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OVERVIEW

� Review of heavy element production

� Carbon-rich stars in the early Universe

� The CEMP-rs subgroup

� The intermediate neutron capture process



In the beginning…



In the beginning the Universe was 
created. This has made a lot of 
people very angry and been widely 
regarded as a bad move.

-- Douglas Adams, The Hitchhikers Guide to the Galaxy



� Big Bang Nucleosynthesis

� Baryon density extremely well 
constrained from Planck
� 0.02218±0.00026

� Y = 0.24725±0.00032

� And not a lot of anything 
else…
� CNO/H = 5-30x10-15 (Coc et al. 

2014)

Cyburt et al. (2016)



PRESENT DAY ABUNDANCES

� Stellar nucleosynthesis over 
time accounts for everything 
else.

� Heavy element production 
beyond iron
� Neutrons

� Nuclear structure tells you 
about how nucleosynthesis 
happens
� s and r processes

B2FH (1957)
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s-process nucleosynthesis



S-PROCESS NUCLEOSYNTHESIS
Neutron source: 13C(a,n)16O or 22Ne(a,n)25Mg

Light s
Sr, Y, Zr

Heavy s
Ba, Ce, La

Pb





Increase the neutron density even further





CARBON-ENHANCED
STARS

� A large fraction of metal-poor stars 
are carbon-rich

� Perhaps as many as 20%

� Some show enrichments of heavy 
elements, particularly of s-process 
elements

� Many of these also show radial 
velocity variations… 

Lucatello et al. (2006)



C abundances distinct for low- and very low metallicities?

Spite et al. (2013)



HEAVY ELEMENTS

Lugaro et al. (2012), data from Masseron et al. (2010)

CEMP-s

CEMP-s/r



BINARITY
� Binarity of CEMP-s 

stars firmly established

� Connection to CH 
stars

� Quite distinct from the 
CEMP-no stars

Starkenburg et al. (2014)



ASYMPTOTIC GIANT BRANCH STARS

� Final stage of the life of a low 
mass star

� Unstable double shell burning –
thermal pulses

� Third dredge-up

� Strong winds erode the envelope

Karakas et al. (2002)



FORMATION MECHANISM
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MASS TRANSFER
� Typically assume Bondi-Hoyle 

accretion from wind

� But AGB winds are slow (10 
km/s)

� For wide binaries, the orbital 
speed is similar

� Accretion is not so simple…

� Need hydro to help!

Mohamed & Podsiadlowski (2007)





� Dust acceleration radius, Rd is key

� If this lies outside the Roche Lobe 
efficient mass transfer can occur

� Wind Roche Lobe Overflow

� Could be about 5 times as efficient 
as Bondi Hoyle wind accretion

� Needs to be followed up with 
detailed sweep of binary 
configurations

Abate et al. (2013)



S-PROCESS NUCLEOSYNTHESIS

Lugaro et al. (2012), data from Masseron et al. (2010)



S-PROCESS NUCLEOSYNTHESIS

Lugaro et al. (2012)



Bisterzo et al. (2012)



Abate et al. (2015)



MIXING IN THE SECONDARY
� Low mass stars at Z=10-4 have 

almost no convective envelope

� Accreted material remains at 
the surface until the onset of 
first dredge-up

� The material then gets diluted 
by the deepening of the 
convective envelope

Stancliffe & Glebbeek (2008)



MISSING PHYSICS!
� Accreted material has 

undergone nuclear burning

� It has a higher mean 
molecular weight than the 
rest of the secondary

� It will mixing by thermohaline
mixing

� Efficient – takes around 10% 
of the MS lifetime 



ODDBALLS OF ODDBALLS

Z

Abate et al. (2015)



CEMP-RS FORMATION?

� Self-pollution

� Pollution from supernova?
� Triple system

� Type 1.5 SN

� Accretion induced collapse?

� Pre-pollution + s-process?

� Cannot self-pollute early enough. 
Radial velocity variations

�

� Numbers not favourable

� Nucleosynthesis and remnant

� Requires three phases of mass 
transfer, not likely!

Problems



CEMP-RS?

Lugaro et al. (2012)



Bisterzo et al. (2012)



� Population arguments

� Assume the initial 
population covers the 
[Eu/Fe] range

� Pollute with s-process

� Too few very Ba-rich stars

� Too many Eu-rich C-
normals

Abate, Stancliffe & Liu (2016)



Hampel (2015)

s process, n = 107 cm-3
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Hampel (2015)

n = 1015 cm-3



Hampel et al., in press
ArXiv:1608.08634



ONE ZONE I-PROCESS MODELS
� Cowan & Rose (1977) dubbed 

this the intermediate process

� Can a high neutron intensity 
reproduce the –rs pattern?

� Additional Ba and Eu
production for same Zr, Y

� Significant nuclear reaction 
uncertainties (Bertolli et al. 
2013, Denissenkov et al. 2016)

Hampel et al., in press



Hampel et al., in press. ArXiv:1608.08634 



WHERE DOES IT HAPPEN?

Herwig (2005)



PROTON INGESTION
� Evolution changes at low 

metallicity

� He driven convection no 
longer trapped below the 
H-burning shells

� Proton can be drawn into 
the convective region

� Mixing, burning take place 
on similar timescales –
hard to get this right in a 
1D code!

H−burning shell

He−burning shell

Convective region

C/O core

Convective
envelope

Lau, Stancliffe & Tout (2009)



Herwig et al. (2014)
• Exquisitely detailed simulations now being 

produced

• Highest resolution 15363

• VLTP – but ingestion physics should be the 
same

• Can we resolve the necessary details?



SUMMARY
� CEMP stars with barium enhancement come from binary systems

� Still issues with mass transfer, orbital properties

� CEMP-s/r stars not readily explained by current scenarios

� Moderate neutron densities n = 1014 cm3 give an interemediate n-
capture process

� This seems to fit very well

� But where does it take place???



OTHER MODIFICATIONS

� Settling and levitation

� Countered by something?
� Mass loss

� Ad hoc mixing (Richard et al. 
2005)

� Rotation

Matrozis & Stancliffe (2016)



time(s) = 2.046e + 12 T9 = 0.2 ⇢(g/cc) = 1000 flow
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