

Cosmology with imaging surveys – from **precision** to *accuracy*–

Interpretable photometric redshifts with no spectroscopy

NYU

Boris Leistedt – @ixkael, www.ixkael.com NASA Einstein Fellow @ CCPP, New York University

Frontiers: probabilistic models & observational systematics

ROAD MAP

Cosmology with galaxy surveys

Photometric surveys and spatial systematics

Redshift distributions via hierarchical modeling

Photometric redshifts likelihood functions

Conclusions & the future (LSST)

Energy density budget of the universe (today) and related questions

1%

dark energyTM microscopic origin? cosmological constant?

dark matter™

microscopic origin? cosmological impact?

baryons

galaxy formation? gastrophysics?

the rest

neutrinos, radiation, etc

Galaxy Surveys

Rich space of models

early universe physics astroparticles gravity, etc

and observables

galaxy clustering cosmic shear galaxy-galaxy lensing cross-correlations with CMB, tSZ, etc

experimental landscape

2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028

Galaxy surveys: goals

- Measure the expansion rate H(z), growth rate f, and other cosmological parameters
- Constrain primordial non-Gaussianity (f_{NL}, g_{NL}, ...)
- Constrain primordial potential / power spectrum
- Constrain gravity from large-scale effects

Example: primordial non-Gaussianity

• Local type: $\Phi = \phi + f_{\rm NL}[\phi^2 - \langle \phi^2 \rangle] + g_{\rm NL}[\phi^3 - 3\phi \langle \phi^2 \rangle]$

- Imprinted in 3+ point correlations of the CMB and in large-scale galaxy power spectrum (2-point!)
- Current limits: $-3.1 < f_{NL} < 8.5$ from CMB (Planck collaboration 2015) -16 $< f_{NL} < 26$ from SDSS galaxies (Giannantonio+ 2014) -39 $< f_{NL} < 23$ from SDSS quasars (Leistedt+ 2014)
- Measurement <u>plagued</u> by spatial and redshift systematics
- LSST & SphereX could detect fNL ~ 1 but will be difficult to reach!

spectroscopic vs photometric surveys

spectroscopic

types + redshifts

X no types / redshifts

deep

credit: Aragon-Calvo et al (2014)

DES — The Dark Energy Survey

3 deg² FOV, 570 Mpixel camera on Blanco telescope (4m, CTIO)

2013-2018, 300 collaborators

grizY bands

4 standard observational probes: galaxy clustering, galaxy lensing, supernovae, clusters

<u>Full survey</u>: 5000 deg² **grizY** to 24th mag <u>Science Verification</u>: ~150 deg² to full depth <u>Year 1</u>: ~1500 deg² but shallower <u>In the can</u> (Y2-3): 5000 deg² deeper than Y1

3D matter power spectrum measured with spectroscopic survey

Photometric surveys

Redshifts are estimated from broad-band photometry and are **uncertain**

Typical approach: **tomographic analysis** group galaxies into bins using a redshift estimate, then do 2D angular 2-point correlation analysis

DES Science Verification (SV) data

- Early data, excellent quality
- Benchmark galaxy sample: ~120 deg², i_{mag} < 22.5, cuts similar to CFHTLenS

DES SV angular clustering Crocce et al (MNRAS 2015, arXiv:1507.05360)

Spatial systematics?

- Anything that affects the measured galaxy properties e.g. dust extinction, seeing, airmass, zero points, ...
- Create spatially varying depth & stellar contamination

Observing conditions & systematics

Leistedt et al (ApJS 2015, arXiv:1507.05647)

Mapping & projecting image properties Useful for null tests, systematics checks, ...

Spatial systematics: state of the art

- Used to be main limiting systematic.
- Confirmation bias is dangerous (=fiddle with data and pipeline until results agree with expectations)
 Blinding + meaningful statistical techniques essential.
- We now routinely map and simulate spatial systematics Techniques to correct clustering measurements: Elsner, Leistedt & Peiris: arXiv:1609.03577, 1509.08933, 1507.05647, 1404.6530

photometric redshifts

(the elefant in the room)

Redshift: doppler shift of electromagnetic radiation due to expansion of the universe = *indication of distance*

$$f_{\nu}(\lambda_{\rm obs}, z) = \frac{(1+z)}{4\pi D_L^2(z)} L_{\nu}\left(\frac{\lambda_{\rm obs}}{(1+z)}\right)$$

flux of redshifted object

intrinsic luminosity

Redshift distributions for DES SV galaxies (1507.05909)

State of the art (KIDS)

Redshift distributions for KIDS galaxies (1606.05338)

Ongoing surveys don't meet photo-z requirements

LSST requires insanely precise photo-z's

Why is it so hard?

$\begin{array}{ll} \mbox{Application to redshift distributions:} \\ p\big(N(z), \{z_i\} \big| \{ {\rm Fluxes}_i \} \big) \propto p\big(N(z) \big) \prod_{i=1}^N \ p\big(z_i \big| N(z) \big) \ p\big({\rm Fluxes}_i \big| z_i \big) \\ \mbox{full posterior} & \mbox{prior} & \mbox{population} & \mbox{likelihood} \end{array}$

Photo-z (likelihood) methods:

template fitting

vs <u>machine learning</u>

(+new contestant: clustering redshifts)

template fitting

- 🗸 physical model
- 🗸 probabilistic
- X need template set
- × hard to capture data complexity

X sensitive to priors

template set (CWW)

machine learning

🧹 captures data complexity

X no physical model, solves for flux=>z, cannot extrapolate

× requires representative training data

Why is it so hard?

 $p(N(z), \{z_i\} | \{Fluxes_i\}) \propto p(N(z)) \prod_{i=1}^{N} p(z_i | N(z)) p(Fluxes_i | z_i)$ full posterior prior prior likelihood

- Galaxy SED models are inaccurate (high redshift, dust, star formation, variability, etc) ⇒ likelihood is unreliable
- Standard analyses stack redshift PDFs to obtain N(z).
 ⇒ N(z) is biased and has no uncertainties.
- My goals:

Create & calibrate SED models and likelihood function Correctly infer N(z) and propagate errors into cosmology

Hierarchical inference of redshift distributions

arXiv:1602.05960 with

Daniel Mortlock Hiranya Peiris

Hierarchical N(z) inference

$$p(N(z,t,m), \{z_i, t_i, m_i\} | \{Fluxes_i\})$$

$$\propto p(N(z,t,m)) \prod_{i=1}^{N} p(z_i, t_i, m_i | N(z)) p(Fluxes_i | z_i, t_i, m_i)$$
prior likelihood likelihood

Likelihook based on SEDs, assumed to be **correct**. Histogram model of N(*z*,*t*,*m*) parameterized by {f_{ijk}}

Jointly infer {z,t,m} $_{objects}$ and {f $_{ijk}$ using Gibbs sampler

distribution N(z, t, m) of the simulation

- 3 templates
- ugriz filters
- realistic distributions

Simulated colors of 10⁴ galaxies

after inference: samples of the full posterior distributions

Redshift distributions correctly recovered despite strong degeneracies

Mierarchical probabilistic inference of N(z)

However, real likelihoods are incorrect/biased!

Data-driven, interpretable photometric redshifts trained on heterogeneous and unrepresentative data

with David Hogg (NYU)

Will **<u>never</u>** have representative spectroscopic data

Galaxy SED models are not precise enough

Only deep spectroscopic & many-band surveys available

True PDFs needed with data <u>and</u> model uncertainties

Machine learning constrained by physics of the problem?

Idea

Target set: photometric survey **Training set**: many-band or spectroscopic set = deeper, heterogeneous version of target

No complete physical model for galaxy spectra => construct spectra compatible with training set

$$p(z|\text{Fluxes}) = \sum_{j} p(\text{Fluxes}|\text{Fluxes}(t_j, z)) p(z|t_j) p(t_j)$$

- Classical template fitting (e.g., BPZ, EAZY, ZEBRA, etc)
- Use a small set of fixed templates based on low-redshift bright spectra or physical models

New data driven approach 1 (work in progress...)

Forward model a probabilistic system of templates and priors, to be constrained from the training data.

New data driven approach 2 (Leistedt & Hogg, arXiv:1612.00847)

 Construct one probabilistic template per training galaxy.
 Pairwize comparison of target galaxies (redshifts unknown) with training galaxies (redshift known or constrained)

Example of a model per training galaxy

New method: $DELIGHT^{TM}$

Leistedt & Hogg (arXiv:1612.00847) – <u>github.com/ixkael/Delight</u>

Concept: implicitly fitting and redshifting SEDs to each training galaxy for pairwise comparison with target galaxies = machine learning + template fitting

Probabilistic, physical, and data driven Interpretable model & PDFs. Flexibility via parameters.

Use much more data than existing methods: heterogeneous combination of spectroscopic or deeper photometric data

Fast to (re-)train/apply. No need to store tabulated PDFs.

SED model

How to quickly construct SED model and make predictions?

residuals

$$p(\underbrace{\{\hat{F}_b'\}|z', t_i}) = p(\{\hat{F}_b\}|z', \underbrace{z, \{\hat{F}_b\}}_{\text{target}})$$

target

The crazy intractable way

Explore all SEDs compatible with training galaxy (noisy fluxes + spec-z) via MCMC

The elegant efficient way

Directly fit for training galaxy in flux-redshift space + force the fit to correspond to underlying SEDs

<introduction to Gaussian Processes>

Gaussian processes

 $f \sim \mathcal{GP} \iff p(f(\vec{x}), f(\vec{x}'))$ is Gaussian $\forall \vec{x}, \vec{x}'$

characterized by mean and kernel

$$m(\vec{x}) = \mathbb{E}[f(\vec{x})]$$

$$k(\vec{x}, \vec{x}') = \mathbb{E}[(f(\vec{x}) - m(\vec{x}))(f(\vec{x}') - m(\vec{x}'))]$$

for Gaussian likelihood, posterior/predictions **tractable** see Rasmussen & Williams (2006)

Fitting with GPs = using priors over functions Modelling correlated signal and/or noise Choice of kernel is key (captures correlations)

</r></introduction</p> to Gaussian Processes>

Photo-z gaussian process

if SED model is:
$$L_{\nu}(\lambda) \sim \mathcal{GP}\left(\sum_{k} \alpha_{k} T_{\nu}^{k}(\lambda), k(\lambda, \lambda')\right)$$

templates residuals

then the fluxes:
$$F(b,z) \sim \mathcal{GP}\Big(\mu^F(b,z), \ k^F(b,b',z,z')\Big)$$

mean flux and covariance

GP with physical mean function **and residuals** *Fitting and predicting photometric fluxes while capturing the physics of redshifts*

Analytically tractable under simple assumptions

Photo-z gaussian process (proof)

$$\begin{array}{ll} \mbox{Redshifted} \\ \mbox{galaxy SED} \end{array} f_{\nu}(\lambda_{\rm obs},z) = \frac{(1+z)}{4\pi D_L^2(z)} \ L_{\nu}\left(\frac{\lambda_{\rm obs}}{(1+z)}\right) \end{array}$$

Photometric $F(b,z) = \frac{\int_0^\infty f_\nu(\lambda,z) \ W_b(\lambda) \ d\lambda/\lambda}{\int_0^\infty g^{AB} \ W_b(\lambda) \ d\lambda/\lambda}$

SED model

$$L_{\nu}(\lambda) = \underbrace{\sum_{k} \alpha_{k} T_{\nu}^{k}(\lambda)}_{k} + \underbrace{R_{\nu}(\lambda)}_{\text{residuals}}$$

Photo-z gaussian process (proof)

$$R_{
u}(\lambda) \sim \mathcal{GP}\Big(0, \ k(\lambda, \lambda')\Big)$$

$$\implies \qquad L_{\nu}(\lambda) \sim \mathcal{GP}\left(\sum_{k} \alpha_{k} T_{\nu}^{k}(\lambda), \ k(\lambda, \lambda')\right)$$

$$F(b,z) = \frac{(1+z)}{4\pi D_L^2(z)C_b} \int_0^\infty L_\nu \left(\frac{\lambda}{(1+z)}\right) W_b(\lambda) \, \mathrm{d}\lambda/\lambda$$

$$\implies F(b,z) \sim \mathcal{GP}\Big(\mu^F(b,z), \ k^F(b,b',z,z')\Big)$$

G10 / COSMOS data

training: deep SUBARU/HST bands with spectroscopic redshifts

target: ugriz SDSS bands

training/target: 10k/10k objects

unrepresentative training set with different bands & noise

a closer look at two PDFs...

7 fixed templates \Rightarrow 10,000 probabilistic templates (a system of types) (one per training galaxy)

Improvement, but more data/flexibility required. Not exploiting low-dimensionality of galaxy types.

Conclusions

Imaging surveys

diverse science: fundamental physics, astrophysics systematics limited — require exquisite photo-z's

DELIGHT — <u>GITHUB.COM/IXKAEL/DELIGHT</u>

data-driven method with physics & machine learning delivers accurate, interpretable redshifts probabilities

What's next?

fit SED templates and luminosity functions, calibrate photo-z likelihood without spectroscopic redshifts

Large Synoptic Survey Telescope

20 billion galaxies 17 billion stars

7 trillion sources detected in single epochs

30 trillion forced photometry

10 million alerts per nigh