Radiation-hydrodynamic modeling of

supernova shock breakout

in multi-dimension

Akihiro Suzuki, Kyoto University, JSPS fellow
Collaborators: Keiichi Maeda (Kyoto U), Toshikazu Shigeyama (RESCEU)

Reference: Suzuki, Maeda, and Shigeyama (2016), ApJ 825, 92

Outline

\Rightarrow Introduction

\Rightarrow Shock Propagation in Massive stars
\Rightarrow 2D radiation-hydrodynamic simulations of SN shock breakout
C. Summary

Supernovae

ت. sudden emergence of bright point source
C. stellar death

Supernovae

— sudden emergence of bright point source
G stellar death
E. classifications based on spectra and light curves: la,Ib,Ic, II-P, II-L, IIn
\Rightarrow classifications based on progenitors: thermonuclear explosions of WDs, gravitational collapse of massive stars

type la

Supernovae

- sudden emergence of bright point source
\square stellar death
- classifications based on spectra and light curves: la,lb,lc, II-P, II-L, IIn

C classifications based on progenitors: thermonuclear explosions of WDs, gravitational collapse of massive stars

type II
 type Ib
 type lc

Core-collapse supernova

F gravitational collapse of the iron core having grown in a massive star
F. core bounce,neutronization

- blast wave propagation powered by neutrino emission from proto-neutron star

F shock emergence from the surface

- expanding ejecta

Core-collapse supernova

F gravitational collapse of the iron core having grown in a massive star
C. core bounce,neutronization

- blast wave propagation powered by neutrino emission from proto-neutron star

F shock emergence from the surface

- expanding ejecta

SN shock breakout

- UV/X-ray flash associated with the birth of an SN explosion
- It occurs when the strong shock having been generated at the iron core emerges from the stellar surface

F We can observe the SN through EM only after shock breakout
photon diffusion velocity $\mathrm{Vdiff}^{\mathrm{c}}=\mathrm{c} / \tau$ shock velocity Vs
breakout condition c/ $\tau>$ Vs
temperature $\mathrm{Tbr}_{\mathrm{br}}$ 106$[\mathrm{K}] \sim 0.1[\mathrm{keV}]$

Core-collapse supernova

C Traditionally, optical observations probe the ejecta dynamics, amount of synthesized radioactive ${ }^{56} \mathrm{Ni}($ energy source), abundance, etc

SN EXPLOSION

light curves spectra polarimetry

explosion energy ejecta mass chemical composition explosion geometry

SN 1987A

\Rightarrow most famous SNe @ magellanic cloud

Blinnikov+(2000)
\Rightarrow type II-peculiar (under-luminous event)
\Rightarrow decay phase of the breakout emission could be detected.

द recombination lines from ions with high ionization potentials: gas photoionized by breakout emission(UV flash)

SN 1987A

\Rightarrow most famous SNe @ magellanic cloud
\Rightarrow type II-peculiar (under-luminous event)

\Rightarrow decay phase of the breakout emission could be detected.

C recombination lines from ions with high ionization potentials: gas photoionized by breakout emission(UV flash)
narrow emission line from CSM around SN 1987A Lundqvist\&Fransson(1996)

XRF 080109/SN 2008D

- SN Ib @NGC2770 D=27Mpc
- On Jan 9, 2008, Swift satellite serendipitously observed an X-ray flash associated with the birth of the SN
$\Rightarrow \quad L x \sim$ a few $\times 10^{43} \mathrm{erg} / \mathrm{s}$, duration~ 200-300 sec, Ex~1046 erg
- The origin of the X-ray emission is still unclear (breakout from a dense CSM?)

SNLS-04D2DC

C. Supernova Legacy Survey
—. coincidence in time and position of an UV flash and a SN (@z=0.1854):
GALEX satellite archival data

KSN 2011a

C Kepler space telescope $30 \min$ (1800s) cadence observations

- They identified several SN candidates
\Rightarrow KSN 2011a initially showed a bump superposed on the theoretical LC

Outline

C) Introduction

\Rightarrow Shock Propagation in Massive stars

G 2D radiation-hydrodynamic simulations of SN shock breakout
\Rightarrow Summary

Theoretical works on SN shock breakout

G pioneering works: Colgate (1974), Klein\&Chevalier(1976), Falk (1978), Imshennik and Nadyozhin(1988), Matzner\&McKee(1999)

ت steady shock structure: Weaver(1976),Katz+(2010),Budnik+(2010)
G analytical: Naker\&Sari(2010,2011),Rabinak\&Waxman(2012),

- 1D RHD: Ensmann\&Burrows(1992), Tominaga+(2009), Sapir+(2011,2013)
\Rightarrow multi-D HD: Suzuki\&Shigeyama(2010),Couch+(2011), Ro\&Matzner(2013), Matzner+(2013)
- wind breakout: Arcavi+(2011), Chevalier\&Irwin(2011), Moriya\&Tominaga(2011), Ofek+(2011), Svirsky+(2012),
- 1D SR-RHD: Tolstov+(2013)

How bright shock breakout emission could be for a given stellar structure and explosion energy?

Shock propagation in massive star

- SN shock breakout: emission from a hot gas in the downstream of a blast wave.
- Its energy source is originally the explosion energy. The shock kinetic energy is converted the thermal energy of gas at the outermost layer of the star.
m How much thermal energy the shock can deposit into the outermost layer of the star.

E Matzner\&McKee (1999)

Shock propagation in massive star

F stellar density structure: $\rho(r)$

- The shock velocity V s is expressed as a function of r or ρ
\Rightarrow find the shock velocity V_{br} and density $\rho \mathrm{br}$ satisfying the breakout condition $\mathrm{Vs}=\mathrm{c} / \tau$

ت internal energy density eint $\sim \rho$ br brr^{2},
\Rightarrow temperature $\mathrm{T} \sim\left(\mathrm{e}_{\text {int }} / \mathrm{ar}_{\mathrm{r}}\right)^{1 / 4}$
ت internal energy, diffusion time, etc
photon diffusion velocity $\mathrm{Vdiff}=\mathrm{c} / \tau$ shock velocity Vs breakout condition $c / \tau>\mathrm{Vs}$ temperature $\mathrm{Tbr}_{\mathrm{br}} \sim 10^{6}[\mathrm{~K}] \sim 0.1[\mathrm{keV}]$

Shock propagation in massive star

F stellar density structure: $\rho(r)$
\Rightarrow The shock velocity V s is expressed as a function of r or ρ
\Rightarrow find the shock velocity V_{br} and density ρ_{br} satisfying the breakout condition $\mathrm{Vs}=\mathrm{c} / \tau$

F internal energy density eint $\sim \rho$ br brr^{2},
\Rightarrow temperature $\mathrm{T} \sim\left(\mathrm{e}_{\mathrm{in}} / \mathrm{ar}\right)^{1 / 4}$

- internal energy, diffusion time, etc
photon diffusion velocity $\mathrm{Vdiff}^{\mathrm{c}} \mathrm{C} / \tau$ shock velocity Vs
breakout condition $c / \tau>\mathrm{Vs}$ temperature $\mathrm{Tbr}_{\mathrm{br}} \sim 10^{6}[\mathrm{~K}] \sim 0.1[\mathrm{keV}]$

Shock propagation in massive star

\Rightarrow Two modes of shock propagation in massive star: decelerating shock and accelerating shock
$\Rightarrow d \ln (\rho) / d \ln (r)>-3: \rho r^{3}$ is an increasing function of r. The shock accumulate more mass as it propagates. decelerating shock

- $d \ln (\rho) / d \ln (r)<-3: \rho r^{3}$ is an decreasing function of r. The shock kinetic energy is transferred to smaller and smaller mass. accelerating shock

Decelerating shock: Sedov-type solution

- Sedov-type solution: power-law: $\rho \sim r^{-n}$
C. shock radius R, shock velocity $V=d R / d t \sim R /$ t
$\Rightarrow \rho V^{2} \sim P \rightarrow R^{-n}(R / t)^{2} \propto E R^{-3} \rightarrow R \propto t^{2 /(5-n)}$
G $\mathrm{V} \propto \mathrm{t}^{(n-3) /(5-n)}:$ decelerating shock when $n<3$
$\Rightarrow M(R) \propto R^{3-n} \rightarrow M(R) V^{2} \propto$ Const.
$\Rightarrow P R^{3} \sim$ Const.
- $M(R) V^{2} \sim$ a fraction of explosion energy E
\Rightarrow The shock speed is given by $\mathrm{V}_{\mathrm{s}} \sim[\mathrm{E} / \mathrm{M}(\mathrm{R})]^{1 / 2}$

Accelerating shock: Sakurai's self-similar solution

C. Sakurai(1960)

C distance from the surface: $x=\left(R_{\star}-r\right) / R \star$
$\Rightarrow \rho \propto x^{n}$: plane-parallel atmosphere
G This treatment is justified for polytropic stellar envelopes ($P \propto \rho^{1+1 / n}$), $n=1.5$ for a convective envelope and $\mathrm{n}=3.0$ for a radiative envelope

G For a strong shock, shock speed follows $\mathbf{V}_{\mathbf{s}}$ $\propto \rho^{-\beta},(\beta \sim 0.19$ for $n=1.5,3.0)$

Shock propagation in massive star

- Mazner\&McKee(1999)
$\Rightarrow \mathrm{Vs}=[\mathrm{E} / \mathrm{M}(\mathrm{r})]^{1 / 2} \times\left[\rho(\mathrm{r}) / \rho_{\star}\right]^{-\beta}$ works well with $\beta \sim 0.19$.

द This behaves as Sedov-like in a shallow density gradient, while it grows in a powerlaw fashion in a steep density gradient.

- find Vbr and ρ br and estimate some quantities

post-shock temperature

$T_{\mathrm{sc}}=5.55 \times 10^{5}\left(\frac{\kappa}{0.34 \mathrm{~cm}^{2} \mathrm{~g}^{-1}}\right)^{-0.10}\left(\frac{\rho_{1}}{\rho_{*}}\right)^{0.070}$
RSG $\times\left(\frac{E_{\mathrm{in}}}{10^{5 \mathrm{i}} \text { ergs }}\right)^{0.20}\left(\frac{M_{\mathrm{ej}_{\mathrm{j}}}}{10 M_{\odot}}\right)^{-0.052}$
$\times\left(\frac{R_{*}}{500 R_{\odot}}\right)^{-0.54}{ }^{\circ} \quad\left(n=\frac{3}{2}\right)$,
$T_{\text {sc }}=1.31 \times 10^{6}\left(\frac{\kappa}{0.34 \mathrm{~cm}^{2} \mathrm{~g}^{-1}}\right)^{-0.14}\left(\frac{\rho_{1}}{\rho_{*}}\right)^{0.046}$
BSG

$$
\begin{aligned}
& \left.\times\left(\frac{E_{\mathrm{in}}}{10^{51}}\right)^{0 . \mathrm{erg}}\right)^{0.18}\left(\frac{M_{\mathrm{c}}}{10 M_{\odot}}\right)^{-0.068} \\
& \times\left(\frac{R_{*}}{50 R_{\odot}}\right)^{-0.48} \mathrm{~K} \quad(n=3) .
\end{aligned}
$$

diffusion time scale

$$
\begin{aligned}
& \times\left(\frac{E_{\mathrm{in}}}{10^{51} \operatorname{ergs}}\right)^{0.56}\left(\frac{M_{\mathrm{ej}}}{10 M_{\odot}}\right)^{-0.44} \\
& \times\left(\frac{R_{*}}{500 R_{\odot}}\right)^{1.74} \operatorname{ergs} \quad\left(n=\frac{3}{2}\right),
\end{aligned}
$$

$$
E_{\mathrm{sc}}=7.6 \times 10^{46}\left(\frac{\kappa}{0.34 \mathrm{~cm}^{2} \mathrm{~g}^{-1}}\right)^{-0.84}\left(\frac{\rho_{1}}{\rho_{*}}\right)^{-0.054}
$$

$$
\times\left(\frac{E_{\mathrm{in}}}{10^{51} \mathrm{ergs}}\right)^{0.58}\left(\frac{M_{\mathrm{ej}}}{10 M_{\odot}}\right)^{-0.42}
$$

$$
\times\left(\frac{R_{*}}{50 R_{\odot}}\right)^{1.68} \text { ergs }(n=3) .
$$

$$
t_{\mathrm{se}}=790\left(\frac{\kappa}{0.34 \mathrm{~cm}^{2} \mathrm{~g}^{-1}}\right)^{-0.58}\left(\frac{\rho_{1}}{\rho_{*}}\right)^{-0.28}
$$

$$
\times\left(\frac{E_{\mathrm{in}}}{11^{51} \mathrm{ergs}}\right)^{-0.79}\left(\frac{M_{\mathrm{ej}}}{10 M_{\odot}}\right)^{0.21}
$$

$$
\times\left(\frac{R_{*}}{500 R_{\odot}}\right)^{2.16}{ }^{2}\left(n=\frac{3}{2}\right),
$$

$$
t_{s e}=40\left(\frac{\kappa}{0.34 \mathrm{~cm}^{2} \mathrm{~g}^{-1}}\right)^{-0.45}\left(\frac{\rho_{1}}{\rho_{*}}\right)^{-0.18}
$$

$$
\times\left(\frac{E_{\mathrm{in}}}{10^{51} \text { ergs }}\right)^{-0.72}\left(\frac{M_{\mathrm{cj}}}{10 M_{\odot}}\right)^{0.27}
$$

$$
\times\left(\frac{R_{*}}{50 R_{\odot}}\right)^{1.90} \text { S }(n=3) .
$$

Shock breakout light curves

light crossing time traveling time of ejecta
Nakar\&Sari(2010) for stellar radius for stellar radius

What determines tie time scale?

\Rightarrow The diffusion time scale is the time scale releasing photons
\neq the time scale during which we observe the photons
\Rightarrow The emission is "smeared out" within the time scale of R_{\star} / c

Shock breakout light curves

\Rightarrow Shock breakout occurs at every point of the surface at the same time

SHOCK BREAKOUT

UV/X-ray flash post shock $\sim 0.1 \mathrm{keV}$

Shock breakout light curves

\Rightarrow Shock breakout occurs at every point of the surface at the same time

Shock breakout

Shock breakout light curves

\Rightarrow Shock breakout occurs at every point of the surface at the same time

Shock breakout light curves

\Rightarrow Shock breakout occurs at every point of the surface at the same time

Shock breakout light curves

\Rightarrow Shock breakout occurs at every point of the surface at the same time

Shock breakout light curves

light crossing time traveling time of ejecta
Nakar\&Sari(2010) for stellar radius for stellar radius

Shock breakout light curves

light crossing time traveling time of ejecta
Nakar\&Sari(2010) for stellar radius for stellar radius

	R_{\star}	R_{\star} / c	R_{\star} / v
WR	$\sim 10^{11} \mathrm{~cm}$	3 sec	$10-20 \mathrm{sec}$
BSG	$\sim 3 \times 10^{12} \mathrm{~cm}$	100 sec	15 min
RSG	$\sim 3 \times 10^{13} \mathrm{~cm}$	15 min	$2-3 \mathrm{hr}$

Outline

C. Introduction

- Shock Propagation in Massive stars

\Rightarrow 2D radiation-hydrodynamic simulations of SN shock breakout

C. Summary

Theoretical works on SN shock breakout

- pioneering works: Colgate (1974), Klein \& Chevalier(1976), Falk (1978), Imshennik \& Nadyozhin(1988), Matzner \& McKee(1999)

ت steady shock structure: Weaver(1976),Katz+(2010,2012),Budnik+(2010)
द analytical: Naker \& Sari(2010,2012),Rabinak \& Waxman(2012),
G1D RHD: Ensmann\&Burrows(1992), Tominaga+(2009), Sapir+(2011,2013,2014)
\Rightarrow multi-D HD: Suzuki\&Shigeyama(2010),Couch+(2011), Ro \& Matzner(2013), Matzner +(2013)

G wind breakout: Balberg \& Loeb(2011),Arcavi+(2011), Chevalier \& Irwin(2011), Moriya $+(2011,2015)$, Ofek+(2011), Ginzburg \& Balberg(2012,2014), Svirsky+(2012,2014),
\Rightarrow 1D SR-RHD: Tolstov+(2013)

Most of them assume spherical symmetry

Asymmetry in CCSN

- deviation from spherical symmetry is a key to understanding successful corecollapse supernova explosions

MacFadyen\&Woosley (1999)

Theoretical works on SN shock breakout

G pioneering works: Colgate (1974), Klein \& Chevalier(1976), Falk (1978), Imshennik \& Nadyozhin(1988), Matzner \& McKee(1999)

G steady shock structure: Weaver(1976),Katz+(2010,2012),Budnik+(2010)
द analytical: Naker \& Sari(2010,2012),Rabinak \& Waxman(2012),
G1D RHD: Ensmann\&Burrows(1992), Tominaga+(2009), Sapir+(2011,2013,2014)
\Rightarrow multi-D HD: Suzuki\&Shigeyama(2010),Couch+(2011), Ro \& Matzner(2013), Matzner +(2013)

G wind breakout: Balberg \& Loeb(2011),Arcavi+(2011), Chevalier \& Irwin(2011), Moriya $+(2011,2015)$, Ofek+(2011), Ginzburg \& Balberg(2012,2014), Svirsky+(2012,2014),
\Rightarrow 1D SR-RHD: Tolstov+(2013)

Most of them assume spherical symmetry

Radiation Hydrodynamics code

- Moment equations written in "mixed frame"

$$
\frac{\partial I_{\nu}(t, \boldsymbol{x}, \boldsymbol{l})}{\partial t}+(\boldsymbol{l} \cdot \nabla) I_{\nu}(t, \boldsymbol{x}, \boldsymbol{l})=\eta_{\nu}+\int g\left(\nu, \boldsymbol{l} ; \nu^{\prime} \boldsymbol{l}^{\prime}\right) \rho \sigma_{\nu} I_{\nu^{\prime}}\left(t, \boldsymbol{x}, \boldsymbol{l}^{\prime}\right) d \nu^{\prime} d \Omega^{\prime}-\rho\left(\kappa_{\nu}+\sigma_{\nu}\right) I_{\nu}(t, \boldsymbol{x}, \boldsymbol{l})
$$

Transfer equation

$$
\begin{aligned}
& E_{\mathrm{r}}(t, \boldsymbol{x})=\int E_{\mathrm{r}, \nu}(t, \boldsymbol{x}) d \nu \\
&=\int I_{\nu}(t, \boldsymbol{x}, \boldsymbol{l}) d \nu d \Omega \\
& F_{\mathrm{r}}^{i}(t, \boldsymbol{x})=\int F_{\mathrm{r}, \nu}^{i}(t, \boldsymbol{x}) d \nu \\
&=\int l^{i} I_{\nu}(t, \boldsymbol{x}, \boldsymbol{l}) d \nu d \Omega \\
& P_{\mathrm{r}}^{i j}(t, \boldsymbol{x})=\int P_{\mathrm{r}, \nu}^{i j}(t, \boldsymbol{x}) d \nu
\end{aligned}=\int l^{i} l^{j} I_{\nu}(t, \boldsymbol{x}, \boldsymbol{l}) d \nu d \Omega
$$

Moment equations
$\frac{\partial E_{\mathrm{r}}}{\partial t}+\frac{\partial F_{\mathrm{r}}^{i}}{\partial x^{i}}=\rho_{0} \kappa_{0}\left(a_{\mathrm{r}} T_{g 0}^{4}-E_{\mathrm{r}}\right)+\rho_{0} \kappa_{0} \beta_{j} F_{\mathrm{r}}^{j}-\rho_{0} \sigma_{0} \beta_{j} F_{\mathrm{r}}^{i}$
$\frac{\partial F_{\mathrm{r}}^{i}}{\partial t}+\frac{\partial P_{\mathrm{r}}^{i j}}{\partial \mathrm{~m}^{i}}=\rho_{0} \kappa_{0} a_{\mathrm{r}} T_{g 0}^{4} \beta^{i}+\rho_{0} \sigma_{0} E_{\mathrm{r}} \beta^{i}-\rho_{0}\left(\kappa_{0}+\sigma_{0}\right)\left(F_{\mathrm{r}}^{i}-\rho_{i} P_{\mathrm{r}}^{i j}\right)$

M1 Closure relation

\Rightarrow advection term: HLL

C source term: implicit method

$$
\begin{gathered}
P_{\mathrm{r}}^{i j}=D^{i j} E_{\mathrm{r}}, \quad D^{i j}=\frac{1-\chi}{2} \delta^{i j}+\frac{3-\chi}{2} n^{i} n_{j} \\
n^{i}=\frac{F_{\mathrm{r}}^{i}}{\sqrt{F_{\mathrm{r}}^{i} F_{\mathrm{r}, i}}}, \quad f^{i}=\frac{F_{\mathrm{r}}^{i}}{E_{\mathrm{r}}}, \quad \chi=\frac{3+4 f^{i} f_{i}}{5+2 \sqrt{4-3 f^{i} f_{i}}}
\end{gathered}
$$

Livermore (1984)
see, Takahashi+,Takahashi\&Ohsuga(2013a,b), AS, Maeda, \&Shigeyama(2016)

Shock breakout with spherical symmetry

\Rightarrow 2D RHD simulations, 4096×512 mesh on 512 core
\Rightarrow 1987A progenitor: BSG with $R_{\star}=50 R_{o}, M_{\star}=14.6 \mathrm{Mo}$ (Nomoto\&Hashimoto 1988, Shigeyama\&Nomoto 1990)
$\Rightarrow 3 \times 10^{8} \mathrm{~cm} \leqq r \leqq 4 R \star, 0 \leqq \theta \leqq \pi$
\Rightarrow energy injection: Eexp $=10^{51}$ [erg],texp $=0.1[s]$
Shigeyama\&Nomoto(1990)
\Rightarrow asphericity: parameter "a" $d E_{i n t} / d t \propto E_{\exp } / \operatorname{texp}[1+\mathrm{a} \cos (2 \theta)]$

Shock breakout with spherical symmetry

\Rightarrow fully ionized gas in the stellar envelope with $X=0.565, Y=0.430, Z=0.05$
C absorption and emission: free-free
\Rightarrow scattering: e- scattering $K=0.2(1+X)\left[\mathrm{cm}^{2} / \mathrm{g}\right]$

Shigeyama\&Nomoto(1990)
$d E_{i n t} / d t \propto E_{\exp } / \operatorname{texp}[1+a \cos (2 \theta)]$

Shock breakout with spherical symmetry

\Rightarrow 1987A progenitor: BSG with $R_{\star}=50 R_{o}, M_{\star}=14.6 \mathrm{Mo}$
\Rightarrow spherical case: $a=0 \quad d E / d t \propto E_{\text {exp }} /$ texp $[1+a \cos (2 \theta)]$
$\mathrm{t}=1000 \mathrm{~s}$
after core-collapse

Shock breakout with spherical symmetry

\Rightarrow 1987A progenitor: BSG with $R_{\star}=50 R_{o}, M_{\star}=14.6 \mathrm{Mo}$
\Rightarrow spherical case: $a=0 \quad d E / d t \propto E$ exp/texp[1+a $\cos (2 \theta)]$

$$
\text { from } t=5000 \mathrm{~s}
$$

to $t=7000 \mathrm{~s}$
after core-collapse

Shock breakout with spherical symmetry

\Rightarrow 1987A progenitor: BSG with $R_{\star}=50 R_{o}, M_{\star}=14.6 \mathrm{Mo}$
\Rightarrow spherical case: $a=0 \quad d E / d t \propto E_{\text {exp }} /$ texp $[1+a \cos (2 \theta)]$

Shock breakout with spherical symmetry

\Rightarrow 1987A progenitor: BSG with $R_{\star}=50 R_{\circ}, M_{\star}=14.6 \mathrm{Mo}$
\Rightarrow spherical case: $a=0 \quad d E / d t \propto E_{\text {exp }} /$ texp $[1+a \cos (2 \theta)]$
Now, optical depth
is sufficiently small

Light curve calculation: ray-tracing

\Rightarrow observer seeing the event with a viewing angle Θ
\Rightarrow Transfer equation is integrated along rays using snapshots of a RHD simulation

Transfer equation along a ray (frequency-integrated)

$$
\frac{\partial I}{\partial t}+(\boldsymbol{l} \cdot \nabla) I=\mathcal{D}^{-1} \alpha^{\prime}\left(\mathcal{D}^{4} \frac{\sigma_{\mathrm{SB}} T_{\mathrm{g}}^{4}}{\pi}-I\right)+\mathcal{D}^{-1} \sigma^{\prime}\left(\mathcal{D}^{4} \frac{E_{\mathrm{r}}^{\prime}}{4 \pi}-I\right)
$$

Light curve calculation: spherical

\Rightarrow LC consistent with 1D RHD calculations by Shigeyama+(1988), Ensmann\&Burrows(1992) for SN 1987A (dotted line)
\Rightarrow peak luminosity $=2.3 \times 10^{44}\left[\mathrm{erg} \mathrm{s}^{-1}\right]$, consistent within a factor of 2
\Rightarrow initial bright phase: $\Delta \mathrm{t} \sim \mathrm{R} \star / \mathrm{c} \sim 100$ [sec]

1D spherical model by Ensmann\&Burrows(1992)

Our 2D spherical model

Light curve calculation: spherical

\Rightarrow peak luminosity $=2.3 \times 10^{44}\left[\mathrm{erg} \mathrm{s}^{-1}\right]$
\Rightarrow initial bright phase: $\Delta t \sim R \star / c \sim 100$ [sec]

Our 2D spherical model

Shock breakout in 2D

\Rightarrow 1987A progenitor: $B S G$ with $R_{\star}=50 R_{o}, M_{\star}=14.6 \mathrm{Mo}$
\Rightarrow spherical case: $a=0.5 \quad d E / d t \propto E_{\text {exp }} /$ texp $[1+a \cos (2 \theta)]$
from $t=5000 \mathrm{~s}$
to $\mathrm{t}=7000 \mathrm{~s}$
after core-collapse

Shock breakout in 2D

\Rightarrow 1987A progenitor: BSG with $R_{\star}=50 R_{o}, M_{\star}=14.6 \mathrm{Mo}$
\Rightarrow spherical case: $a=0.5 \quad d E / d t \propto E_{\text {exp }} /$ texp $[1+a \cos (2 \theta)]$
optical depth is too large
for photons in the shocked region

Shock breakout in 2D

\Rightarrow 1987A progenitor: BSG with $R_{\star}=50 R_{o}, M_{\star}=14.6 \mathrm{Mo}$
\Rightarrow spherical case: $a=0.5 \quad d E / d t \propto E_{\text {exp }} /$ texp $[1+a \cos (2 \theta)]$
Shocked gas emerge

Photons are efficiently emitted from shocks having emerged from the surface

Light curve calculation: aspherical

\Rightarrow wide variety of light curves depending on the viewing angle, reflecting the geometry of the shock wave
\Rightarrow under-luminous, long-lasting emission $\sim 500-600$ sec
\Rightarrow emission after the initial phase is similar to spherical case

Light curve calculation: aspherical

\Rightarrow wide variety of light curves depending on the viewing angle, reflecting the geometry of the shock wave
\Rightarrow under-luminous, long-lasting emission $\sim 500-600$ sec
\Rightarrow emission after the initial phase is similar to spherical case

Light curve calculation: aspherical
\Rightarrow under-luminous, long-lasting emission ~ 500-600 sec
\Rightarrow emission after the initial phase is similar to spherical case

8

Light curve calculation: aspherical

\Rightarrow wide variety of light curves depending on the viewing angle, reflecting the geometry of the shock wave
\Rightarrow under-luminous, long-lasting emission $\sim 500-600$ sec
\Rightarrow emission after the initial phase is similar to spherical case

Dependence on asphericity

\Rightarrow Basically, larger a lead to larger deviation from the spherical case
\Rightarrow Bolometric light curves of SN shock breakout can be a tracer of aspherical energy deposition at the core of a massive star.

Outline

\Rightarrow Introduction

\Rightarrow Shock Propagation in Massive stars

- 2D radiation-hydrodynamic simulations of SN shock breakout

C Summary

SN Shock breakout as a unique probe

\Rightarrow increasing number of detections
\Rightarrow LCs are characterized by R_{\star} / c for spherical case and tdelay for aspherical cases.
\Rightarrow information on the progenitor radius, energetics, and asphericity
\Rightarrow multi-D SR-RHD simulations are ongoing,
\Rightarrow future works: different explosion geometry, progenitor dependence

Shock breakout with spherical symmetry

Shock breakout in 2D

Current and upcoming projects

- Zwicky Transient Facility (ZTF)
- PTF,iPTF \rightarrow ZTF
- PI: S. Kulkarni (Caltech)
- $3760 \mathrm{deg}^{2} / \mathrm{hr}$
- arXiv: 1410.8185
- 2017-

Current and upcoming projects

- Large Synoptic Survey Telescope (LSST)
- 8.4 m telescope observing in optical-IR
- FOV: $9.6 \mathrm{deg}^{2}$
- Site: Chile
- 2020-

Current and upcoming projects

- Hyper Suprime-Cam on Subaru telescope
- diameter: 8.2 m, FOV:1.77 deg 2
- 50 SN candidates in 1 night on 24 May 2015

$$
\begin{aligned}
& \text { [Previous | Next I ADS]] } \\
& \text { Fifty supernova candidates discovered with } \\
& \text { Subaru/Hyper Suprime-Cam } \\
& \text { ATel \#7565; Nozomu Tominaga (Konan U/Kavli IPMU, U. Tokyo), Tomoki Morokuma (IoA, } \\
& \text { U. Tokyo/Kavli IPMU, U. Tokyo), Masaomi Tanaka (NAOJ/Kavli IPMU, U. Tokyo), Ji-an } \\
& \text { Jiang (U. Tokyo), Takahiro Kato (U. Tokyo), Yuki Taniguchi (U. Tokyo), Naoki Yasuda (Kavit } \\
& \text { IPMU, U. Tokyo), Hisanori Furusawa (NAOJ), Nobuhiro Okabe (Hiroshima Univ), Toshifumi } \\
& \text { Futamase (Tohoku Univ.), Satoshi Miyazaki (NAOJ), Takashi J. Moriya (AlfA, U. Bonn), } \\
& \text { Junichi Noumara (NAOJ), Kiaina Schubert (NAOJ), and Tadafumi Takata (NAOJ) } \\
& \text { on 26 May 2015; 15:23 UT } \\
& \text { Credential Certification: Nozomu Tominaga (tominaga@ konan-u.ac.jp). } \\
& \text { Subjects: Optical, Supernovae, Transient } \\
& \text { 3/ Tweet } \\
& \text { We report the discovery of } 50 \text { supernova candidates in one night. Our transient survey with } \\
& \text { Subaru/Hyper Suprime-Cam (HSC) was performed on } 24 \text { May 2015 UT as a Subaru open-use } \\
& \text { program. The candidates were detected in real time using a quick image subtraction system (ATel } \\
& \text { \#6291). The reference images were obtained with HSC on } 2 \text { and } 3 \text { Jul 2014 UT. }
\end{aligned}
$$

Current and upcoming projects

- Ultraviolet Transient Astronomy Satellite (ULTRASAT)
- mini-satellite carrying a telescope with an large FOV observing in UV
- Israeli/US collaboration, Weizmann institute (PI: E. Waxman)-Caltech (PI: S. Kulkarni)
- wavelength: $2200-2800 \AA$
- FOV: $210 \mathrm{deg}^{2}$
- 2020 or 2021-

ULTRASAT

Thank you for your attention

