13.6
−12.4(syst.)

+54.5
−100 (syst.) +80.5

−58.7(syst.)
+55.0
−59.8(syst.)

+49.3
−68.7(syst.)

hadronic interaction model is estimated by switching the
model from SIBYLL 2.1 [26] to QGSJET-II-03 [41] in
the simulations. The uncertainty in the cosmic-ray flux
normalization is estimated from the variance in the flux
measured by several experiments [42, 43] relative to the
one used in this analysis [44] at 10 EeV, the peak energy
of primary cosmic rays that produce atmospheric muon
events passing the final selection criteria. The contribu-

tion of the cosmic-ray normalization to the uncertainty
in the atmospheric neutrino rate is estimated in a similar
way at energies from 1 to 100PeV from various mod-
els [29, 45]. In addition, a systematic uncertainty for the
atmospheric neutrino rate arises from the uncertainty of
the parametrization of the neutrino multiplicity as de-
scribed in section III. A comparison to the full simulation
by CORSIKA [25] provides the relevant uncertainty. The
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Figure 1. Compared to the sum of the conventional charged- and neutral-current neutrino cross
sections (black dashed line), we show the energy dependence of the cross section for sphaleron
transitions in neutrino collisions for a barrier height ESph = 9TeV, c = 2 and p = 1 in eq. (2.5)
with S given by (2.4) (red solid curve) and, for comparison, choices ESph = 8 and 10TeV (red
dot-dashed and dashed lines, respectively). The variations in the sphaleron curves for 1 ≤ c ≤ 4 are
within the widths of the lines, but we recall that the overall normalization factor p is quite uncertain.

value of their estimate, we note that this choice is subject to uncertainties. The event rate

in the IceCube detector also depends on the energy-dependent effective neutrino detection

area, Aeff(Eν), which has been evaluated by the IceCube collaboration [38] using conven-

tional neutrino-nucleon interaction. Assuming the same detection efficiency, we estimate

the sphaleron-induced IceCube event rate as

dNSph

dt
=

∫

Ethres
ν

dEν

∫
dΩ

σSph
νN (Eν)

σCC/NC
νN (Eν)

Aeff(Eν)
d2Φ

dEνdtdΩ
, (2.7)

where Ethres
ν is the energy threshold of incoming cosmogenic neutrinos. In the second

integral we take into account only neutrinos coming from the upper hemisphere of IceCube,

since the neutrinos from the lower hemisphere will be absorbed by the interaction with the

Earth. In figure 2 we show the sphaleron-induced and conventional IceCube event rate

as functions of Ethres
ν again assuming c = 2 and p = 1 and using (dot-dashed) (dashed)

red lines for ESph = 9(8)(10)TeV and a black dashed line for sum of the conventional

charged- and neutral-current neutrino cross sections. We see that the sphaleron-induced

transitions would dominate over conventional neutrino collisions by a factor ! 5 for all

Ethres
ν ≥ 107GeV if p = 1.

Figure 3 displays some characteristics of the sphaleron-induced transitions. In the left

panel we show a breakdown of the collision rates with respect to the quark parton species

– 4 –

Event rate can be calculated using the energy dependent effective 
neutrino detection area.

J.Ellis, KS, M.Spannowsky [1603.06573]
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Figure 2: The allowed proton flux (at the 99% confidence level) for increasing crossover energy Emin. Each fit of the proton
spectrum is marginalized with respect to the experimental energy uncertainty and we show the shifted predictions in comparison
to the HiRes central values [5]. For comparison we also show the Auger data [6, 17] which has not been included in the fit.

distribution for a set of non-negative integer numbers ~k = {k1, ...kr}, P~k(n, �, N , �), is just the product of
the individual Poisson distributions.

According to this r-dimensional probability distribution, the experimental result ~N exp = {N exp
1 , ..., N exp

r }
has a probability P ~Nexp

(n, �, N , �) and correspondingly the experimental probability after marginalizing over
the energy scale uncertainty and normalization is:

Pexp(n, �) = Max�,N P ~Nexp

(n, �, N , �) . (9)

where the maximization is made within some prior for � and N . For the energy shift � we have used two
forms for the prior, either a top hat spanning the energy-scale uncertainty of the experiment, �Es , or a
gaussian prior of width �Es .

For N we impose the prior arising from requiring consistency with the Fermi-LAT measurements [21]
of the di↵use extra-galactic �-ray background. In order to do so we obtain the total energy density of EM
radiation from the proton propagation using Eq. (6) and we require following Ref. [22]:

wcas(N , n, �)  5.8 ⇥ 10�7 eV/cm3 . (10)

The marginalization in Eq. (9) also determines Nbest and �best for the model, which are the values of the
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FIG. 4: Comparison of proton, neutrino and gamma ray fluxes for di�erent crossover energies. We show the best fit values

(solid lines) as well as neutrino and gamma ray fluxes within the 99% C.L. with minimal and maximal energy density (dashed

lines). The gamma ray fluxes at the 99% C.L. are marginally consistent with the highest energy bins of the Fermi LAT data.

Note, that due to the uncertainties of the infrared background the exact contribution around 100 GeV is uncertain.

The marginalization in Eq. ((9)) also determines Nbest and �best for the model which are the values of the energy shift
and normalization that render the best description of the experimental data, i.e. the maximum probability.

The model is compatible with the experimental results at given goodness of the fit (GOF) if
X

~k

P~k(n, �, Nbest, �best)⇥
⇥
P~k(n, �, Nbest, �best) � Pexp(n, �)

⇤
 0.99 (11)

Technically, this is computed by generating a large number Nrep of replica experiments according to the probability
distribution P~k(n, �, Nbest, �best) and counting the fraction of those which verify P~k(n, �, N , �best) � Pexp(n, �)  0.99

Wit h this method we determine the value of (n, �) parameters that are compatible with the HiRes I and HiRes II
experiments [5]. We plot in Fig. 1 the regions with GOF 64%, 95% and 99% for four values of the minimum energy.
We also show the corresponding values of wcas. These results are obtained assuming an energy scale uncertainty
�Es = 25% with a top hat prior for the correspondig energy shifts which are assumed to be uncorrelated for HiRes I
and HiRes II. In Fig. 3 we explore the dependence on the results on these assumptions by using a di↵erent form for
the prior, assuming the energy shifts to be correlated between the two experiments, or reducing the uncertainty to
�Es = 15%. As seen in the figure, the main e↵ect, is associated with the reduction of the energy scale uncertainty
which, as expected, results into a worsening of the GOF for models with larger n. This is directly related to the
normalization constraint from Eq. (10). If one naively ignores the energy scale uncertainty, the constraint in Eq. (10)

Figure 4: Comparison of proton, neutrino and �-ray fluxes for di↵erent crossover energies. We show the best-fit values (solid
lines) as well as neutrino and �-ray fluxes within the 99% C.L. with minimal and maximal energy density (dashed lines). The
values of the corresponding model parameters can be found in Table. 1. The dotted line labeled “maximal cascade” indicates
the approximate limit E2Jcas . c!max

cas /4⇡ log(TeV/GeV), corresponding to a �-ray flux in the GeV-TeV range saturating the
energy density (10). The �-ray fluxes are marginally consistent at the 99% C.L. with the highest energy measurements by
Fermi-LAT. The contribution around 100 GeV is somewhat uncertain due to uncertainties in the cosmic infrared background.

in Fig.2 for illustration only (hence our results are directly comparable to those in Ref.[22]). As described
in Refs. [6, 17], besides the energy scale uncertainty there is also an (energy-dependent) energy resolution
uncertainty which implies that bin-to-bin migrations influence the reconstruction of the flux and spectral
shape. Since the form of the corresponding error matrix is not public, this data [6, 17] cannot be analysed
outside the Auger Collaboration.

4. Discussion

The cosmogenic neutrino fluxes that we have shown in Fig. 4 are compared to present upper limits on
the di↵use neutrino flux in Fig. 5. As before, the solid green line shows the neutrino flux (summed over
flavours) corresponding to the best fit of the proton spectra and the dashed green line indicate the range of
neutrino fluxes within the 99% C.L. For all crossover energies considered, the range of models at the 99%
C.L. is consistent with existing neutrino limits. For illustration, the thin dotted line shows the larger range
of neutrino fluxes at the 99% C.L. corresponding to a fit without the Fermi LAT constraint (cf. the black
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Figure 2: The allowed proton flux (at the 99% confidence level) for increasing crossover energy Emin. Each fit of the proton
spectrum is marginalized with respect to the experimental energy uncertainty and we show the shifted predictions in comparison
to the HiRes central values [5]. For comparison we also show the Auger data [6, 17] which has not been included in the fit.

distribution for a set of non-negative integer numbers ~k = {k1, ...kr}, P~k(n, �, N , �), is just the product of
the individual Poisson distributions.

According to this r-dimensional probability distribution, the experimental result ~N exp = {N exp
1 , ..., N exp

r }
has a probability P ~Nexp

(n, �, N , �) and correspondingly the experimental probability after marginalizing over
the energy scale uncertainty and normalization is:

Pexp(n, �) = Max�,N P ~Nexp

(n, �, N , �) . (9)

where the maximization is made within some prior for � and N . For the energy shift � we have used two
forms for the prior, either a top hat spanning the energy-scale uncertainty of the experiment, �Es , or a
gaussian prior of width �Es .

For N we impose the prior arising from requiring consistency with the Fermi-LAT measurements [21]
of the di↵use extra-galactic �-ray background. In order to do so we obtain the total energy density of EM
radiation from the proton propagation using Eq. (6) and we require following Ref. [22]:

wcas(N , n, �)  5.8 ⇥ 10�7 eV/cm3 . (10)

The marginalization in Eq. (9) also determines Nbest and �best for the model, which are the values of the
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FIG. 4: Comparison of proton, neutrino and gamma ray fluxes for di�erent crossover energies. We show the best fit values

(solid lines) as well as neutrino and gamma ray fluxes within the 99% C.L. with minimal and maximal energy density (dashed

lines). The gamma ray fluxes at the 99% C.L. are marginally consistent with the highest energy bins of the Fermi LAT data.

Note, that due to the uncertainties of the infrared background the exact contribution around 100 GeV is uncertain.

The marginalization in Eq. ((9)) also determines Nbest and �best for the model which are the values of the energy shift
and normalization that render the best description of the experimental data, i.e. the maximum probability.

The model is compatible with the experimental results at given goodness of the fit (GOF) if
X
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P~k(n, �, Nbest, �best)⇥
⇥
P~k(n, �, Nbest, �best) � Pexp(n, �)

⇤
 0.99 (11)

Technically, this is computed by generating a large number Nrep of replica experiments according to the probability
distribution P~k(n, �, Nbest, �best) and counting the fraction of those which verify P~k(n, �, N , �best) � Pexp(n, �)  0.99

Wit h this method we determine the value of (n, �) parameters that are compatible with the HiRes I and HiRes II
experiments [5]. We plot in Fig. 1 the regions with GOF 64%, 95% and 99% for four values of the minimum energy.
We also show the corresponding values of wcas. These results are obtained assuming an energy scale uncertainty
�Es = 25% with a top hat prior for the correspondig energy shifts which are assumed to be uncorrelated for HiRes I
and HiRes II. In Fig. 3 we explore the dependence on the results on these assumptions by using a di↵erent form for
the prior, assuming the energy shifts to be correlated between the two experiments, or reducing the uncertainty to
�Es = 15%. As seen in the figure, the main e↵ect, is associated with the reduction of the energy scale uncertainty
which, as expected, results into a worsening of the GOF for models with larger n. This is directly related to the
normalization constraint from Eq. (10). If one naively ignores the energy scale uncertainty, the constraint in Eq. (10)
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in Fig.2 for illustration only (hence our results are directly comparable to those in Ref.[22]). As described
in Refs. [6, 17], besides the energy scale uncertainty there is also an (energy-dependent) energy resolution
uncertainty which implies that bin-to-bin migrations influence the reconstruction of the flux and spectral
shape. Since the form of the corresponding error matrix is not public, this data [6, 17] cannot be analysed
outside the Auger Collaboration.
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spectrum is marginalized with respect to the experimental energy uncertainty and we show the shifted predictions in comparison
to the HiRes central values [5]. For comparison we also show the Auger data [6, 17] which has not been included in the fit.

distribution for a set of non-negative integer numbers ~k = {k1, ...kr}, P~k(n, �, N , �), is just the product of
the individual Poisson distributions.

According to this r-dimensional probability distribution, the experimental result ~N exp = {N exp
1 , ..., N exp

r }
has a probability P ~Nexp

(n, �, N , �) and correspondingly the experimental probability after marginalizing over
the energy scale uncertainty and normalization is:

Pexp(n, �) = Max�,N P ~Nexp

(n, �, N , �) . (9)

where the maximization is made within some prior for � and N . For the energy shift � we have used two
forms for the prior, either a top hat spanning the energy-scale uncertainty of the experiment, �Es , or a
gaussian prior of width �Es .

For N we impose the prior arising from requiring consistency with the Fermi-LAT measurements [21]
of the di↵use extra-galactic �-ray background. In order to do so we obtain the total energy density of EM
radiation from the proton propagation using Eq. (6) and we require following Ref. [22]:

wcas(N , n, �)  5.8 ⇥ 10�7 eV/cm3 . (10)

The marginalization in Eq. (9) also determines Nbest and �best for the model, which are the values of the
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FIG. 4: Comparison of proton, neutrino and gamma ray fluxes for di�erent crossover energies. We show the best fit values

(solid lines) as well as neutrino and gamma ray fluxes within the 99% C.L. with minimal and maximal energy density (dashed

lines). The gamma ray fluxes at the 99% C.L. are marginally consistent with the highest energy bins of the Fermi LAT data.

Note, that due to the uncertainties of the infrared background the exact contribution around 100 GeV is uncertain.

The marginalization in Eq. ((9)) also determines Nbest and �best for the model which are the values of the energy shift
and normalization that render the best description of the experimental data, i.e. the maximum probability.

The model is compatible with the experimental results at given goodness of the fit (GOF) if
X

~k

P~k(n, �, Nbest, �best)⇥
⇥
P~k(n, �, Nbest, �best) � Pexp(n, �)

⇤
 0.99 (11)

Technically, this is computed by generating a large number Nrep of replica experiments according to the probability
distribution P~k(n, �, Nbest, �best) and counting the fraction of those which verify P~k(n, �, N , �best) � Pexp(n, �)  0.99

Wit h this method we determine the value of (n, �) parameters that are compatible with the HiRes I and HiRes II
experiments [5]. We plot in Fig. 1 the regions with GOF 64%, 95% and 99% for four values of the minimum energy.
We also show the corresponding values of wcas. These results are obtained assuming an energy scale uncertainty
�Es = 25% with a top hat prior for the correspondig energy shifts which are assumed to be uncorrelated for HiRes I
and HiRes II. In Fig. 3 we explore the dependence on the results on these assumptions by using a di↵erent form for
the prior, assuming the energy shifts to be correlated between the two experiments, or reducing the uncertainty to
�Es = 15%. As seen in the figure, the main e↵ect, is associated with the reduction of the energy scale uncertainty
which, as expected, results into a worsening of the GOF for models with larger n. This is directly related to the
normalization constraint from Eq. (10). If one naively ignores the energy scale uncertainty, the constraint in Eq. (10)

Figure 4: Comparison of proton, neutrino and �-ray fluxes for di↵erent crossover energies. We show the best-fit values (solid
lines) as well as neutrino and �-ray fluxes within the 99% C.L. with minimal and maximal energy density (dashed lines). The
values of the corresponding model parameters can be found in Table. 1. The dotted line labeled “maximal cascade” indicates
the approximate limit E2Jcas . c!max

cas /4⇡ log(TeV/GeV), corresponding to a �-ray flux in the GeV-TeV range saturating the
energy density (10). The �-ray fluxes are marginally consistent at the 99% C.L. with the highest energy measurements by
Fermi-LAT. The contribution around 100 GeV is somewhat uncertain due to uncertainties in the cosmic infrared background.

in Fig.2 for illustration only (hence our results are directly comparable to those in Ref.[22]). As described
in Refs. [6, 17], besides the energy scale uncertainty there is also an (energy-dependent) energy resolution
uncertainty which implies that bin-to-bin migrations influence the reconstruction of the flux and spectral
shape. Since the form of the corresponding error matrix is not public, this data [6, 17] cannot be analysed
outside the Auger Collaboration.

4. Discussion

The cosmogenic neutrino fluxes that we have shown in Fig. 4 are compared to present upper limits on
the di↵use neutrino flux in Fig. 5. As before, the solid green line shows the neutrino flux (summed over
flavours) corresponding to the best fit of the proton spectra and the dashed green line indicate the range of
neutrino fluxes within the 99% C.L. For all crossover energies considered, the range of models at the 99%
C.L. is consistent with existing neutrino limits. For illustration, the thin dotted line shows the larger range
of neutrino fluxes at the 99% C.L. corresponding to a fit without the Fermi LAT constraint (cf. the black
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ESph
ν ! 108−10 GeV

One could predict GZK neutrino and gamma ray fluxes by modelling 
the cosmic ray spectrum and fit it to the observed spectrum.

While neutrino energy is unchanged apart from redshift, the photons 
loose their energy by interacting with the intergalactic radiation fields. 
γGZK + γ → e+e−
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∫

Ethree

dEνAeff(Eν)
d2Φ

dEνdt
dNCC/NC

dt
=

∫

Ethree

dEν
σSph
νN (Eν)

σCC/NC
νN (Eν)

Aeff(Eν)
d2Φ

dEνdt
dNSph

dt
=

Event rate can be calculated using the energy dependent effective 
neutrino detection area.
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Figure 2. Compared to the sum of the conventional charged- and neutral-current neutrino cross
sections (black dashed line), we show the rate for sphaleron transitions in IceCube for a barrier
height ESph = 9TeV, p = 1 in eq. (2.5) (red solid curve) and, for comparison, choices ESph = 8 and
10TeV (red dot-dashed and dashed lines, respectively).

inside the nucleon targets in the ice. As was to be expected, interactions with u and d

quarks dominate, followed by interactions with antiquarks and heavy flavours. In the right

panel we show the corresponding distributions in the reduced neutrino-quark subprocess

centre-of-mass energies
√
ŝ, which are sharply peaked at the sphaleron energy ESph, taken

here to have its nominal value of 9TeV. This peaking implies that our results would not

be affected strongly by a possible energy dependence in the overall factor p, but depend

essentially only on the value of p at the sphaleron threshold energy.

3 Leptons in sphaleron-induced transitions

In the IceCube detector [30], neutral current interaction and charged current interaction of

electron neutrinos leave a shower-like signature, whilst high energy muons and very high

energy taus (Eτ > 107GeV) leave a track-like signature. IceCube expects to be able to see

a ‘double-bang’ signature for τ leptons with energies ∈ [106, 107] GeV.

We simulate distributions of leptons (µ and τ) produced by the sphaleron-induced

neutrino-quark collision events in parton level. We consider the simplest possibility of such

events: qν → 8q̄2ℓ̄ induced by the gauge invariant (q̄q̄q̄)1(q̄q̄q̄)2(q̄q̄q̄)3(ℓ̄1ℓ̄2ℓ̄3) operator,

where the suffix denotes the generation. We assume equal flux for each flavour of cosmo-

genic neutrinos. Leptons can be produced either directly from the primary interaction,

qν → 8q̄2ℓ̄, or secondarily from the decay of the heavy particles (t and W ).

– 5 –
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Figure 5. Comparisons of the constraint obtained from IceCube 4-year data [39] (near-horizontal
red solid line) with that obtained from a recast of the ATLAS search for microscopic black holes
with ∼ 3/fb of collisions at 13TeV (solid blue line). Also shown are prospective LHC sensitivities
with increased luminosity and/or centre-of-mass energy. The comparisons are for 8 TeV ≤ ESph ≤
10 TeV for ∆n = −1 sphaleron transitions (upper panel) and ∆n = +1 transitions (lower panel).

– 8 –

J.Ellis, KS, M.Spannowsky [1603.06573]

Sensitivity

• For ESph ~ 9TeV, IceCube and LHC sensitivities are comparable. 

• Good IceCube sensitivity persists for E > ESph.    
(because the fall of PDF is faster than that of GZK neutrino spectrum)
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p = 1

p = 0.05

• If unknown pre-factor p is small, 
the sphaleron events may be 
hidden in the GZK neutrino events 
via the ordinary EW interaction.

• In this case, discrimination using 
the event shape is important.

How do sphaleron events look 
different from the ordinary 

neutrino events at IceCube?
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“muon bundle”

sensitivity for low-energy events, especially upward-going
muons. A proposed “topological” trigger will be optimized
for low-energy horizontal muons. Other triggers are under
development for DeepCore.

When a trigger occurs, all data within a !10 "s trigger
window is saved, becoming an event. If multiple trigger win-
dows overlap, then all of the data from the ORed time inter-
vals are saved as a single event.

IceTop uses two different trigger criteria, based on the
number of hit stations. A station is a pair of nearby tanks. A
station is considered hit if the high-gain DOM fired in one
tank, in coincidence with the lower-gain DOM in the other.
This was implemented in a hardware by cross-wiring the
local coincidence circuitry. Higher energy events !above
about 300 TeV" were collected with a trigger that required
eight hit stations; a prescaled lower energy trigger requires
three stations to be hit.

All of the triggered data are reconstructed by an on-line
filter system, and selected events are transmitted via satellite
to the Northern Hemisphere.64 The filters use simple physics-
based criteria, “first guess” reconstruction algorithms, and
simplified maximum likelihood fitting. Current filters select
upward-going muons, cascades !#e, #$, and all-flavor neutral-
current interactions", extremely high-energy events, starting
and stopping events, and air showers seen in IceTop. For the
40-string running, these filters selected about 6% of the
events, comprising about 32 Gbytes/day. All of the data, in-
cluding the data selected for satellite transmission, are stored
on tapes at the South Pole station. The tapes are sent north
during the Austral summer.

I. Event reconstruction

The first stage of event reconstruction converts the PMT
waveforms into photon arrival times, as shown in Fig. 21.
The first step is to calibrate the waveform, converting ADC
counts and ATWD fADC time bins into absolute times and
voltages. The next step is to extract photon arrival times.
This is done with several methods; the “standard” approach
is to perform a Bayesian peak unfolding; the algorithm
searches for PMT-like pulses !with the correct shape" and
removes them from the waveform, one by one.

These photon arrival times are used in maximum likeli-
hood fitting event reconstruction. IceCube can reconstruct
the three different neutrino flavors based on the event topol-
ogy. Figure 22 shows examples of three different types of
interactions.

The top panel shows a kilometer-long muon track !or
multiple parallel muons from a shower" traversing the detec-
tor. The long lever arm provides good directional reconstruc-
tion, better than 1°. The muon energy can be estimated by
the track length !for muons that start and stop in the detector"
or from the specific energy loss; at energies above 1 TeV,
muon energy loss !dE /dx" is proportional to the muon
energy.

Figure 22 !middle" shows a cascade from a simulated #e
event. The light is nearly pointlike. Although most of the
light is emitted near the Cherenkov angle, many of the pho-
tons scatter before being detected, partially washing out the
angular information.

Figure 22 !bottom" shows a simulated few-PeV #$ inter-
action forming a classic “double-bang” topology. One
“bang” occurs when the #$ interacts. That interaction also
produces a $, which travels a few hundred meters before
decaying, and producing a second bang. Several other $ de-
cay modes are under study in IceCube.

Other topologies are also of interest. A #" can interact in
the detector, producing a hadronic shower from the struck
nucleus, plus the " track. If the neutrino interaction vertex
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FIG. 21. !Color" The ATWD digitizer output from a typical event; multiple
photoelectrons are clearly visible. Each time sample is 3.3 ns. The waveform
is decomposed into a list of photon arrival times, which is used for event
reconstruction !Ref. 65".

FIG. 22. !Color" Simulated events of the three types of neutrino interactions
in IceCube: !a" #"N→"X !top", !b" #eN→cascade !middle", and !c" a
double bang, from #$N→$ cascade1→cascade1cascade2 !bottom". Each
circle represents one active optical module; the size of the circles shows the
number of detected photons, while the color represents the time, from red
!earliest" to blue !latest". In the top panel, the white shows the stochastic
muon energy deposition along its track !Ref. 14".
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“shower”

“double bang”

νµN → µX

νeN → eX

νiN → νiX

ντN → τX

ντN → τX1 → X1ντX2

Eτ ∈ [106, 107] GeV

1010 yr, given that their rate is 300 Gpc−3 yr−1. Therefore,
300 GRBs per year over Hubble time produce the observed
cosmic-ray energy density in the Universe, just as three su-
pernovae per century accommodate the steady flux of cosmic
rays in the galaxy.31,32

Cosmic rays and synchrotron photons coexist in the ex-
panding GRB fireball prior to it reaching transparency and
producing the observed GRB display. Their interactions pro-
duce charged pions and neutrinos with a flux that can be
estimated from the observed extragalactic cosmic-ray flux
!see Eq. "3#$. Fireball phenomenology predicts that, on aver-
age, nint%1.

Problem solved? Not really: the energy density of ex-
tragalactic cosmic rays can also be accommodated by active
galactic nuclei, provided each converts 2!1044 ergs s−1 into
particle acceleration. As with GRBs, this is an amount that
matches their output in electromagnetic radiation.39

Waxman and Bahcall40 argued that it is implausible that
the neutrino flux should exceed the cosmic-ray flux

E"
2 dN

dE"
= 5 ! 10−11 TeV cm−2 s−1 sr−1. "5#

For the specific example of GRB, we have to scale it down-
ward by a factor x"%1 /20 !see Eq. "3#$. After 7 years of
operation, AMANDA’s sensitivity is approaching the inter-
esting range, but it takes IceCube to explore it.

If GRBs are the sources,41 and the flux is near this limit,
then IceCube’s mission is relatively straightforward because
we expect to observe of the order of 10 "neutrinos /km2# yr−1

in coincidence with GRBs observed by the Swift and Fermi
satellites, which translates to a 5# observation.42 Similar sta-
tistical power can be obtained by detecting showers pro-
duced by "e and "$.

In summary, while the road to identification of sources
of the galactic cosmic ray has been mapped, the origin of the
extragalactic component remains unresolved. Hopefully,
neutrinos will reveal the sources.

III. NEUTRINO TELESCOPES: THE CONCEPT

Because of the small neutrino cross sections, a very large
detector is required to observe astrophysical neutrinos. At the
same time, flavor identification is also very desirable since
the background from atmospheric neutrinos is much lower
for "e and "$ than that for "%. Of course, angular resolution is
also very important for detecting point sources, and energy
resolution is important in determining neutrino energy spec-
tra, which is important for identifying a diffuse flux of ex-
traterrestrial neutrinos.

IceCube detects neutrinos by observing the Cherenkov
radiation from the charged particles produced by neutrino
interactions. Charge-current interactions produce a lepton,
which carries an average of 50% "for E"&10 GeV# to 80%
"at high energies# of the neutrino energy; the remainder of

the energy is transferred to the nuclear target. The latter is
released in the form of a hadronic shower; both the produced
lepton and the hadronic shower produce Cherenkov radia-
tion. In neutral-current interactions, the neutrino transfers a
fraction of its energy to a nuclear target, producing just a
hadronic shower.

IceCube can differentiate neutrino interactions on the ba-
sis of their topology, as shown in Fig. 5. At low energies,
there are two basic topologies: tracks from "% and cascades
from "e, "$, and all-flavor neutral-current interactions.
Charge-current cascades include contributions from the
shower from the electron "or tau decay products# plus the
hadronic shower from the struck nucleus; the contributions
are inseparable.

At PeV energies, muon tracks can be up to 10 km long,
while on the scale of IceCube, cascades are nearly point
sources. At higher "PeV# energies, an additional topology
arises. This is the “double bang” whereby a "$ interacts, and
the energy transferred to the target nucleus produces one
cascade. The $ travels some hundreds of meters and decays,
producing a second cascade.

The different topologies each have advantages and dis-
advantages. The long lever arm from tracks from "% decay
allows the muon direction "and, from that, the neutrino di-
rection# to be determined accurately; as will be seen,
IceCube’s angular resolution is better than 1° for long tracks.
One can produce sky maps and search them for hot spots.
This is obviously the key in finding neutrino sources. The
disadvantages are that there is a large background of atmo-
spheric "%, and that, because the events are not contained, it
is difficult to determine the neutrino energy.

However, "e and "$ interactions also have some signifi-
cant advantages. They are detected in both the Northern and
Southern Hemispheres. "This is also true for "% with energy
above 1 PeV, where the background from the steeply falling
atmospheric spectrum becomes negligible.# IceCube’s sensi-
tivity to the galactic center is similar to that of ANTARES,
although not to that of a kilometer-scale detector in the
Northern Hemisphere.

~ km-long muon tracks from νμ ~ 10m-long cascades from νθ , ντ
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FIG. 5. "Color online# Contrasting Cherenkov light patterns produced by
muons "left# and by showers initiated by electron and tau neutrinos "right#
and by neutral-current interactions. The patterns are often referred to as
tracks and cascades "or showers#. Cascades are produced by a "approxi-
mately# point source of light with respect to the dimensions of the detector.
At PeV energies, $ leptons travel hundreds of meters before decaying, pro-
ducing a third topology, with two cascades—one when the "$ interacts and
the second when the $ decays "Ref. 43#. This is the double bang signature;
a simulated event is shown in Fig. 22.
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1010 yr, given that their rate is 300 Gpc−3 yr−1. Therefore,
300 GRBs per year over Hubble time produce the observed
cosmic-ray energy density in the Universe, just as three su-
pernovae per century accommodate the steady flux of cosmic
rays in the galaxy.31,32

Cosmic rays and synchrotron photons coexist in the ex-
panding GRB fireball prior to it reaching transparency and
producing the observed GRB display. Their interactions pro-
duce charged pions and neutrinos with a flux that can be
estimated from the observed extragalactic cosmic-ray flux
!see Eq. "3#$. Fireball phenomenology predicts that, on aver-
age, nint%1.

Problem solved? Not really: the energy density of ex-
tragalactic cosmic rays can also be accommodated by active
galactic nuclei, provided each converts 2!1044 ergs s−1 into
particle acceleration. As with GRBs, this is an amount that
matches their output in electromagnetic radiation.39

Waxman and Bahcall40 argued that it is implausible that
the neutrino flux should exceed the cosmic-ray flux

E"
2 dN

dE"
= 5 ! 10−11 TeV cm−2 s−1 sr−1. "5#

For the specific example of GRB, we have to scale it down-
ward by a factor x"%1 /20 !see Eq. "3#$. After 7 years of
operation, AMANDA’s sensitivity is approaching the inter-
esting range, but it takes IceCube to explore it.

If GRBs are the sources,41 and the flux is near this limit,
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we expect to observe of the order of 10 "neutrinos /km2# yr−1

in coincidence with GRBs observed by the Swift and Fermi
satellites, which translates to a 5# observation.42 Similar sta-
tistical power can be obtained by detecting showers pro-
duced by "e and "$.

In summary, while the road to identification of sources
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neutrinos will reveal the sources.
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spheric "%, and that, because the events are not contained, it
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muons "left# and by showers initiated by electron and tau neutrinos "right#
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mately# point source of light with respect to the dimensions of the detector.
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IceCube Events:
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ν
Eν ! 108−10 GeV

mall ∼ ESph ∼ 9TeV

ûL

ĉL

t̂L

ℓτ

ℓe

ℓµ

ûL

ĉL

t̂L

t̂L ĉL

ûL

∆n = 1

What does the sphaleron 
event look like?

“shower”

• quarks and leptons are stopped in the ice (except for μ). ⇒ “shower”

• If μ is produced. ⇒ “bundle”

• If τ is produced with Eτ ∈ [106,107] GeV. ⇒ “double bang”

• If primary μ and a μ from a top-quark decay has an opening angle 
with θ > 10-2 rad ⇒ “double bundle”?? 
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Figure 3. Left panel: contributions to the total cross section for sphaleron transitions in neutrino
collisions in IceCube, for the nominal case ESph = 9TeV and p = 1 in (2.5) with S given by
(2.4). The solid green curve is for the sum of conventional charged- and neutral-current neutrino
interactions. Right panel: the distributions in the neutrino-parton reduced centre-of-mass energy,
which is peaked at ESph. In both panels, the contributions of different parton-parton collision
processes are colour-coded as indicated.

/GeV) 
τ,µ

(E
10

Log
3 4 5 6 7 8 9 10 11

E
ve

n
ts

 p
e

r 
In

te
ra

ct
io

n

0

0.02

0.04

0.06

0.08

0.1
τ, µPrimary 

τ, µSecondary 

)lep,lepθ(
10

Log
7− 6.5− 6− 5.5− 5− 4.5− 4− 3.5− 3− 2.5− 2−

E
ve

n
ts

 p
e

r 
In

te
ra

ct
io

n

0

0.005

0.01

0.015

0.02

0.025
1τ, 1µ

2

i
, lep1

i
lep

2

j
, lep1

i
lep

2

i
, lep2

i
lep

2

j
, lep2

i
lep

Figure 4. Left panel: histograms of the primary and secondary muon energy distributions (red
and blue, respectively) in sphaleron-induced transitions in neutrino-nucleon collisions in IceCube
for ESph = 9TeV, normalised to a single sphaleron-induced event. Right panel: histograms of the
opening angles in the laboratory frame between pairs of leptons in sphaleron transitions in neutrino
interactions in IceCube for ESph = 9TeV, colour-coded for the different combinations of primary
and secondary leptons.

The left panel of figure 4 displays the primary and secondary µ and τ energy distri-

butions (which are identical) normalised to a single sphaleron-induced event. We see that

the primary lepton energies are peaked just below 108GeV, whereas the secondary lepton

energies are peaked closer to 107GeV. IceCube expects to be able to see a ‘double-bang’

signature for τ leptons with energies ∈ [106, 107] GeV. We see that sphaleron-induced tran-

sitions would produce some primary and secondary τ leptons in this energy range. However,

we find only 5% of the sphaleron-induced events have τ leptons in this energy range.
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Figure 3. Left panel: contributions to the total cross section for sphaleron transitions in neutrino
collisions in IceCube, for the nominal case ESph = 9TeV and p = 1 in (2.5) with S given by
(2.4). The solid green curve is for the sum of conventional charged- and neutral-current neutrino
interactions. Right panel: the distributions in the neutrino-parton reduced centre-of-mass energy,
which is peaked at ESph. In both panels, the contributions of different parton-parton collision
processes are colour-coded as indicated.
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Figure 4. Left panel: histograms of the primary and secondary muon energy distributions (red
and blue, respectively) in sphaleron-induced transitions in neutrino-nucleon collisions in IceCube
for ESph = 9TeV, normalised to a single sphaleron-induced event. Right panel: histograms of the
opening angles in the laboratory frame between pairs of leptons in sphaleron transitions in neutrino
interactions in IceCube for ESph = 9TeV, colour-coded for the different combinations of primary
and secondary leptons.

The left panel of figure 4 displays the primary and secondary µ and τ energy distri-

butions (which are identical) normalised to a single sphaleron-induced event. We see that

the primary lepton energies are peaked just below 108GeV, whereas the secondary lepton

energies are peaked closer to 107GeV. IceCube expects to be able to see a ‘double-bang’

signature for τ leptons with energies ∈ [106, 107] GeV. We see that sphaleron-induced tran-

sitions would produce some primary and secondary τ leptons in this energy range. However,

we find only 5% of the sphaleron-induced events have τ leptons in this energy range.
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Only 5% of the sphaleron-induced 
events have double bang taus.

double bundle

particles are highly collimated and 
double bundles cannot be 
expected.
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Summary
• EW theory has an interesting non-perturbative aspect, but it has 

not been observed experimentally.  

• Inspired by the recent work by Tye and Wong, we have studied 
the sensitivity of observing sphaleron-induced processes at the 
LHC and IceCube. 

• The event rate can be quite large at 13 TeV LHC.  The 13 TeV BH 
analysis already excludes some parameter region. 

• Sphaleron can be produced by high energy GZK neutrinos 
colliding with nucleus in the ice at IceCube.  For ESph = 9TeV, 
the sensitivity is compatible with the 13TeV LHC with 3/fb.

• The event rage grows rapidly as the collision energy.  A future 
100TeV hadron collider can explore up to p ~10-11. 
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Resonant Tunneling

e−SE e−2SE ?

A B A B C

tAB =
1

ΓAB
∼ eSE

tAC = tAB + tBC ∼ eSE

tAC =
1

ΓAC
∼ e2SE ?

actual tunnelling rate is much larger!



49

For some energies, different paths interfere coherently.

Resonant Tunneling

Resonant tunneling


