The result of the MEG experiment with the full dataset (+ MEG II status)

Daisuke Kaneko, on behalf of

the MEG collaboration

Contents

- 1. $\mu \rightarrow e \gamma$ Decay
- 2. MEG Instruments
- 3. Analysis and Result
- 4. MEG II experiment

Flavor of Particles

$^+ \rightarrow e^+ \gamma$: undiscovered decay

- Forbidden in Standard Model (Lepton flavor conservation law)
- It is possible, with neutrino oscillation, probability is < 10⁻⁵⁰ no exist practically
- Promising theories beyond SM predict accessible probability
 - •see-saw mechanism
 - SUSY-GUT

•etc.

 $\mu \rightarrow e \gamma$ via ν -oscillation

 $\mu \rightarrow e \gamma$ via SUSY particle

$10^{-12} \sim 10^{-14}$ is predicted

Antusch et al., J. HEP **2006**(11), 090 (2006)

```
SU(5) + seesaw
different colors correspond different
\theta_{13} value
(already discovered to be ~9°)
```

L. Calibbi et al. Phys. Rev. D **74**, 116002 (2006)

SO(10) + seesaw green : PMNS case, red : CKM case tan β = 10, as function of M_{1/2}

History of $\mu \rightarrow e \gamma$ search

1936 Discovery of μ

1947

First search with cosmic-ray O μ is not an excited state of e

1950s

 $\mu \rightarrow e \gamma$ search with accelerator

1970s

search with meson factories

O Concept of lepton flavor

× Rumor of discovery, but not true

Crystal Box 1.7 × 10⁻¹⁰ 1984 @LAMPF

Λ[**TeV**]

10

100

1000

MEGA 1.2 × 10⁻¹¹ 1999 @ LAMPF

O Signal 52.8 MeV = m_{μ} /2, back-to-back, at the same time.

BackGrounds

O Raditive Muon Decay (RMD) $\mu^+ \rightarrow e^+ \overline{\nu_{\mu}} \nu_e \gamma$

O ACCidental BG (ACC)

- γ from RMD or annihilation of e⁺

Туре	Εγ	Ee+	Time	Angle
Signal	52.8 MeV	52.8 MeV	Te = T γ	180°
RMD	<52.8 MeV	<52.8 MeV	Te = T γ	≦180°
ACC	<52.8 MeV	≦52.8 MeV	uniform	no correlate

$$\mathsf{R}_{\mathsf{BG}} \propto \mathsf{R}_{\mu}^{2} \cdot \delta \mathsf{E}_{\mathsf{e}} \cdot (\delta \mathsf{E}_{\gamma})^{2} \cdot \delta \, \omega / 4 \pi \cdot \delta \mathsf{t}$$

_ocation of experiment

PSI experimental hall

BTS & Target

μ beam on target

 Spectrometer Solenoid

Requirement Must stop μ^+ , but must not interrupt e^+ \rightarrow Put thin film with angle Design 8 cm × 20 cm ellipse 20.5° slant angle Stacked PE & PS, 205 µm

 μ ^ + stopping target

MEG detector

13

_iquid Xe γ -ray detector

Liquid Xenon ?

- •Rare-gas scintillator
- •Fast, Many photon
- •Heavy as a liquid
- Homogeneity
- •No self-absorption
- \rightarrow Many applications in high-energy experiments

Difficulty in application

Handle low-temp liquid (T~165 K)

Control pressure $(\Delta P < 0.01 \text{ atm})$

Detect Ultra-violet light ($\lambda \sim 175 \text{ nm}$)

Hamamatsu R9869 Photo-multiplier

_Xe detector design

Characteristics

- •Total 900 | LXe
- •C-shaped cryostat
- •846 PMTs on 6 face
- •Honey-comb window at γ -
- ray entrance face
- Cooled with pulse tube

refrigerator

- •2 kinds of purification
- systems equipped

200 W pulse tube refrigerator

ΔXe detector γ -ray calibration 16

Main γ calibrations

- A. Cockcroft-Walton (CW) accrlerator target of Li₂B₄O₇ 14.8, 17.6 MeV
- B. Neutron generator Ni(n, γ)Ni reaction 9.0 MeV
- C. Charge exchange $\pi^- + p \rightarrow \pi^0 + n$ $\pi^0 \rightarrow \gamma + \gamma$

$\pi^{\,0}$ calibration

2 γ from the reaction $\pi^{\,0} \rightarrow \gamma + \gamma$

By selecting back-to-back γ pair, concentrated energy γ can be selected.

Most important calibration, since 55 MeV is near signal.

BGO detector is small and movable, to scan all acceptance of LXe.

-ray resolutions

Fit 55MeV peak with response function considering

- •Correlation of 2 γ angle and energy
- •Difference of noise condition

Detector acceptance is divided into small parts and fit each.

When γ -ray convert at shallow part of the detector, energy resolution is worse

Position resolution is evaluated with lead collimator. to be 5 mm σ in *u*, *v* direction and 6 mm σ in *w* direction.

COBRA magnet

are isolated

chambe tracker

Interaction of e⁺ and matter:

Multiple scattering \rightarrow Worsens angular resolution Pair annihilation \rightarrow Generate γ -ray background

High-rate tolerance:

High rate μ^+ s in beam eventually decay into e⁺s.

16 modularized detector in ϕ direction

Detector locate only at large R

Low mass tracker

e⁺ track reconstruct

Hit detection by waveform analysis Reconstruct hit in each cell Ratio of charge on each side •Detail z-position by vernier Connect neighboring hits First fit by circle Main fit of track Kalman Filter algorism is used

(Fit error in each event is utilized in final physics analysis)

Positron energy resolution ($\sigma \mu_e$) is obtained by fitting spectrum of normal μ decay with response function.

- ① theoretical spectrum
- 2 acceptance function
- 3 resolution function

"Double turn" method is adopted to evaluate energy $\frac{1}{2}$ 10000 position and angular resolutions.

Independently propagate 1st and 2nd turn of genuine track.

Resolutions are largely affected by operation condition of DCH, but roughly Ee ~ 300keV, $\theta e \cdot \phi e \sim 10$ mrad, ye ~ 1.3 mm, ze ~ 3.0mm

e+ timing counter

ϕ counter

- BC404 scintillator
 4 × 4 × 79.6 cm³
 15 bars on each side
 PMT read-out on both end
- (Fine mesh type)

z counter

- BCF-20 scintillation fiber Total 256 pcs.
- •APD readout at one end (※z counter is not used)

Assembled ϕ counter (one of two)

Roll of timing counter

- Precise measurement of e^+ hit time
- Provide information for trigger

From the PMT hit time at TIC both end, hit position and time at TIC bar is calculated. Emission timing of positron needs track information (L_{track}) .

$$t_{\text{TIC}} = \frac{t_{\text{IN}} + t_{\text{OUT}}}{2} - \frac{L_{\text{bar}}}{2\nu}$$
$$z_{\text{TIC}} = \frac{\nu}{2} (t_{\text{IN}} - t_{\text{OUT}})$$

Time-walk effect of PMT is corrected in $t_{\rm IN}$, $t_{\rm OUT}$.

Final timing observable is defined as,

$$t_{e\gamma} = \left(t_{\text{LXe}} - \frac{|\boldsymbol{r}_{\gamma} - \boldsymbol{r}_{\mu}|}{c}\right) - \left(t_{TIC} - \frac{L_{\text{track}}}{c}\right)$$

Timing resolution is evaluated with RMD data, where all the γ -ray detector, positron detector, trigger are the same as the data for $\mu \in \gamma$ physics data.

(E γ , Ee correlation on te γ need to remove)

 $\sigma_{\rm e\,\gamma}$ = 122 ± 4 ps

resolutions for each component $\sigma t \gamma \sim 65 \text{ ps}$ $\sigma te \sim 100 \text{ ps}$

γ -ray detection efficiency

 $62.5 \pm 2.3\%$, for γ from target aiming at detector acceptance Loss: material between (COBRA, cryostat wall, PMT etc) leakage of electro-magnetic shower

positron detection efficiency

48% from Monte Carlo simulation. ☆It is not needed in physcis analysis

Trigger efficiency

After improvement in 2011 trigger rate13Hz Live Time ratio 99% Selection efficiency 97%

History of MEG

28

Event selection

Firstly, apply pre-selection in order to obviously accidental events.

Then, detailed calibration is done on passed events

Final event selection is defined as,

 $48 \leq E \gamma \leq 58 \text{ MeV}$ $50 \leq Ee \leq 56 \text{ MeV}$ $|te \gamma| \leq 0.7 \text{ ns}$ $|\theta e \gamma| \leq 50 \text{ mrad}$ $|\phi e \gamma| \leq 75 \text{ mrad}$

Region $|\text{te } \gamma| < 1.0 \text{ ns is}$ blinded at first. Parameter for physics analysis is determined by outside (sideband) events.

Signal events will

Definition of MEG likelihood function

extended constraint
likelihood term
$$\mathcal{L}(N_{\text{sig}}, N_{\text{RMD}}, N_{\text{ACC}}, \vec{t}) = \frac{e^{-N}}{N_{\text{obs}}!} C(N_{RMD}, N_{ACC}, \vec{t})$$
$$\times \prod_{i=1}^{N_{\text{obs}}} (N_{\text{sig}}S(\vec{x_i}, \vec{t}) + N_{\text{RMD}}R(\vec{x_i}) + N_{\text{ACC}}A(\vec{x_i}))$$
PDF

 $N = N_{sig} + N_{RMD} + N_{ACC}$ \vec{t} : Target parameter N_{obs} : Event number in window $\vec{x} : (E_{\gamma}, E_e, t_{e\gamma}, \theta_{e\gamma}, \phi_{e\gamma})$ S, R, A: (Probability Density Function) C: Constrain N_{RMD} N_{ACC} around expectation in side band

Best fit value is defined by such that maximized likelihood function Confidence interval is determined with Feldman-Cousins approach, setting Nsig as the main parameter, and profiling out the others. Determined from sideband data (partially Monte Carlo simulation)

All known correlations between observables, detector position etc. are corrected.

event-by-event PDF Shape of function changes, according to Error in reconstruction Position in detector Correlation

Examples in certain events

Target Position

 $\Delta z_{t} \sim 1$ mm,

 $\Delta \phi e \sim 10 \text{ mrad}$ ($\phi e \text{ reso.} 10 \text{ mrad}$)

There are 2 methods

- 1. Optical method \rightarrow next page
- 2. Software method

Utilize correlation of apparent hole position depends on position direction.

Target measure

Measure target with theodolite.

Conventionally fit is done with plane, but expanded to paraboloid fit.

2009–2011 data can be seen as plane, but 2012, 2013 data has large strain.

Cross marker
 Plane fit
 Paraboloid fit

Hole position

For detail investigation 3D laser scan was performed in 2015.

As the result, deformation of complex shape was found, but around the beam-spot, paraboloid is a good approximation.

Countermeasure :

- In trac reconstruction, set start point of e⁺ (= μ stopped point) to be fitted paraboloid_o (previously fitted plane)
- Remaining uncertainties
 position local shape are taken into account as nuisance parameters.

Shift center of $\phi \in \gamma$ PDF for Signal event PDF.

 $\begin{array}{ll} \text{Parallel shift} & \text{Paraboloid of 3D scan} \\ \Delta \mu_{\phi} = \Delta_{\mu} \phi_{\mathrm{e}\gamma}(p,\phi_{\mathrm{e}}) + s[\Delta_{\mathrm{FARO}} \phi_{\mathrm{e}\gamma}(x_{\mathrm{e}},y_{e}) - \Delta_{\mathrm{para}} \phi_{\mathrm{e}\gamma}(x_{\mathrm{e}},y_{e})] \end{array}$

p: Parallel shift parameter0~ 1s: Local shape parameterParaboloid~ 3D scan

p~ and s~ are independent for each year, $\Delta_{\rm FARO}$ is scaled to match with curvature of paraboloid fit.

p is constrained by Gaussian dist. centered at 0 (error 300(500) um) s is constrained in [0,1] for 2013, narrower region for previous years.

Impact on sensitivity:

Sensitivity is worsened by13% in sensitivity.

This is largest systematics, and the others occupy only 1%.

positron AIF recognition (Annihilation in Flight)

Sharp peak in $\Delta \theta_{AIF}$, $\Delta \phi_{AIF}$ distribution is really tagged AIF events. Cut events near peak.

RedPrecise shape of Δt_{AIF} distribution is difficult to obtain.

It is used only for rough cut.

Method :

1. Fit 2D distribution $\Delta \theta_{AIF}$, $\Delta \phi_{AIF}$ with combination of 2D Gaussian function. (2 peak and 1 base component.)

2. Remove events within 0.7 σ from either of the peaks, as they are likely to be AIF Accidental BG.

Impact :

No significant improvement in sensitivity. Insurance for AIF event to come near center of window.

Normalization

A constant to convert event number and $\mu^+ \rightarrow e^+ \gamma$ branching ratio

k is considered to be a number of events multiplied with detector acceptance and detection efficiency,

There are independent 2 ways, Michel positron way and RMD way. Final value is given by combining two.

Both ways do not need e^+ detection efficiency.

For all statistics of MEG data,

 $k = 1.71 \pm 0.06 \times 10^{13}$

Search sensitivtiy

Arrows are limit from time sideband (-2.0ns, +2.0ns) 8.4×10^{-13} , 8.3×10^{-13}

←Histogram of upper limits of many Toy MCs which do not contain signal.

Data set	2009- 2011	2012- 2013	2009– 2013	
k (×10 ¹²)	8.15	8.95	17.1	
Sensiti vity (× 10 ⁻¹³)	8,0	8.2	5.3	

(90% CL)

Previous publication(2009-2011) Sensitivity was 7.7×10^{-13} Understandable, considering the changes in analysis.

Event distribution full data

Excess of the signal is not seen.

Contours show averaged signal PDF $(1\sigma, 1.64\sigma, 2\sigma)$

Fit result 41 ← 2009-2013 full data data -----ACC Signal (500events)

Data and projected PDF agree well.

RMD

Data	2009-	2012-	2009–	
set	2011	2013	2013	
best fit B (× 10 ⁻¹³)	-1.3	-5.5	-2.2	

←Indication for signallikelihood *R* sig

sum

$$R_{\text{sig}} = \frac{S(x_i)}{0.07R(\overrightarrow{x_i}) + 0.93A(\overrightarrow{x_i})}$$

Confidence interval

Consistent including change in analysis.

Move of the observables

High rank event in either (current/previous) of results are plotted.

We tested MC experiment to simulate move of observables and compared upper-limits.

Data located around the center of the MC distribution.

Usual likelihood function contains constraint term for $N_{RMD} \ge N_{ACC}$ to be near to the estimation from sideband.

$$C(N_{\text{RMD}}, N_{\text{ACC}}, \vec{t}) = \exp\left\{-\frac{(N_{\text{RMD}} - \mu_{\text{RMD}})^2}{2\sigma_{\text{RMD}}^2}\right\} \exp\left\{-\frac{(N_{\text{ACC}} - \mu_{\text{ACC}})^2}{2\sigma_{\text{ACC}}^2}\right\} c(\vec{t})$$

In order check the BG distribution in analysis window, fit without constrain term were tested.

		2009 –20	13
	expect	7743.7	±41.2
NACC	fit no constr.	7684.4	±103
AUU	standard fit	7739.1	± 37.7
	expect	614.4	± 33.8
	fit no constr.	663.3	±59.1
	standard fit	624.6	±28.4

MEG II experiment

Upgrade aiming at 10 times higher sensitivity of MEG

Main features

- •2.3 times stronger beam
- target not easy to deform
- Replace PMT of inner face of LXe with MPPC
- Unified, larger volume, stereo wired drift chamber
- Pixelated timing counter with SiPM read out
- New detector to tag RMD AccBG

Expected sensitivity is 4×10^{-14}

MEG II status

Xenon detector

Drift chamber

Timing counter

RDC counter

MEG II prospects

Specification	MEG I	MEG II	
Beam intensiy (/s)	3 × 10 ⁷	7 × 10 ⁷	
Resolutions			
Eγ(%, w>2 / w<2)	2.4/1.7	1.1/1.0	
γ pos. (mm, u/v/w)	5/5/6	2.6/2.2/5	
Ee (keV)	306	130	
$ heta$ e γ / ϕ e γ (mrad)	9.4/8.7	5.3/3.7	
te γ (ps)	122	84	
Efficirncies (%)			
trigger	>99	>99	
γ	63	69	
e ⁺	40	88	

←2012

2013 Upgrade proposal approve

←2016

2017 upgrade complete ______start data taking

3 years

sensitivity 4×10^{-14}

MEG experiment is searching for $\mu^+ \rightarrow e^+ \gamma$, evidence of the physics beyond the standard model of particle.

MEG I experiment has been finished and we published final result **Eur. Phys. J. C, 76(8), 1–30** New limit 4.2×10^{-13} is 30 times more stringent than MEGA experiment.

MEG II experiment is aiming

おわり

近縁のCLFV探索

μeγと共通 μeγには無い 項

キセノン補助システム

エレクトロニクス

事象再構成:概要

再構成でのデータの流れ

線 位置•時間

位置(キセノン中で最初に反応した点) a. 中心付近の光子数の分布を χ²フィット

b. フィット結果の補正 シャワーの大きさ・斜め入射

時間(キセノン中で最初に反応した時間)

$$\chi_{\text{time}}^{2} = \sum_{i} \left(\frac{t_{\text{PMT},i} - \frac{r_{i}}{v} - t_{\text{LXe}}}{\sigma_{t} (N_{\text{phe},i})} \right)^{2}$$

- 和は50光電子以上のPMTについてとる

1点から等方的にシンチレーション 光が放たれていると仮定。

$$\chi_{\text{pos}}^2 = \sum_{i} \left(\frac{N_{\text{pho},i} - c\Omega_i(u, v, w)}{\sigma_{pho}(N_{\text{pho},i})} \right)^2$$

線 エネルギー

エネルギー

各PMTの波形の和から計算される。 ・PMTごとの光子の伝搬時間は差し引いておく。 ・それぞれのPMTの重みは次を考慮する。

・PMTのゲインと量子効率
(光電子の収集率も含む)
・PMTがカバーする立体角
・面ごとの補正係数
・放出点から光電面を見込む立体角
・γの位置による不均一性の補正

複数 γ 線のパイルアップへの対処 ・シンチレーション光の空間分布 ・sum波形のピークサーチ

陽電子がチェンバーを複数回通過する場合、 それぞれの周回が別の陽電子として識別されてしまう事があった。 一つの陽電子による分かれた軌跡を識別し復元する手法を導入した。

効果

- ・2周目を認識できなかったため、イベント選別から漏れてしまったイベントの回復。約4%のイベント増加
- AccBG イベントの出現と消滅はほぼ同数のため、
 BG数に対する影響は無い。

hetae γ , ϕ e γ , te γ

 μ 粒子の初期位置(r_{μ})は飛跡がターゲットと交わる点とする。

$$\gamma$$
の放出角度 $n_{\gamma} = \frac{r_{\gamma} - r_{\mu}}{|r_{\gamma} - r_{\mu}|}$

角度差(0だと完全に反対向き)

$$\theta_{e\gamma} = (\pi - \theta_e) - \theta_{\gamma}$$
$$\phi_{e\gamma} = (\pi + \phi_e) - \phi_{\gamma}$$

時間差

$$t_{e\gamma} = \left(t_{\rm LXe} - \frac{|\boldsymbol{r}_{\gamma} - \boldsymbol{r}_{\mu}|}{c}\right) - t_{e}$$

Q

PMT再構成

PMTごとのヒット再構成 constant fraction法から、ヒット時間 フィルターした波形を積分して、光子数を得る

raw

high-pass

59

_Xe検出器 PMTの較正

増倍率(ゲイン)

LEDを一定の強度で点灯させる

 $\sigma_N^2 = \mu_N + \sigma_0^2$ (N:光電子数)

 $Q = G \times N$ で電荷の関係に直すと

 $\sigma_Q^2 = G(\mu_Q + \sigma_0^2)$

量子効率(QE)

α線源(241Am)が付いたワイヤー

 α 線イベントで測定された光電子数と、 MCシミュレーションで予想される光子数 の比からQEを計算する。 2015年、

レーザー測量機を用いて検出器の内外壁、 PMT取付用の構造体を測量した。

結果、

x軸: 1 mrad, y軸: 5 mrad 程度の回転他、 図面からのズレが見つかった。

対策、

PMTの取付方法+温度変化に基づいた位置の補正を行う。 (キセノンの重量による変形は無視できる) 修正されるガンマ線位置の平均値は、 角度の不確かさと同程度。(約4mrad)

ドリフトチェンバー位置合わせ

- Optical method
 - 測量器
 各年のrun開始前
 精度 0.2-0.3mm (x,y) 1.5-2.5mm (z)
 レーザートラッカー とcorner cube 2011年から

精度 0.3mm (x,y,z)

- Software method
 - Millipede alignment 宇宙線カウンタ(CRC)を用いた特殊run 精度 0.15mm
 - Michel positron alignment
 通常の陽電子trackとfitの残差が小さくなるよう
 最適化

規格化因子の計算

どちらの方式も陽電子が検出されているイベント数からスタートするため、陽電 子検出効率は既に含まれている。 平均PDFのフィットとの比較

角度変数を1次元化、event-by-eventでないPDFを用いる別解析と結果を比較した。 フィット結果は、主方式と同様シグナルの有意な超過は無い。同じデータを別の方法 で解析した上限値は多数のMCの分布の中心付近に位置する。

High rank events

								th	ph		
Rank	Run	Event	Pair	Rsig	t [ps]	Ee [MeV]	Eg [MeV]	[mrad]	[mrad]	cos	AIF
1	77431	1715	2	3.06	141.6	52.934	53.98	-25.19	-2.40	-0.99968	15
2	195187	1856	21	2.70	-75.0	53.338	51.74	-0.13	-9.19	-0.99996	7.4
3	189150	1089	25	2.41	-5.6	52.187	52.95	10.56	16.57	-0.99981	5.1
4	160737	785	10	2.31	47.6	52.816	51.92	8.30	6.12	-0.99995	8.3
5	56081	35	13	2.26	-22.2	52.524	52.81	-20.70	15.85	-0.99967	10
6	167931	1076	17	2.25	415.0	53.184	53.78	-7.67	-23.61	-0.99969	10
7	228740	1892	28	2.23	398.0	52.955	50.55	-0.83	-5.72	-0.99998	10
8	123579	1318	15	2.23	-20.7	52.806	55.13	-33.56	12.99	-0.99936	10
9	185612	1612	6	2.18	13.2	52.816	55.41	12.87	-29.79	-0.99948	10
10	87743	1484	24	2.15	-80.7	52.914	52.28	-18.08	23.97	-0.99955	4.3
11	218877	862	14	2.11	79.2	52.782	50.59	18.64	-9.77	-0.99978	10
12	113706	175	7	2.10	87.9	52.078	53.01	1.64	1.43	-1	10
13	185590	975	6	2.02	-57.1	53.009	52.59	-38.58	-3.11	-0.99925	3.5
14	194581	1185	17	2.01	-65.1	52.703	51.83	3.86	10.88	-0.99994	10
15	181128	1391	5	1.98	77.2	52.696	52.24	21.64	9.12	-0.99973	15
16	193209	1452	18	1.92	-310.1	52.708	54.83	-3.93	12.69	-0.99991	10
17	64033	592	5	1.83	157.5	53.385	49.65	19.15	6.12	-0.9998	10
18	100452	1878	6	1.81	-28.7	52.860	49.27	-14.59	21.97	-0.99965	13.3
19	111484	647	5	1.80	45.7	52.896	49.66	19.14	-23.65	-0.99954	15
20	84066	879	14	1 79	-61.9	52 759	51 31	-28 50	16 55	-0 99946	10