Radiation-hydrodynamic modeling of supernova shock breakout in multi-dimension

Akihiro Suzuki, Kyoto University, JSPS fellow

Collaborators: Keiichi Maeda (Kyoto U), Toshikazu Shigeyama (RESCEU)

Reference: Suzuki, Maeda, and Shigeyama (2016), ApJ 825, 92

Outline

Introduction

- Shock Propagation in Massive stars
- 2D radiation-hydrodynamic simulations of SN shock breakout

Supernovae

- sudden emergence of bright point source
- stellar death

Supernovae

- sudden emergence of bright point source
- stellar death
- classifications based on spectra and light curves: Ia,Ib,Ic, II-P, II-L, IIn
- classifications based on progenitors: thermonuclear explosions of WDs, gravitational collapse of massive stars

type la

Supernovae

- sudden emergence of bright point source
- → stellar death
- classifications based on spectra and light curves: Ia,Ib,Ic, II-P,
 II-L, IIn
- classifications based on progenitors: thermonuclear
 explosions of WDs, gravitational collapse of massive stars

Core-collapse supernova

- gravitational collapse of the iron core having grown in a massive star
- core bounce, neutronization
- blast wave propagation powered by neutrino emission from proto-neutron star
- shock emergence from the surface
- expanding ejecta

Core-collapse supernova

- gravitational collapse of the iron core having grown in a massive star
- core bounce, neutronization
- blast wave propagation powered by neutrino emission from proto-neutron star
- shock emergence from the surface
- expanding ejecta

SN shock breakout

- UV/X-ray flash associated with the birth of an SN explosion
- It occurs when the strong shock having been generated at the iron core emerges from the stellar surface
- We can observe the SN through EM only after shock breakout

```
photon diffusion velocity Vdiff=c/\tau
shock velocity Vs
breakout condition c/\tau >Vs
temperature T<sub>br</sub>~10<sup>6</sup>[K]~0.1[keV]
```


Core-collapse supernova

 Traditionally, optical observations probe the ejecta dynamics, amount of synthesized radioactive ⁵⁶Ni(energy source), abundance, etc

explosion energy ejecta mass chemical composition explosion geometry

SN 1987A

- most famous SNe @ magellanic cloud
- type II-peculiar (under-luminous event)
- decay phase of the breakout emission could be detected.
- recombination lines from ions
 with high ionization potentials:
 gas photoionized by breakout
 emission(UV flash)

SN 1987A

- most famous SNe @ magellanic cloud
- type II-peculiar (under-luminous event)
- decay phase of the breakout emission could be detected.
- recombination lines from ions
 with high ionization potentials:
 gas photoionized by breakout
 emission(UV flash)

narrow emission line from CSM around SN 1987A Lundqvist&Fransson(1996)

Supernova 1987A • December 2006 Space Telescope • Advanced Camera for Surveys

XRF 080109/SN 2008D

- SN Ib @NGC2770 D=27Mpc
- On Jan 9, 2008, Swift satellite
 serendipitously observed an X-ray
 flash associated with the birth of the
 SN
- ➡ Lx~ a few×10⁴³ erg/s, duration~ 200-300 sec, Ex~10⁴⁶ erg
- The origin of the X-ray emission is still unclear (breakout from a dense CSM?)

Soderberg+(2008)

SNLS-04D2DC

- Supernova Legacy Survey
- coincidence in time and position of an UV flash and a SN (@z=0.1854):
 GALEX satellite archival data

Schawinski+(2008)

KSN 2011a

- Kepler space telescope 30min (1800s)
 cadence observations
- ➡ They identified several SN candidates
- KSN 2011a initially showed a bump superposed on the theoretical LC

Garnavich+(2016)

Outline

Introduction

Shock Propagation in Massive stars

2D radiation-hydrodynamic simulations of SN shock breakout

Theoretical works on SN shock breakout

- pioneering works: Colgate (1974), Klein&Chevalier(1976), Falk (1978), Imshennik and Nadyozhin(1988), Matzner&McKee(1999)
- ➡ steady shock structure: Weaver(1976),Katz+(2010),Budnik+(2010)
- → analytical: Naker&Sari(2010,2011),Rabinak&Waxman(2012),
- → **1D RHD**: Ensmann&Burrows(1992), Tominaga+(2009), Sapir+(2011,2013)
- multi-D HD: Suzuki&Shigeyama(2010),Couch+(2011), Ro&Matzner(2013), Matzner+(2013)
- wind breakout: Arcavi+(2011), Chevalier&Irwin(2011), Moriya&Tominaga(2011), Ofek+(2011), Svirsky+(2012),
- ➡ 1D SR-RHD: Tolstov+(2013)

How bright shock breakout emission could be for a given stellar structure and explosion energy?

- SN shock breakout: emission from a hot gas in the downstream of a blast wave.
- Its energy source is originally the explosion energy. The shock kinetic energy is converted the thermal energy of gas at the outermost layer of the star.
- How much thermal energy the shock can deposit into the outermost layer of the star.
- Matzner&McKee (1999)

- \rightarrow stellar density structure: ρ (r)
- \rightarrow The shock velocity Vs is expressed as a function of r or ρ
- → find the shock velocity V_{br} and density ρ_{br} satisfying the breakout condition $V_{s=c/\tau}$
- \rightarrow internal energy density $e_{int} \sim \rho_{br} V_{br^2}$,
- → temperature T~ $(e_{int}/a_r)^{1/4}$
- internal energy, diffusion time, etc

photon diffusion velocity Vdiff=c/ τ shock velocity Vs breakout condition c/ τ >Vs temperature T_{br}~10⁶[K]~0.1[keV]

- \rightarrow stellar density structure: ρ (r)
- \rightarrow The shock velocity Vs is expressed as a function of r or ρ
- → find the shock velocity V_{br} and density ρ_{br} satisfying the breakout condition Vs=c/ τ
- \rightarrow internal energy density $e_{int} \sim \rho_{br} V_{br^2}$,
- → temperature T~ $(e_{int}/a_r)^{1/4}$
- internal energy, diffusion time, etc

photon diffusion velocity Vdiff=c/ τ shock velocity Vs breakout condition c/ τ >Vs temperature T_{br}~10⁶[K]~0.1[keV]

- Two modes of shock propagation in massive star: decelerating shock and accelerating shock
- → $d \ln(\rho)/d \ln(r) > -3$: ρr^3 is an increasing function of r. The shock accumulate more mass as it propagates. decelerating shock
- d ln(ρ)/d ln(r) < -3: ρr³ is an decreasing function of r. The shock kinetic energy is transferred to smaller and smaller mass. accelerating shock

Decelerating shock: Sedov-type solution

- Sedov-type solution: power-law: $\rho \sim r^{-n}$
- shock radius R, shock velocity V=dR/dt ~ R/ t
- $\Rightarrow \rho V^2 \sim P \rightarrow R^{-n}(R/t)^2 \propto ER^{-3} \rightarrow R \propto t^{2/(5-n)}$
- → $V \propto t^{(n-3)/(5-n)}$: decelerating shock when n<3
- → $M(R) \propto R^{3-n} \rightarrow M(R)V^2 \propto Const.$
- \rightarrow PR³ ~ Const.
- → $M(R)V^2 \sim a$ fraction of explosion energy E
- → The shock speed is given by $V_s \sim [E/M(R)]^{1/2}$

Accelerating shock: Sakurai's self-similar solution

- Sakurai(1960)
- → distance from the surface: $x=(R_{\star}-r)/R_{\star}$
- $\rightarrow \rho \propto x^n$: plane-parallel atmosphere
- → This treatment is justified for polytropic stellar envelopes (P $\propto \rho^{1+1/n}$), n=1.5 for a convective envelope and n=3.0 for a radiative envelope
 - For a strong shock, shock speed follows $V_s \propto \rho^{-\beta}$, ($\beta \sim 0.19$ for n=1.5, 3.0)

- → Mazner&McKee(1999)
- → $V_s = [E/M(r)]^{1/2} \times [\rho(r)/\rho \star]^{-\beta}$ works well with $\beta \sim 0.19$.
- This behaves as Sedov-like in a shallow density gradient, while it grows in a powerlaw fashion in a steep density gradient.

• find V_{br} and ρ_{br} and estimate some quantities

post-shock temperature

$$T_{\rm se} = 5.55 \times 10^{5} \left(\frac{\kappa}{0.34 \text{ cm}^{2} \text{ g}^{-1}}\right)^{-0.10} \left(\frac{\rho_{1}}{\rho_{*}}\right)^{0.070}$$

$$\times \left(\frac{E_{\rm in}}{10^{51} \text{ ergs}}\right)^{0.20} \left(\frac{M_{\rm ej}}{10 M_{\odot}}\right)^{-0.052}$$

$$\times \left(\frac{R_{*}}{500 R_{\odot}}\right)^{-0.54} \text{ K} \quad \left(n = \frac{3}{2}\right),$$

$$T_{\rm se} = 1.31 \times 10^{6} \left(\frac{\kappa}{0.34 \text{ cm}^{2} \text{ g}^{-1}}\right)^{-0.14} \left(\frac{\rho_{1}}{\rho_{*}}\right)^{0.046}$$

$$SG \times \left(\frac{E_{\rm in}}{10^{51} \text{ ergs}}\right)^{0.18} \left(\frac{M_{\rm ej}}{10 M_{\odot}}\right)^{-0.068}$$

$$\times \left(\frac{R_{*}}{50 R_{\odot}}\right)^{-0.48} \text{ K} \quad (n = 3).$$

thermal energy

$$\begin{split} E_{\rm se} &= 1.7 \times 10^{48} \left(\frac{\kappa}{0.34 \ {\rm cm}^2 \ {\rm g}^{-1}} \right)^{-0.87} \left(\frac{\rho_1}{\rho_*} \right)^{-0.086} \\ &\times \left(\frac{E_{\rm in}}{10^{51} \ {\rm ergs}} \right)^{0.56} \left(\frac{M_{\rm ej}}{10 \ M_{\odot}} \right)^{-0.44} \\ &\times \left(\frac{R_*}{500 \ R_{\odot}} \right)^{1.74} \ {\rm ergs} \quad \left(n = \frac{3}{2} \right), \\ E_{\rm se} &= 7.6 \times 10^{46} \left(\frac{\kappa}{0.34 \ {\rm cm}^2 \ {\rm g}^{-1}} \right)^{-0.84} \left(\frac{\rho_1}{\rho_*} \right)^{-0.054} \\ &\times \left(\frac{E_{\rm in}}{10^{51} \ {\rm ergs}} \right)^{0.58} \left(\frac{M_{\rm ej}}{10 \ M_{\odot}} \right)^{-0.42} \\ &\times \left(\frac{R_*}{50 \ R_{\odot}} \right)^{1.68} \ {\rm ergs} \quad (n = 3) \; . \end{split}$$

diffusion time scale

$$\begin{split} t_{\rm se} &= 790 \bigg(\frac{\kappa}{0.34~{\rm cm}^2~{\rm g}^{-1}} \bigg)^{-0.58} \bigg(\frac{\rho_1}{\rho_*} \bigg)^{-0.28} \\ &\times \bigg(\frac{E_{\rm in}}{10^{51}~{\rm ergs}} \bigg)^{-0.79} \bigg(\frac{M_{\rm ej}}{10~M_{\odot}} \bigg)^{0.21} \\ &\times \bigg(\frac{R_*}{500~R_{\odot}} \bigg)^{2.16}~{\rm s}~\bigg(n = \frac{3}{2} \bigg) \,, \\ t_{\rm se} &= 40 \bigg(\frac{\kappa}{0.34~{\rm cm}^2~{\rm g}^{-1}} \bigg)^{-0.45} \bigg(\frac{\rho_1}{\rho_*} \bigg)^{-0.18} \\ &\times \bigg(\frac{E_{\rm in}}{10^{51}~{\rm ergs}} \bigg)^{-0.72} \bigg(\frac{M_{\rm ej}}{10~M_{\odot}} \bigg)^{0.27} \\ &\times \bigg(\frac{R_*}{50~R_{\odot}} \bigg)^{1.90}~{\rm s}~(n = 3) \,. \end{split}$$

- The diffusion time scale is the time scale releasing photons
 - ≠ the time scale during which we observe the photons
- → The emission is "smeared out" within the time scale of R_{\star}/c

 Shock breakout occurs at every point of the surface at the same time

 Shock breakout occurs at every point of the surface at the same time

time

2

3

4

time

 Shock breakout occurs at every point of the surface at the same time

 Shock breakout occurs at every point of the surface at the same time

 Shock breakout occurs at every point of the surface at the same time

 $\Delta t \sim R_{\star}/c$

	R★	R★/c	R★/v	
WR	~10 ¹¹ cm	3 sec	10-20 sec	
BSG	~3×10 ¹² cm	100 sec	15 min	
RSG	~3×10 ¹³ cm	15 min	2-3 hr	

Outline

Introduction

Shock Propagation in Massive stars

2D radiation-hydrodynamic simulations of SN shock breakout

Theoretical works on SN shock breakout

- pioneering works: Colgate (1974), Klein & Chevalier(1976), Falk (1978), Imshennik & Nadyozhin(1988), Matzner & McKee(1999)
- ➡ steady shock structure: Weaver(1976),Katz+(2010,2012),Budnik+(2010)
- → analytical: Naker & Sari(2010,2012), Rabinak & Waxman(2012),
- → **1D RHD**: Ensmann&Burrows(1992), Tominaga+(2009), Sapir+(2011,2013,2014)
- multi-D HD: Suzuki&Shigeyama(2010),Couch+(2011), Ro & Matzner(2013), Matzner +(2013)
- wind breakout: Balberg & Loeb(2011), Arcavi+(2011), Chevalier & Irwin(2011), Moriya +(2011,2015), Ofek+(2011), Ginzburg & Balberg(2012,2014), Svirsky+(2012,2014),
- ➡ 1D SR-RHD: Tolstov+(2013)

Most of them assume spherical symmetry

Asymmetry in CCSN

 deviation from spherical symmetry is a key to understanding successful corecollapse supernova explosions

Theoretical works on SN shock breakout

- pioneering works: Colgate (1974), Klein & Chevalier(1976), Falk (1978), Imshennik & Nadyozhin(1988), Matzner & McKee(1999)
- ➡ steady shock structure: Weaver(1976),Katz+(2010,2012),Budnik+(2010)
- → analytical: Naker & Sari(2010,2012), Rabinak & Waxman(2012),
- → **1D RHD**: Ensmann&Burrows(1992), Tominaga+(2009), Sapir+(2011,2013,2014)
- multi-D HD: Suzuki&Shigeyama(2010),Couch+(2011), Ro & Matzner(2013), Matzner +(2013)
- wind breakout: Balberg & Loeb(2011), Arcavi+(2011), Chevalier & Irwin(2011), Moriya +(2011,2015), Ofek+(2011), Ginzburg & Balberg(2012,2014), Svirsky+(2012,2014),
- ➡ 1D SR-RHD: Tolstov+(2013)

Most of them assume spherical symmetry → toward multi-D SR-RHD

Radiation Hydrodynamics code

Moment equations written in "mixed frame"

- advection term: HLL
- source term: implicit method

M1 Closure relation

$$P_{\rm r}^{ij} = D^{ij}E_{\rm r}, \quad D^{ij} = \frac{1-\chi}{2}\delta^{ij} + \frac{3-\chi}{2}n^{i}n_{j}$$
$$n^{i} = \frac{F_{\rm r}^{i}}{\sqrt{F_{\rm r}^{i}F_{{\rm r},i}}}, \quad f^{i} = \frac{F_{\rm r}^{i}}{E_{\rm r}}, \quad \chi = \frac{3+4f^{i}f_{i}}{5+2\sqrt{4-3f^{i}f_{i}}}$$

Livermore (1984)

see, Takahashi+, Takahashi&Ohsuga(2013a, b), AS, Maeda, &Shigeyama(2016)

- ➡ 2D RHD simulations, 4096x512 mesh on 512 core
- ➡ 1987A progenitor: BSG with R★=50R_☉, M★=14.6M_☉ (Nomoto&Hashimoto 1988, Shigeyama&Nomoto 1990)
- → $3x10^8$ cm $\leq r \leq 4R_{\star}, 0 \leq \theta \leq \pi$
- energy injection: E_{exp}=10⁵¹[erg],t_{exp}=0.1[s]
- → asphericity: parameter "a" $\frac{dE_{int}}{dt} \propto \frac{E_{exp}}{t_{exp}} [1 + a \cos(2\theta)]$

Shigeyama&Nomoto(1990)

- ➡ fully ionized gas in the stellar envelope with X=0.565, Y=0.430, Z=0.05
- ➡ absorption and emission: free-free
- → scattering: e^{-} scattering $\kappa = 0.2(1+X)$ [cm²/g]

$dE_{int}/dt \propto E_{exp}/t_{exp}[1+a\cos(2\theta)]$

Shigeyama&Nomoto(1990)

- → 1987A progenitor: BSG with $R_{\star}=50R_{\odot}$, $M_{\star}=14.6M_{\odot}$
- → spherical case: a=0 dE/dt ∞ E_{exp}/t_{exp}[1+a cos(2 θ)]

- → 1987A progenitor: BSG with $R_{\star}=50R_{\odot}$, $M_{\star}=14.6M_{\odot}$
- → spherical case: a=0 dE/dt ∞ E_{exp}/t_{exp}[1+a cos(2 θ)]

from t= 5000 s to t= 7000 s after core-collapse

- → 1987A progenitor: BSG with $R_{\star}=50R_{\odot}$, $M_{\star}=14.6M_{\odot}$
- → spherical case: a=0 dE/dt∞E_{exp}/t_{exp}[1+a cos(2 θ)]

optical depth is too large for photons in the shocked region

- → 1987A progenitor: BSG with $R_{\star}=50R_{\odot}$, $M_{\star}=14.6M_{\odot}$
- → spherical case: a=0 dE/dt ∞ E_{exp}/t_{exp}[1+a cos(2 θ)]

Light curve calculation: ray-tracing

- ightarrow observer seeing the event with a viewing angle Θ
- Transfer equation is integrated along rays using snapshots of a RHD simulation
 Transfer equation along a ray (frequency-integrated)

$$\frac{\partial I}{\partial t} + (\boldsymbol{l} \cdot \nabla)I = \mathcal{D}^{-1}\alpha' \left(\mathcal{D}^4 \frac{\sigma_{\rm SB} T_{\rm g}^4}{\pi} - I\right) + \mathcal{D}^{-1}\sigma' \left(\mathcal{D}^4 \frac{E_{\rm r}'}{4\pi} - I\right)$$

- LC consistent with 1D RHD calculations by Shigeyama+(1988), Ensmann&Burrows(1992) for SN 1987A (dotted line)
- → peak luminosity = 2.3×10^{44} [erg s⁻¹], consistent within a factor of 2
- → initial bright phase: $\Delta t \sim R_{\star}/c \sim 100$ [sec]

- → peak luminosity = 2.3×10^{44} [erg s⁻¹]
- → initial bright phase: $\Delta t \sim R_{\star}/c \sim 100$ [sec]

Our 2D spherical model

- → 1987A progenitor: BSG with $R_{\star}=50R_{\odot}$, $M_{\star}=14.6M_{\odot}$
- → spherical case: a=0.5 dE/dt \propto E_{exp}/t_{exp}[1+a cos(2 θ)]

from t= 5000 s to t= 7000 s after core-collapse

- → 1987A progenitor: BSG with $R_{\star}=50R_{\odot}$, $M_{\star}=14.6M_{\odot}$
- → spherical case: a=0.5 dE/dt \propto E_{exp}/t_{exp}[1+a cos(2 θ)]

- → 1987A progenitor: BSG with $R_{\star}=50R_{\odot}$, $M_{\star}=14.6M_{\odot}$
- → spherical case: a=0.5 dE/dt \propto E_{exp}/t_{exp}[1+a cos(2 θ)]

- wide variety of light curves depending on the viewing angle, reflecting the geometry of the shock wave
- ➡ under-luminous, long-lasting emission ~ 500-600 sec
- emission after the initial phase is similar to spherical case

- wide variety of light curves depending on the viewing angle, reflecting the geometry of the shock wave
- ➡ under-luminous, long-lasting emission ~ 500-600 sec
- emission after the initial phase is similar to spherical case

- ➡ under-luminous, long-lasting emission ~ 500-600 sec
- emission after the initial phase is similar to spherical case

- wide variety of light curves depending on the viewing angle, reflecting the geometry of the shock wave
- ➡ under-luminous, long-lasting emission ~ 500-600 sec
- emission after the initial phase is similar to spherical case

Dependence on asphericity

- Basically, larger a lead to larger deviation from the spherical case
- Bolometric light curves of SN shock breakout can be a tracer of aspherical energy deposition at the core of a massive star.

$dE/dt \propto E_{exp}/t_{exp}[1+a \cos(2\theta)]$

Outline

Introduction

- Shock Propagation in Massive stars
- 2D radiation-hydrodynamic simulations of SN shock breakout

SN Shock breakout as a unique probe

- ➡ increasing number of detections
- ➡ LCs are characterized by R★/c for spherical case and t_{delay} for aspherical cases.
- ➡ information on the progenitor radius, energetics, and asphericity
- multi-D SR-RHD simulations are ongoing,
- ➡ future works: different explosion geometry, progenitor dependence

- Zwicky Transient Facility (ZTF)
- PTF, iPTF \rightarrow ZTF
- PI: S. Kulkarni (Caltech)
- 3760 deg²/hr
- arXiv: 1410.8185
- 2017-

- Large Synoptic Survey Telescope (LSST)
- 8.4m telescope observing in optical-IR
- FOV: 9.6 deg²
- Site: Chile

	the widest, fa	istest, deepest e	ye of the new digital	age Home Gallery FAQ	About News
PUBLIC	The New Sky				
SCIENTISTS					
GALLERY			Ţ	WIDE A large aperture, wide field survey teleso 3200 Megapixel camera to image faint as objects across the sky.	ope and stronomical
ABOUT			1	FAST	
NEWS				LSST will rapidly scan the sky, charting o change or move: from exploding superno potentially hazardous near-Earth asteroio	bjects that ovae to is.
HIRING CAMPAIGN	-		Alter	DEEP LSST's images will trace billions of remot	e galaxies,
	Turn & Tilt - January 2009		100	providing multiple probes of the mysteric matter and dark energy.	ous dark

- Hyper Suprime-Cam on Subaru telescope
- diameter: 8.2m, FOV:1.77 deg²
- 50 SN candidates in 1 night on 24 May 2015

[Previous Next ADS]
Fifty supernova candidates discovered with Subaru/Hyper Suprime-Cam
ATel #7565; Nozomu Tominaga (Konan U./Kavli IPMU, U. Tokyo), Tomoki Morokuma (IoA, U. Tokyo/Kavli IPMU, U. Tokyo), Masaomi Tanaka (NAOJ/Kavli IPMU, U. Tokyo), Ji-an Jiang (U. Tokyo), Takahiro Kato (U. Tokyo), Yuki Taniguchi (U. Tokyo), Naoki Yasuda (Kavli IPMU, U. Tokyo), Hisanori Furusawa (NAOJ), Nobuhiro Okabe (Hiroshima Univ.), Toshifumi Futamase (Tohoku Univ.), Satoshi Miyazaki (NAOJ), Takashi J. Moriya (AIfA, U. Bonn), Junichi Noumaru (NAOJ), Kiaina Schubert (NAOJ), and Tadafumi Takata (NAOJ) on 26 May 2015; 15:23 UT Credential Certification: Nozomu Tominaga (tominaga@konan-u.ac.jp)
Subjects: Optical, Supernovae, Transient
Tweet 11 Recommend 77
We report the discovery of 50 supernova candidates in one night. Our transient survey with Subaru/Hyper Suprime-Cam (HSC) was performed on 24 May 2015 UT as a Subaru open-use program. The candidates were detected in real time using a quick image subtraction system (ATel

#6291). The reference images were obtained with HSC on 2 and 3 Jul 2014 UT.

- Ultraviolet Transient Astronomy Satellite (ULTRASAT)
- mini-satellite carrying a telescope with an large FOV observing in UV
- Israeli/US collaboration, Weizmann institute (PI: E. Waxman)-Caltech (PI: S. Kulkarni)
- wavelength: 2200-2800 Å
- FOV: 210 deg²
- 2020 or 2021-

ULTRASAT

Thank you for your attention