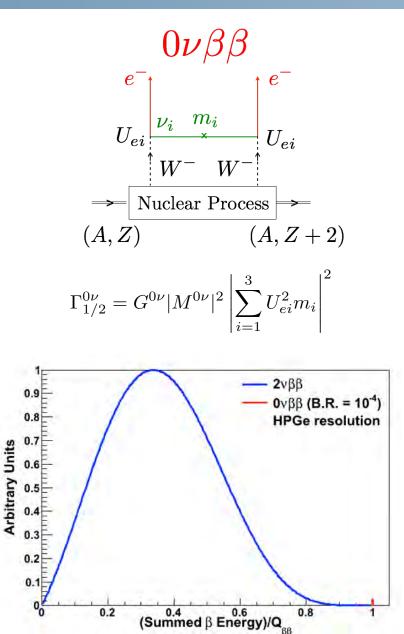
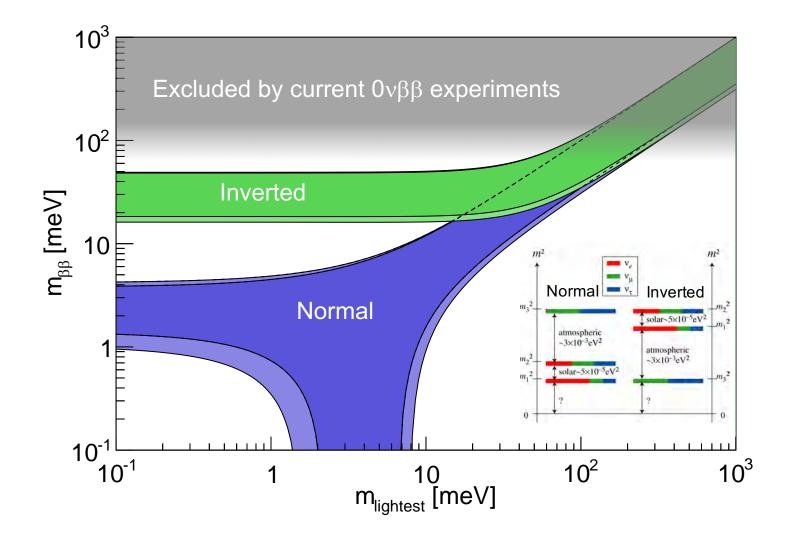
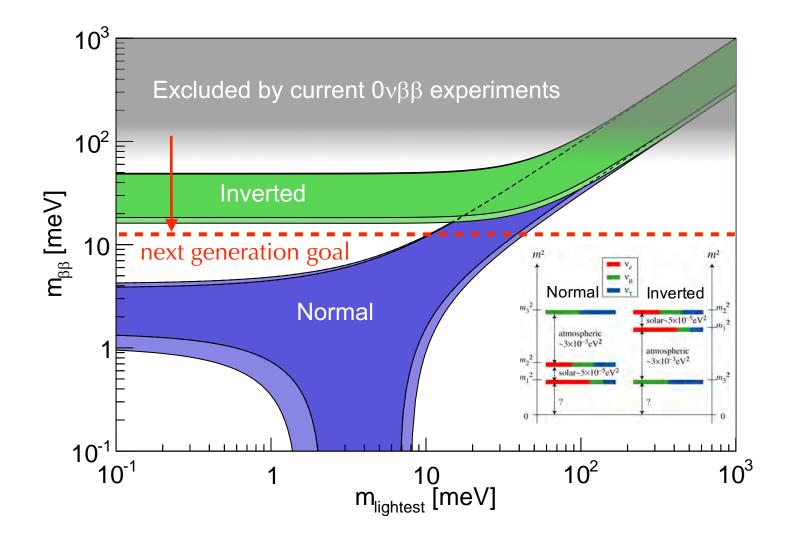
# The Quest for Neutrinoless Double-Beta Decay




#### Outline

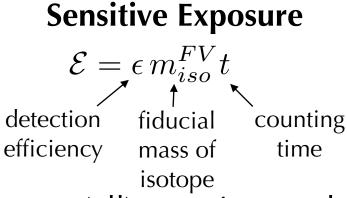

- Introduction: exposure and background
- High exposure: KamLAND-Zen
- Low background: MAJORANA / GERDA / LEGEND
- Discovery potential of future experiments

#### Neutrinoless Double-Beta Decay


- Neutrino mass requires BSM physics
  - Dirac mass: new particle  $v_R$  and extra-small Higgs coupling
  - Majorana mass: new unrenormalizable mass mechanism
- Motivation for Majorana neutrinos
  - L violation
  - "Minimally" non-renormalizable
  - Emerge "naturally" from GUTs (seesaw mechanism)
  - "Predicted" by leptogenesis
- Only feasible detection method:  $0\nu\beta\beta$  decay



## Light Neutrino Exchange




## Light Neutrino Exchange



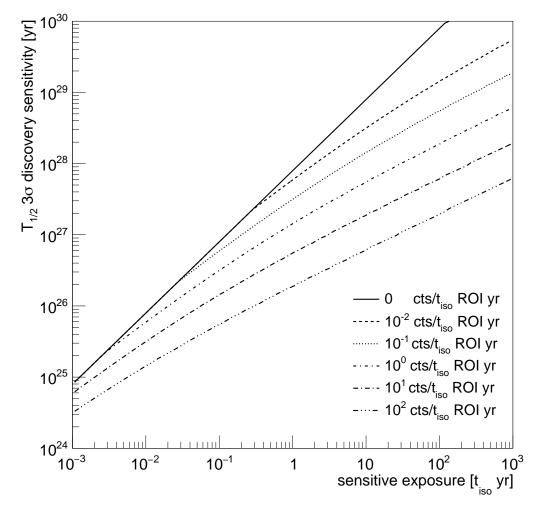
### Experimental Requirements

- Energy is the only observable that is a necessary and sufficient condition for discovery of  $0\nu\beta\beta$  decay
- Sensitivity is dominated by straight Poisson counting in the region-of interest (ROI): observing some number of counts during an exposure in the presence of background.
- Relevant parameters:



Sensitive Background

$$\mathcal{B} = N_{bg}/\mathcal{E}$$
  
t
background
counts

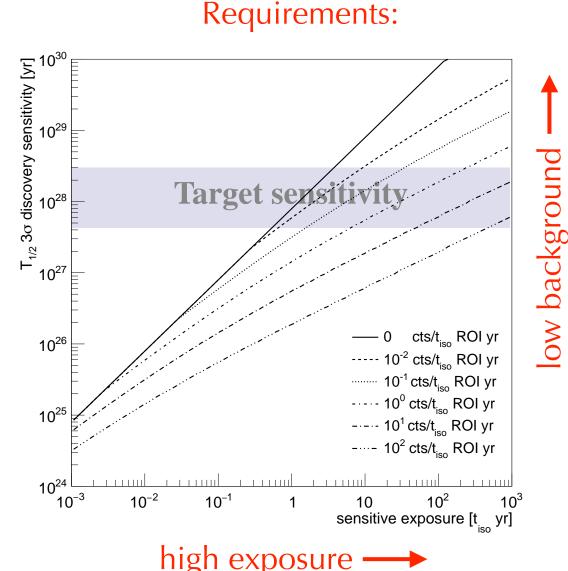

• In most (all) experiments, background is well-constrained, either from energy or volumetric side-bands

# Discovery Sensitivity

 Discovery sensitivity: the value of T<sub>1/2</sub> for which an experiment has a 50% chance to observe a signal above background with 3σ significance:

$$T_{1/2}^{3\sigma} = \ln 2 \frac{N_A \mathcal{E}}{m_a S_{3\sigma} (\mathcal{B}\mathcal{E})}$$

•  $S_{3\sigma}(B)$  = Poisson signal expectation at which 50% of experiments report 3 $\sigma$  fluctuation above  $N_{bg} = \mathcal{BE}$ 




# Discovery Sensitivity

 Discovery sensitivity: the value of T<sub>1/2</sub> for which an experiment has a 50% chance to observe a signal above background with 3σ significance:

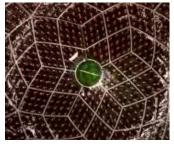
$$T_{1/2}^{3\sigma} = \ln 2 \frac{N_A \mathcal{E}}{m_a S_{3\sigma} (\mathcal{B}\mathcal{E})}$$

•  $S_{3\sigma}(B) = Poisson signal$ expectation at which 50% of experiments report 3 $\sigma$  fluctuation above  $N_{bg} = \mathcal{BE}$ 



J. Detwiler

# $0\nu\beta\beta$ Experiments


#### CUORE



EXO-200

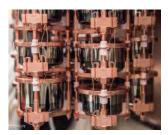






| Collaboration              | Isotope           | Technique                                            | mass<br>(0vββ<br>isotope) | Status                      |  |
|----------------------------|-------------------|------------------------------------------------------|---------------------------|-----------------------------|--|
| AMoRE                      | Mo-100            | CaMoO4 bolometers (+ scint.)                         | 5                         | Construction                |  |
| CANDLES                    | Ca-48             | 305 kg CaF <sub>2</sub> crystals - liq. scint 0.3 kg |                           | Operating                   |  |
| CARVEL                     | Ca-48             | <sup>48</sup> CaWO <sub>4</sub> crystal scint.       | 16 kg                     | R&D                         |  |
| GERDA I                    | Ge-76             | Ge diodes in LAr                                     | 15 kg                     | Operating                   |  |
| GERDA II                   | Ge-76             | Point contact Ge in LAr                              | 20 kg                     | Construction                |  |
| Majorana<br>Demonstrator   | Ge-76             | Point contact Ge in Lead                             | 26 kg                     | Construction                |  |
| 1TGe (GERDA &<br>Majorana) | Ge-76             | Best of GERDA + MJD                                  | ~tonne                    | R&D                         |  |
| NEMO3                      | Mo-100<br>Se-82   | Foils with tracking                                  | 6.9 kg<br>0.9 kg          | Complete                    |  |
| SuperNEMO<br>Demonstrator  | Se-82             | Foils with tracking                                  | 7 kg                      | Construction                |  |
| SuperNEMO                  | Se-82             | Foils with tracking                                  | 100 kg                    | R&D                         |  |
| MOON                       | Mo-100            | Mo sheets                                            | 200 kg                    | R&D                         |  |
| CAMEO                      | Cd-116            | CdWO <sub>4</sub> crystals                           | 21 kg                     | R&D                         |  |
| COBRA                      | Cd-116,<br>Te-130 | CdZnTe detectors                                     | 10 kg                     | Operating /<br>Construction |  |
| CUORICINO                  | Te-130            | TeO <sub>2</sub> Bolometer                           | 11 kg                     | Complete                    |  |
| CUORE-0                    | Te-130            | TeO <sub>2</sub> Bolometer                           | 11 kg                     | Complete                    |  |
| CUORE                      | Te-130            | TeO <sub>2</sub> Bolometer                           | 206 kg                    | Operating                   |  |
| SNO+                       | Te-130            | 0.3% natTe in liquid scint.                          | 800 kg                    | Construction                |  |
| KamLAND-ZEN                | Xe-136            | 2.7% in liquid scint.                                | 370 kg                    | Operating                   |  |
| KamLAND2-ZEN               | Xe-136            | 2.7% in liquid scint.                                | ~tonne                    | R&D                         |  |
| NEXT-100                   | Xe-136            | High pressure Xe TPC                                 | 10 kg                     | Construction                |  |
| EXO-200                    | Xe-136            | Xe liquid TPC                                        | 160 kg                    | Operating                   |  |
| nEXO                       | Xe-136            | Xe liquid TPC                                        | 5 tonnes                  | R&D                         |  |
| DCBA                       | Nd-150            | Nd foils & tracking chambers                         | 30 kg                     | R&D                         |  |
|                            |                   |                                                      | <b>•</b> •                |                             |  |

Construction


Operating

Complete

#### GERDA



#### MAJORANA

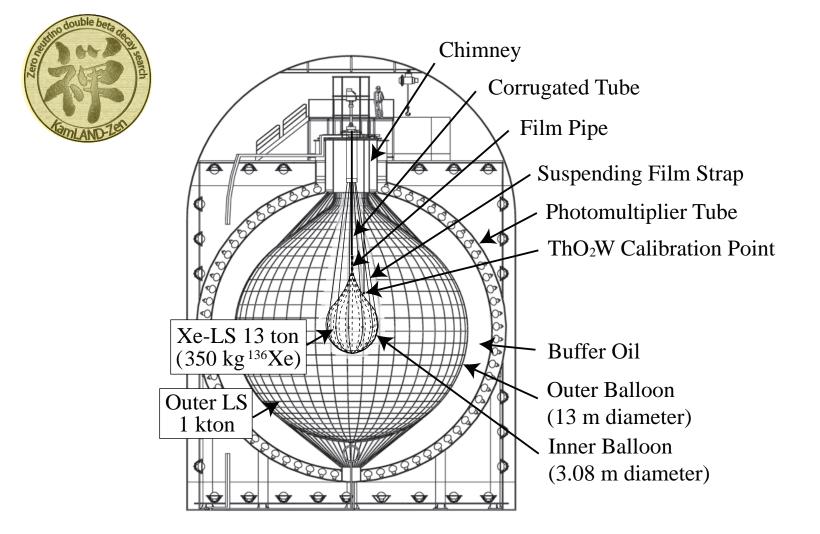






From J. F. Wilkerson

J. Detwiler


#### Outline

- Introduction: exposure and background
- High exposure: KamLAND-Zen
- Low background: MAJORANA / GERDA / LEGEND
- Discovery potential of future experiments

#### Xe-Loaded LS

- Xe gas has high solubility in KamLAND's low-background liquid scintillator (LS)
- Xe gas is easy to enrich in <sup>136</sup>Xe via centrifuging
- Noble gas: easy to purify, chemically stable
- However: large LS detectors have relatively poor resolution, calorimetry only

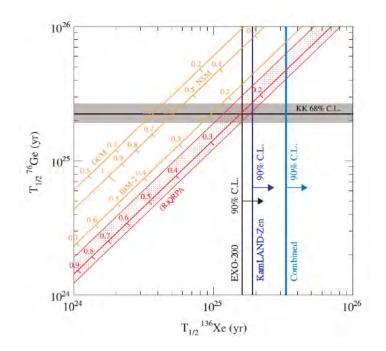
#### KamLAND-Zen





# KamLAND-Zen Collaboration

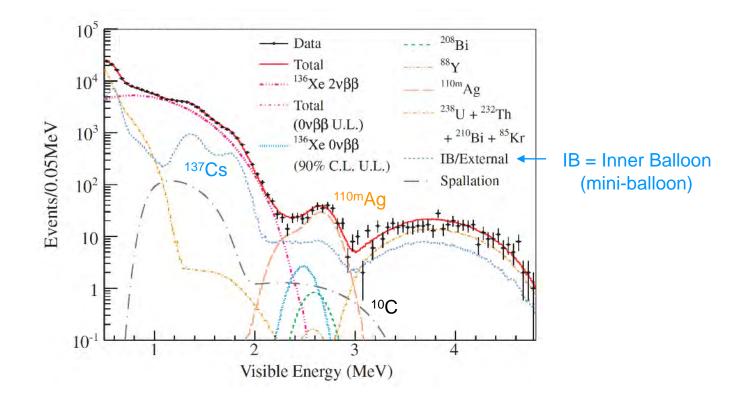




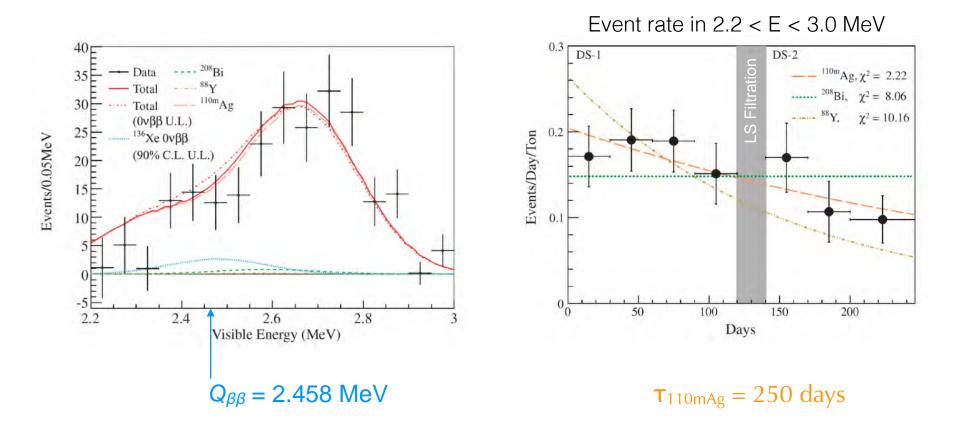



Tohoku U: A.Gando, Y.Gando, T.Hachiya, A.Hayashi, S.Hayashida, Y.Honda, K.Hosokawa, H.Ikeda, K.Inoue, K.Ishidoshiro, K.Kamisawa, Y.Karino, M.Koga, S.Matsuda, T.Mitsui, K.Nakamura, S.Obara, H.Ozaki, Y.Shibukawa, I.Shimizu, Y.Shirahata, J.Shirai, K.Soma A.Suzuki, T.Takai, K.Tamae, Y.Teraoka, K.Ueshima, H.Watanabe IPMU: A.Kozlov, Y.Takemoto, B.E.Berger, D.Chernyak Oska U: S.Yoshida Tokushima U: K.Fushimi
 LBNL: T.I.Banks, B.K.Fujikawa, T.O'Donnell MIT: L.A.Winslow, J.Ouellet, E.Krupczak UT Knoxville: Y.Efremenko UNC Chapel Hill: H.J.Karwowski, D.M.Markoff Duke: W.Tornow UW: J. Detwiler, S.Enomoto U Amsterdam / Nikhev: M.P.Decowski

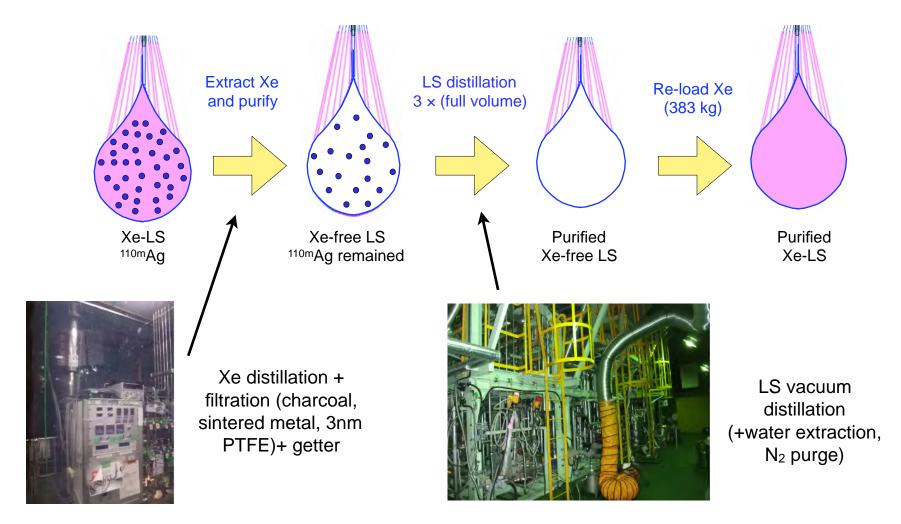
#### KamLAND-Zen History


- May-Aug. 2011: Mini-balloon construction and installation
- Oct. 2011 June 2012: Phase I
  - 320 kg <sup>enr</sup>Xe, 89.5 kg-yr exposure
  - $T_{1/2}^{0\nu} > 1.9 \times 10^{25}$  years (90% C.L.)
- July 2012 Oct. 2013: Xe-LS Purification
- Nov. 2013 Oct. 2015: Phase II
  - 383 kg <sup>enr</sup>Xe, 504 kg-yr exposure



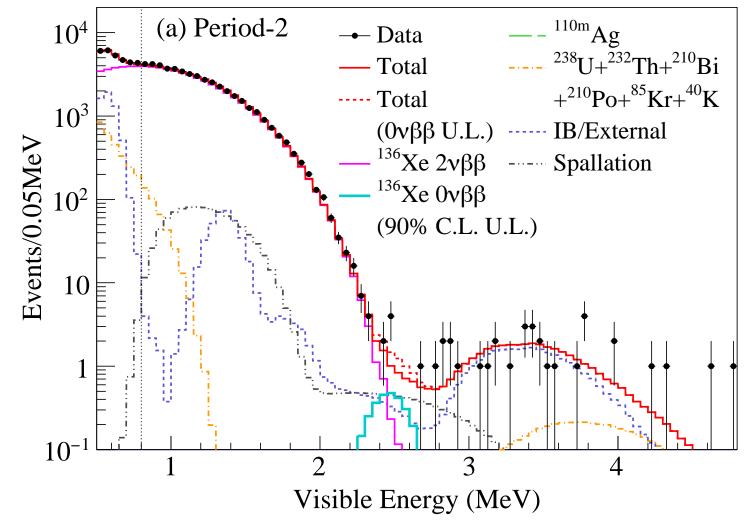

• Oct. 2015 - present: preparation for next phase

#### Phase I Results


• Observed background on mini-balloon consistent with fallout from 3/2011 Fukushima nuclear disaster



# 0vββ ROI Dominated by <sup>110m</sup>Ag



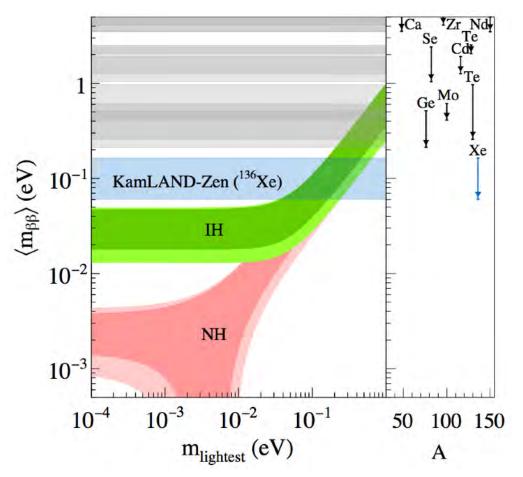

#### **Xe-LS** Purification



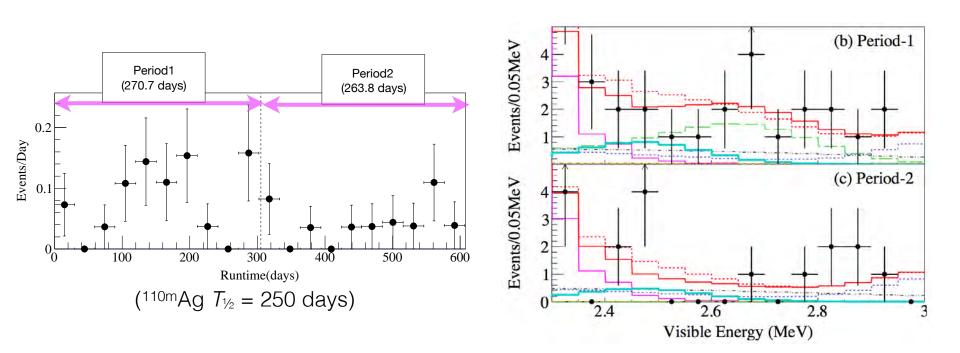
#### Phase II Results






## m<sub>ββ</sub> Limits

#### $\langle m_{\beta\beta} \rangle <$ (61- 165) meV


Using common NME with  $g_A \sim 1.27$ , Improved phase space calculations.

*m*lightest < (180~480) meV

Our  $m_{\beta\beta}$  limit reaches below 100 meV and approaches the IH region for the largest NME



#### Phase II Results



#### Background Summary

2.3 < E < 2.7 MeV, R < 1m

|                                               | Period          | -1       | Period-2          |          |  |  |  |
|-----------------------------------------------|-----------------|----------|-------------------|----------|--|--|--|
|                                               | (270.7 days)    |          | (263.8 days)      |          |  |  |  |
| Observed events                               | 22              |          | 11                |          |  |  |  |
| Background                                    | Estimated       | Best-fit | Estimated         | Best-fit |  |  |  |
| $^{136}$ Xe $2 u\beta\beta$                   | -               | 5.48     | -                 | 5.29     |  |  |  |
| Residual radioactivity in Xe-LS               |                 |          |                   |          |  |  |  |
| <sup>214</sup> Bi ( <sup>238</sup> U series)  | $0.23\pm0.04$   | 0.25     | $0.028 \pm 0.005$ | 0.03     |  |  |  |
| <sup>208</sup> Tl ( <sup>232</sup> Th series) | -               | 0.001    | -                 | 0.001    |  |  |  |
| $^{110m}$ Ag                                  | -               | 8.5      | -                 | 0.0      |  |  |  |
| External (Radioactivity in IB)                |                 |          |                   |          |  |  |  |
| <sup>214</sup> Bi ( <sup>238</sup> U series)  | -               | 2.56     | _                 | 2.45     |  |  |  |
| <sup>208</sup> Tl ( <sup>232</sup> Th series) | -               | 0.02     | -                 | 0.03     |  |  |  |
| $^{110m}$ Ag                                  | -               | 0.003 -  |                   | 0.002    |  |  |  |
| Spallation products                           |                 |          |                   |          |  |  |  |
| <sup>10</sup> C                               | $2.7\pm0.7$     | 3.3      | $2.6 \pm 0.7$     | 2.8      |  |  |  |
| <sup>6</sup> He                               | $0.07 \pm 0.18$ | 0.08     | $0.07 \pm 0.18$   | 0.08     |  |  |  |
| $^{12}\mathrm{B}$                             | $0.15 \pm 0.04$ | 0.16     | $0.14\pm0.04$     | 0.15     |  |  |  |
| <sup>137</sup> Xe                             | $0.5 \pm 0.2$   | 0.5      | $0.5\pm0.2$       | 0.4      |  |  |  |

#### Background Summary

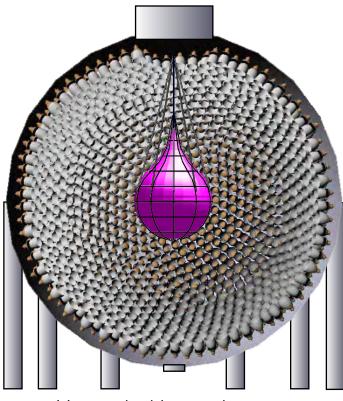
2.3 < E < 2.7 MeV, R < 1m

|                                               | Period                         | -1        | Period-2          |                 |               |                            |  |  |
|-----------------------------------------------|--------------------------------|-----------|-------------------|-----------------|---------------|----------------------------|--|--|
|                                               | (270.7 d                       | ays)      | (263.8 days)      |                 |               |                            |  |  |
| Observed events                               | 22                             |           | 11                |                 |               |                            |  |  |
| Background                                    | Estimated                      | Best-fit  | Estimated         | Best-fit        |               |                            |  |  |
| 136Xe $2 uetaeta$                             | -                              | 5.48      | -                 | 5.29            |               | improve σ <sub>E</sub>     |  |  |
| Re                                            | sidual radioac                 | tivity in | Xe-LS             | 18 <b>- 1</b> 1 |               |                            |  |  |
| <sup>214</sup> Bi ( <sup>238</sup> U series)  | $0.23 \pm 0.04$                | 0.25      | $0.028 \pm 0.005$ | 5 0.03          |               |                            |  |  |
| <sup>208</sup> Tl ( <sup>232</sup> Th series) | -                              | 0.001     | -                 | 0.001           |               |                            |  |  |
| $^{110m}\mathrm{Ag}$                          | -                              | 8.5       | -                 | 0.0             |               |                            |  |  |
| E                                             | External (Radioactivity in IB) |           |                   |                 |               |                            |  |  |
| <sup>214</sup> Bi ( <sup>238</sup> U series)  | -                              | 2.56      | -                 | 2.45            | $\rightarrow$ | replace mini-balloon       |  |  |
| <sup>208</sup> Tl ( <sup>232</sup> Th series) | -                              | 0.02      | -                 | 0.03            |               |                            |  |  |
| $^{110m}\mathrm{Ag}$                          | -                              | 0.003     | -                 | 0.002           |               |                            |  |  |
|                                               | Spallation                     | products  | 5                 |                 |               |                            |  |  |
| <sup>10</sup> C                               | $2.7\pm0.7$                    | 3.3       | $2.6 \pm 0.7$     | 2.8             | $\rightarrow$ | improve post-µ n detection |  |  |
| <sup>6</sup> He                               | $0.07 \pm 0.18$                | 0.08      | $0.07 \pm 0.18$   | 0.08            |               |                            |  |  |
| $^{12}$ B                                     | $0.15 \pm 0.04$                | 0.16      | $0.14 \pm 0.04$   | 0.15            |               |                            |  |  |
| <sup>137</sup> Xe                             | $0.5\pm0.2$                    | 0.5       | $0.5\pm0.2$       | 0.4             |               |                            |  |  |

## Recent Activity

- Summer 2015: New mini-balloon fabrication
- Fall 2015 Winter 2016: Extract old mini-balloon, refurbish OD, Xe/LS distillation
- Summer Fall 2016: New miniballoon deployment
  - Leak detected. Balloon extracted
  - 5 holes found along weld seams
- Winter 2016-present: New new miniballoon fabrication
- Fall/Winter 2016: Start new phase: KamLAND-Zen 800 kg




Washing nylon films (Ultra-pure water + ultrasonic machine)



Gore welding

# Toward Higher Sensitivity: KamLAND2-Zen

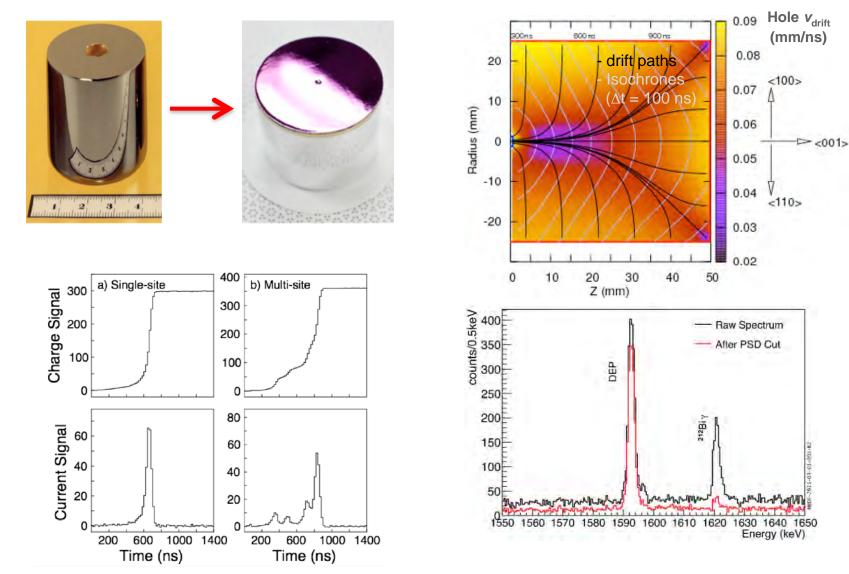
- More photons!
  - New LAB-based LS (L.Y.×1.4)
  - New High Q.E. PMTs (×1.9)
  - Light collectors (×1.8)
- Background rejection
  - Scintillating balloon (<sup>214</sup>Bi rejection)
  - LS purification via molecular sieve, metal scavenger
  - Event imaging cameras
- Larger exposure
  - 1000 kg Xe-LS
  - Pressurized for increased loading



Upgraded inner detector

#### Outline

- Introduction: exposure and background
- High exposure: KamLAND-Zen
- Low background: MAJORANA / GERDA / LEGEND
- Discovery potential of future experiments


# Advantages of <sup>76</sup>Ge

- Intrinsic high-purity Ge detectors = source
- Excellent energy resolution: approaching 0.1% at 2039 keV (~2.4 keV ROI)
- Demonstrated ability to enrich from 7.44% to ≥87%
- Powerful background rejection: multiplicity, timing, pulse-shape discrimination



#### 0vββ with Point Contact HPGe Detectors





Luke et al., IEEE trans. Nucl. Sci. 36, 926 (1989) Barbeau, Collar, and Tench, J. Cosm. Astro. Phys. 0709 (2007).

#### MAJORANA and GERDA

#### **MAJORANA:**

"Traditional" configuration: Vacuum cryostats in a passive graded shield with ultraclean materials





#### **GERDA**:

"Novel" configuration: Direct immersion in active LAr shield







Black Hills State University, Spearfish, SD Kara Keeter

Duke University, Durham, North Carolina, and TUNL Matthew Busch

Joint Institute for Nuclear Research, Dubna, Russia Viktor Brudanin, M. Shirchenko, Sergey Vasilyev, E. Yakushev, I. Zhitnikov

Lawrence Berkeley National Laboratory, Berkeley, California and the University of California - Berkeley Nicolas Abgrall, Yuen-Dat Chan, Lukas Hehn, Jordan Myslik, Alan Poon,

Kai Vetter

Los Alamos National Laboratory, Los Alamos, New Mexico Pinghan Chu, Steven Elliott, Ralph Massarczyk, Keith Rielage, Larry Rodriguez, Harry Salazar, Brandon White, Brian Zhu

National Research Center 'Kurchatov Institute' Institute of Theoretical and Experimental Physics, Moscow, Russia Alexander Barabash, Sergey Konovalov, Vladimir Yumatov

> North Carolina State University, and TUNL Matthew P. Green

Oak Ridge National Laboratory Fred Bertrand, Charlie Havener, Monty Middlebrook, David Radford, Robert Varner, Chang-Hong Yu

> Osaka University, Osaka, Japan Hiroyasu Ejiri

Princeton University, Princeton, New Jersey Graham K. Giovanetti

Queen's University, Kingston, Canada Ryan Martin

South Dakota School of Mines and Technology, Rapid City, South Dakota Colter Dunagan, Cabot-Ann Christofferson, Anne-Marie Suriano, Jared Thompson

> Tennessee Tech University, Cookeville, Tennessee Mary Kidd

Technische Universität München, and Max Planck Institute, Munich, Germany Tobias Bode, Susanne Mertens

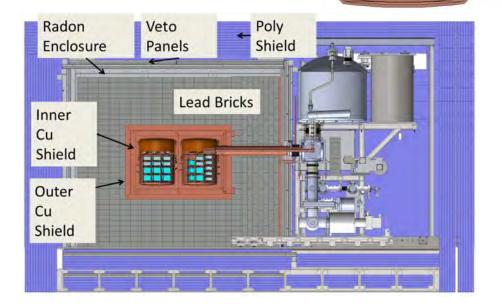
University of North Carolina, Chapel Hill, North Carolina, and TUNL Thomas Caldwell, Thomas Gilliss, Chris Haufe, Reyco Henning, Mark Howe, Samuel J. Meijer, Christopher O'Shaughnessy, Gulden Othman, Jamin Rager, Anna Reine, Benjamin Shanks, Kris Vorren, John F. Wilkerson

> University of South Carolina, Columbia, South Carolina Frank Avignone, Vince Guiseppe, David Tedeschi, Clint Wiseman

University of South Dakota, Vermillion, South Dakota Wenqin Xu

University of Tennessee, Knoxville, Tennessee Yuri Efremenko, Andrew Lopez

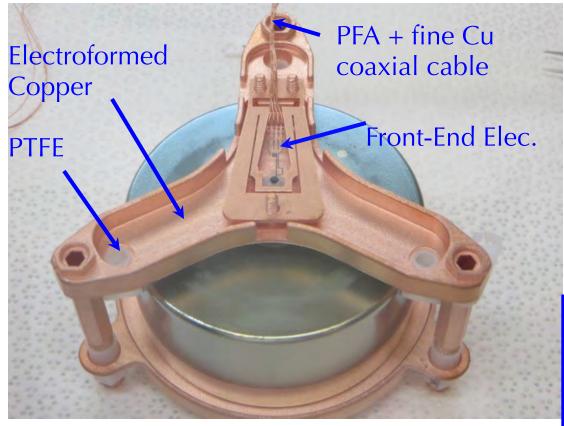
University of Washington, Seattle, Washington Sebastian Alvis, Tom Burritt, Micah Buuck, Clara Cuesta, Jason Detwiler, Julieta Gruszko, Ian Guinn, David Peterson, R. G. Hamish Robertson, Tim Van Wechel

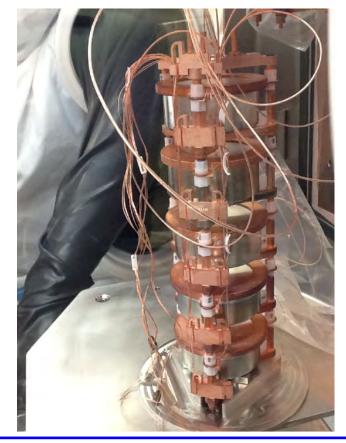

Pacific Northwest National Laboratory, Richland, Washington Isaac Arnquist, Eric Hoppe, Richard T. Kouzes

#### The Majorana Demonstrator



Funded by DOE Office of Nuclear Physics, NSF Particle Astrophysics, NSF Nuclear Physics with additional contributions from international collaborators.

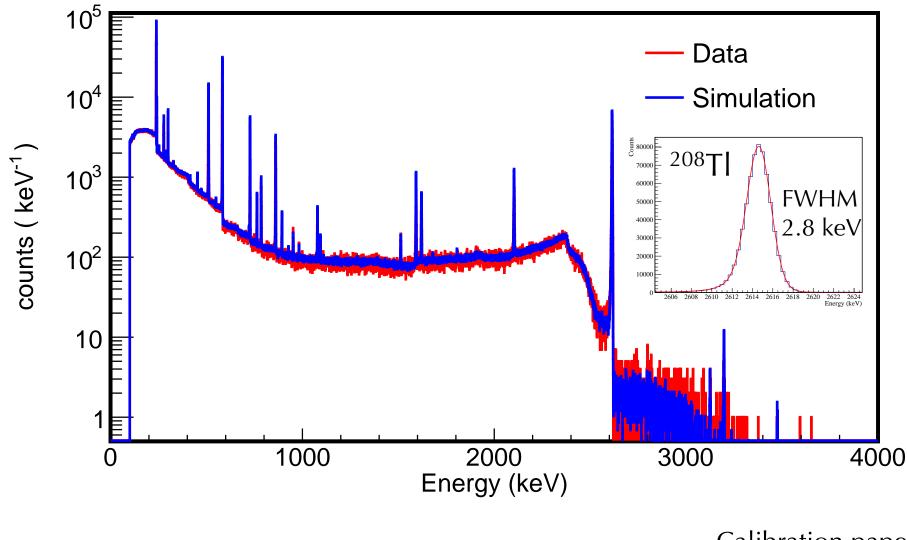

- Goals: Demonstrate backgrounds low enough to justify building a tonne scale experiment.
  - Establish feasibility to construct & field modular arrays of Ge detectors.
  - Searches for additional physics beyond the standard model.
- Located underground at 4850' Sanford Underground Research Facility
- Background Goal in the 0vββ peak region of interest (4 keV at 2039 keV) 3 counts/(ROI t y) (after analysis cuts) Assay U.L. currently ≤ 3.5 scales to 1 count/(ROI t y) for a tonne experiment
- 44.1-kg of Ge detectors
  - -29.7 kg of 88% enriched <sup>76</sup>Ge crystals
  - -14.4 kg of <sup>nat</sup>Ge
  - Detector Technology: P-type, point-contact.
- 2 independent cryostats
  - -ultra-clean, electroformed Cu
  - -22 kg of detectors per cryostat
  - -naturally scalable
- Compact Shield
  - low-background passive Cu and Pb shield with active muon veto
- N. Abgrall *et al.*, Adv. High Ener. Phys. **2014**, 365432 (2013) arXiv:1308.1633




#### Assembled Detector Unit and String



AMETEK (ORTEC) fabricated enriched detectors. 35 Enriched detectors at SURF 29.7 kg, 88% <sup>76</sup>Ge. 20 kg of modified natural-Ge BEGe (Canberra) detectors in hand (33 detectors UG).

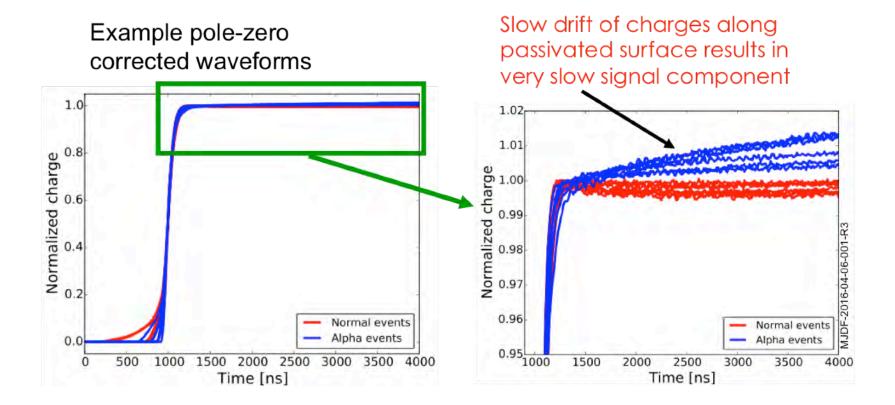





All detector assembly performed in N<sub>2</sub> purged gloveboxes. All detectors' dimensions recorded by optical reader.

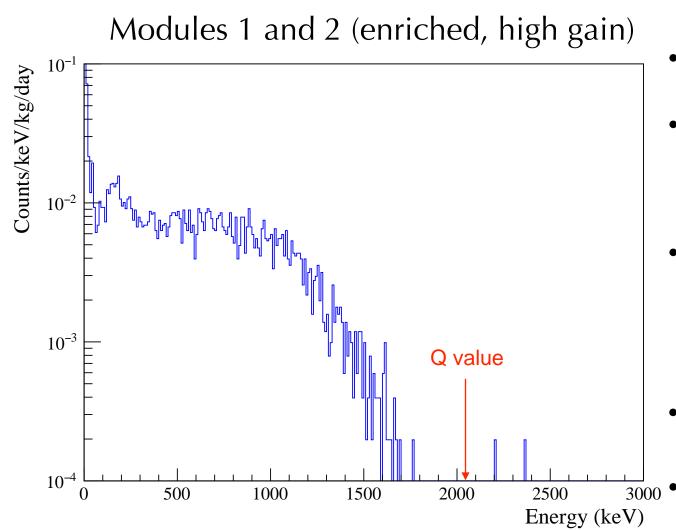
## Summed <sup>228</sup>Th Calibration (DS1) & Simulation






Calibration paper arXiv:1702.02466

#### Cut for $\alpha$ 's: Delayed Charge Recovery




- Alpha background with degraded energies observed in DS0
- Charge of these events drifts along the detector surface, not bulk
- Produces a distinctive waveform allowing a high efficiency cut



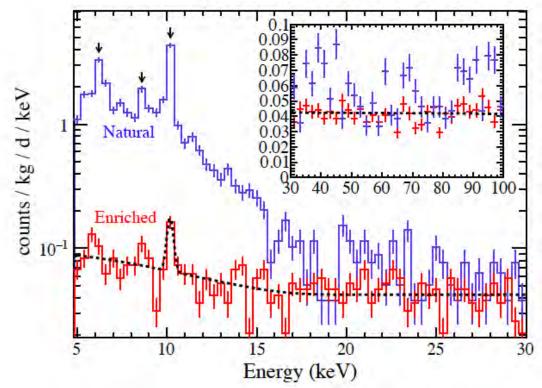
#### Initial results from the DEMONSTRATOR





# • Exposure: 1.39 kg y (DS3+4)

- After cuts, 1 count in 400 keV window centered at 2039 keV (0vββ peak)
- Projected BG rate is 5.1 <sup>+8.9</sup>/<sub>-3.2</sub> c /(ROI t y) for a 2.9 keV (M1) & 2.6 keV (M2) ROI (68% CL).
- Background index of
   1.8 x 10<sup>-3</sup> c/(keV kg y)
- Analysis cuts are still being optimized.


Controlled surface exposure of enriched material.

For the DEMONSTRATOR, the enriched detector <sup>68</sup>Ge rate is low enough that an X-ray delayed coincidence cut will not be necessary.

Significant reduction of cosmogenics in the low-energy region. Factor of a few better in DS1. Tritium is obvious and dominates in natural detectors below 20 keV.

Efficiency below 5 keV is under study.



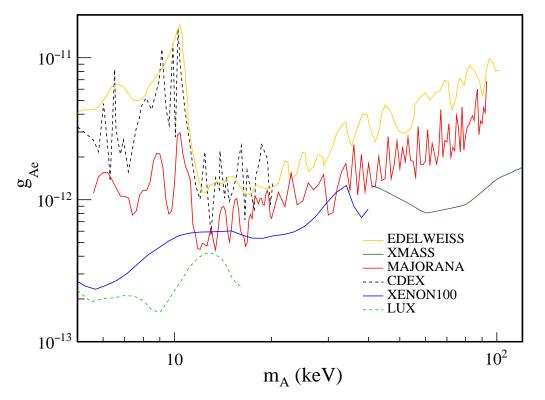


#### Low-Energy Searches for Physics Beyond SM

- Pseudoscalar dark matter
- Vector dark matter
- 14.4-keV solar axion
- $e^- \rightarrow 3v$
- Pauli Exclusion Principle violation

Phys. Rev. Lett. 118, 161801 (2017).




Controlled surface exposure of enriched material.

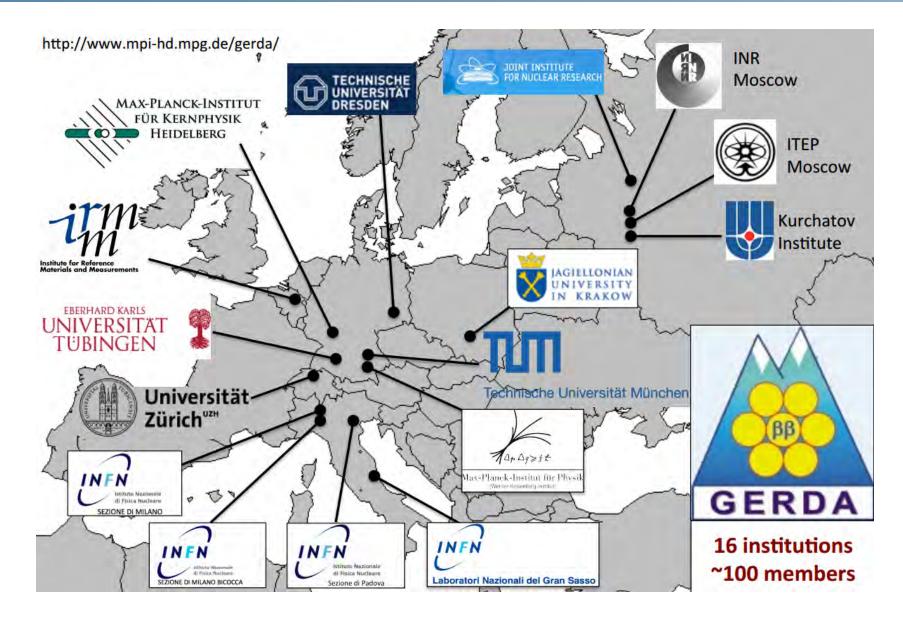
For the DEMONSTRATOR, the enriched detector <sup>68</sup>Ge rate is low enough that an X-ray delayed coincidence cut will not be necessary.

Significant reduction of cosmogenics in the low-energy region. Factor of a few better in DS1. Tritium is obvious and dominates in natural detectors below 20 keV.

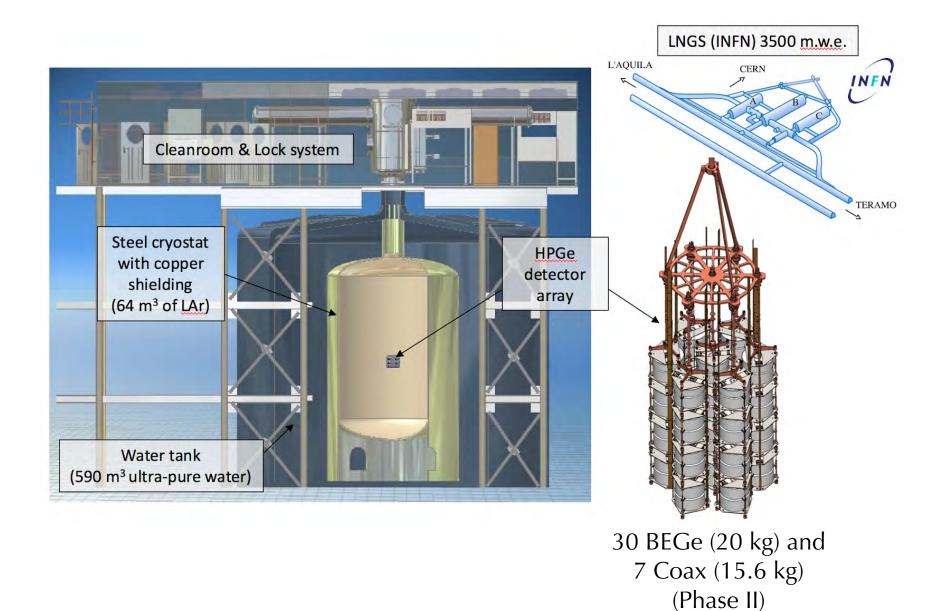
Efficiency below 5 keV is under study.

#### Natural 4.1 kg Enriched 10.06 kg: 478 kg d



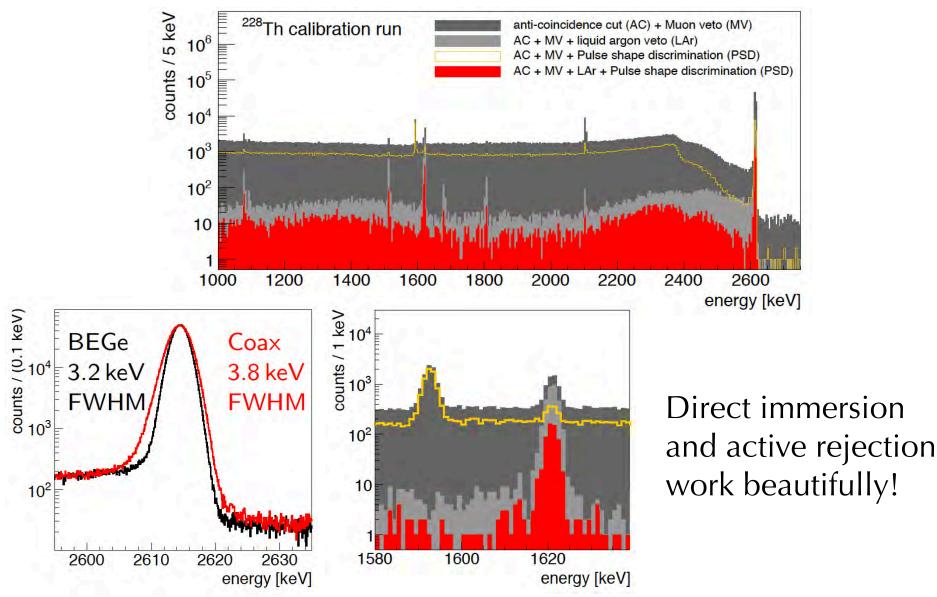

#### Low-Energy Searches for Physics Beyond SM

- Pseudoscalar dark matter
- Vector dark matter
- 14.4-keV solar axion
- $e^- \rightarrow 3v$
- Pauli Exclusion Principle violation





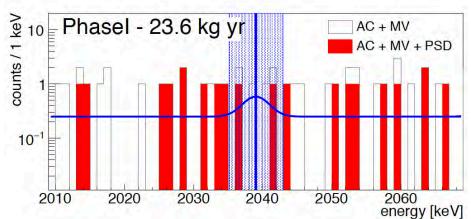

## The GERDA Collaboration

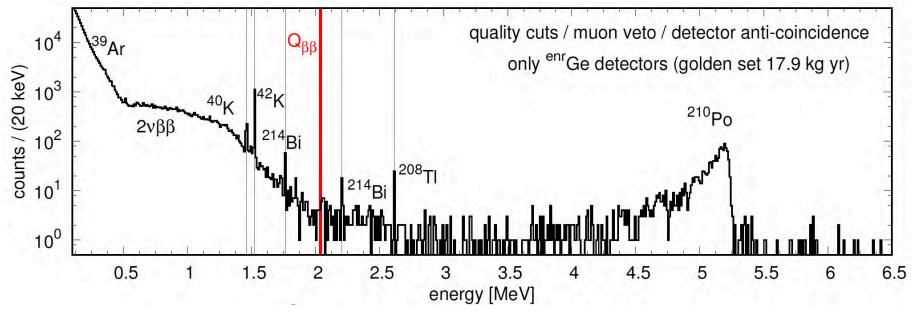



## **GERDA** Configuration



J. Detwiler

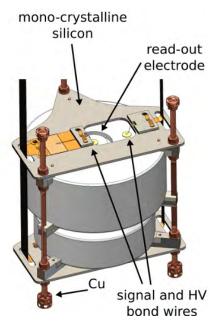

#### Detector Performance




J. Detwiler

# GERDA Phase I

- Mostly refurbished coaxial detectors from previous-generation experiments, no LAr active veto
- Analysis cuts:
  - Anti-coincidence (AC)
  - Muon veto (MV)
  - Pulse-shape discrimination (PSD)






# Phase II Upgrades

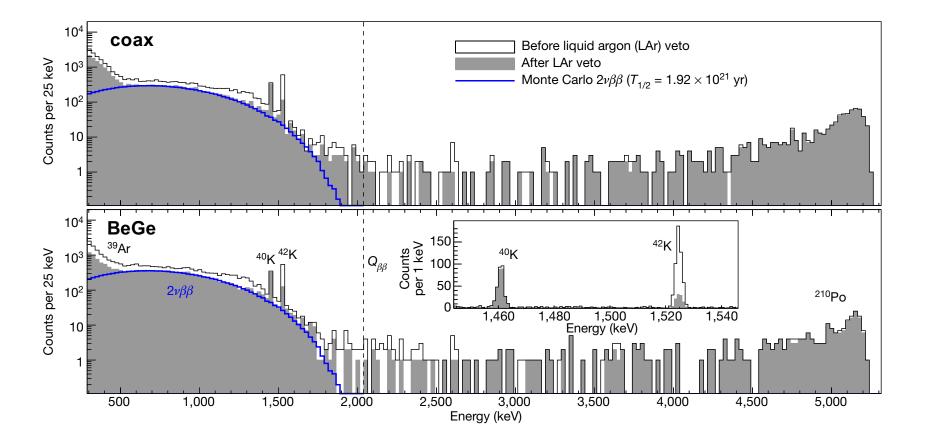
Double the mass with BEGe's (PPCs), lower-BG mounts





Instrument the LAr veto with SiPM's plus WLS fibers

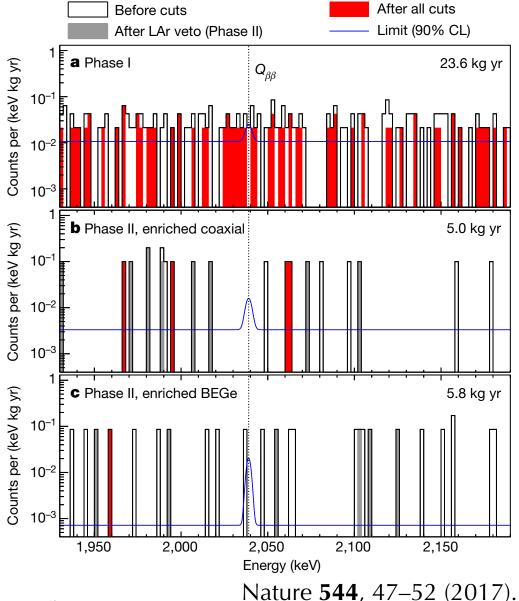





Enshroud strings in WLS nylon





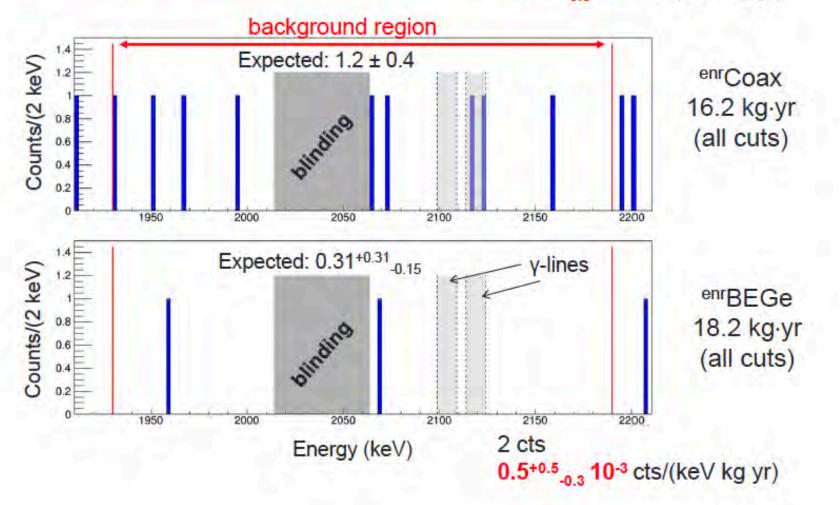

#### Phase II Background Performance



Nature 544, 47–52 (2017).

# Phase I + II results

- Phase I and II Exposure: 34.4 kg y
- Projected background from 1930 to 2190 keV window excludes 2104 ± 5 keV and 2119 ± 5 keV. Window of ±20 keV around Q<sub>ββ</sub> blinded.
- For Phase II BEGes, have achieved "background free" measurement with background index of 1.8 c/(FWHM-t-y) or (0.6 +0.6-0.4 )) x 10<sup>-3</sup> c/kky)
- $T_{1/2} (0\nu\beta\beta) \ge 5.3 \times 10^{25}$  years (90%CL)

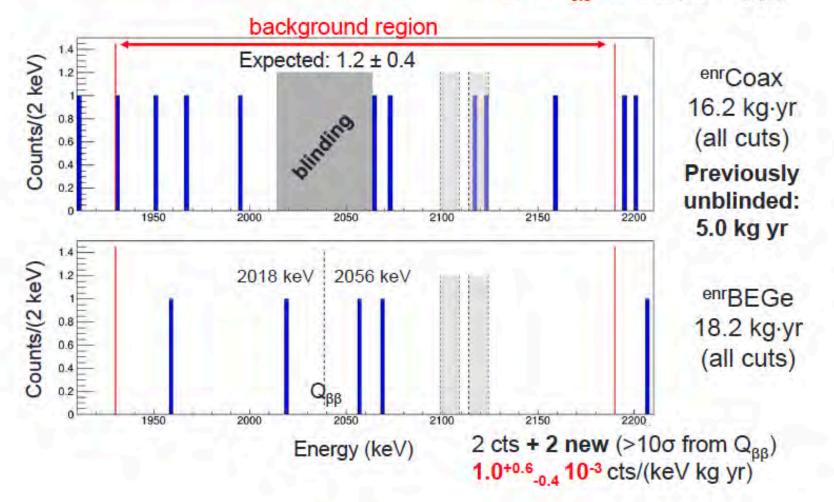



## Update from TAUP

## Spectra in the ROI

7 cts (+2 known in blinded box) 2.7<sup>+1.0</sup>-0.8 10<sup>-3</sup> cts/(keV kg yr)

Pandola, TAUP 2017




## Update from TAUP

# Spectra in the ROI

7 cts (+2 known in blinded box) 2.7<sup>+1.0</sup>-0.8 10<sup>-3</sup> cts/(keV kg yr)

Pandola, TAUP 2017



# LEGEND

**Mission**: The collaboration aims to develop a phased, <sup>76</sup>Ge-based double-beta decay experimental program with discovery potential at a half-life significantly longer than 10<sup>27</sup> years, using existing resources as appropriate to expedite physics results.

Select best technologies, based on what has been learned from GERDA and the MAJORANA Demonstrator, as well as contributions from other groups and experiments.

#### First Phase: L200

- (up to) 200 kg
- modification of existing GERDA infrastructure at LNGS
- BG goal (x3 lower) 0.6 c /(FWMH t y)
- start by 2021



#### Subsequent stages:

- 1000 kg (staged)
- timeline connected to U.S. DOE down select process
- BG: goal (x30 lower) 0.1 c /(FWHM t y)
- Location: TBD
- Required depth (<sup>77m</sup>Ge) under investigation

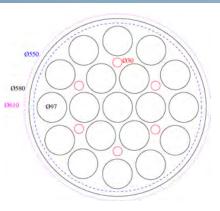
# **LEGEND** Collaboration

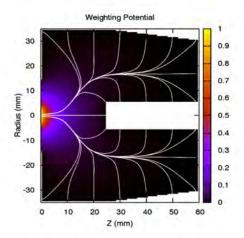


Max Planck Inst., Heidelberg Dokuz Eylul Univ. Queens Univ. Univ. Tennessee Argonne Natl. lab. Univ. Liverpool Univ. College London Los Alamos Natl. Lab. Lund Univ. INFN Milano Bicocca Milano Univ. and Milano INFN Natl. Res. Center Kurchatov Inst.



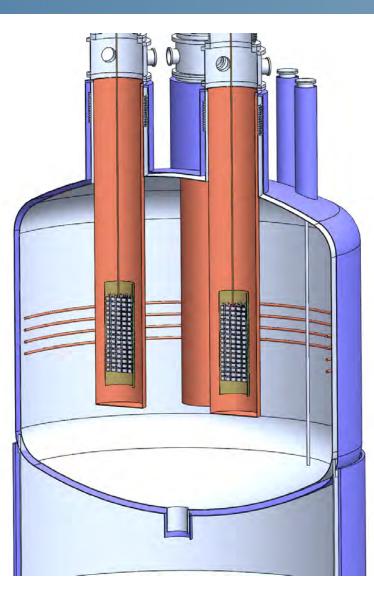
Lab. for Exper. Nucl. Phy. MEPhI Max Planck Inst., Munich Tech. Univ. Munich Oak Ridge Natl. Lab. Padova Univ. and Padova INFN Czech Tech. Univ. Prague Princeton Univ. North Carolina State Univ. South Dakota School Mines Tech. Univ. Washington Academia Sinica Univ. Tuebingen Univ. South Dakota Univ. South Dakota Univ. Zurich


Joint Inst. Nucl. Res. Inst.


Joint Res. Centre. Geel

Nucl. Res. Russian Acad. Sci.

# LEGEND 200


- Modifications of internal GERDA cryostat piping so can accommodate up to 200 kg of detectors.
- Improvements
  - use some larger Ge detectors (1.5 2.0 kg)
  - improve LAr scintillator light collection (2x in test stand)
  - lower mass, cleaner cables
  - lower noise electronics
- Estimate background improvement by ~x3 over GERDA/ MAJORANA. Goal: 0.6 cnt/(FWMH t y)
  - intrinsic: including <sup>68</sup>Ge/<sup>60</sup>Co all OK
  - external Th/U: cleaner materials based on those used in DEMONSTRATOR
  - surface events: alpha & beta rejection via PSD
  - <sup>42</sup>Ar: better suppression & mitigation
  - muon induced: OK
- Contingent upon funding, data taking by 2021

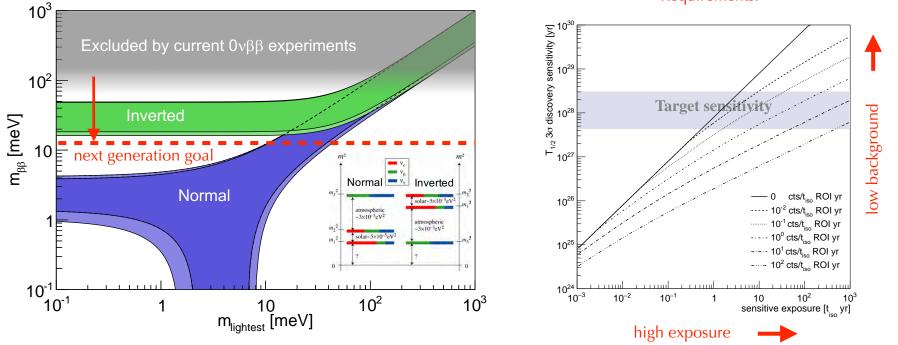






# LEGEND 1000: "Baseline Design"

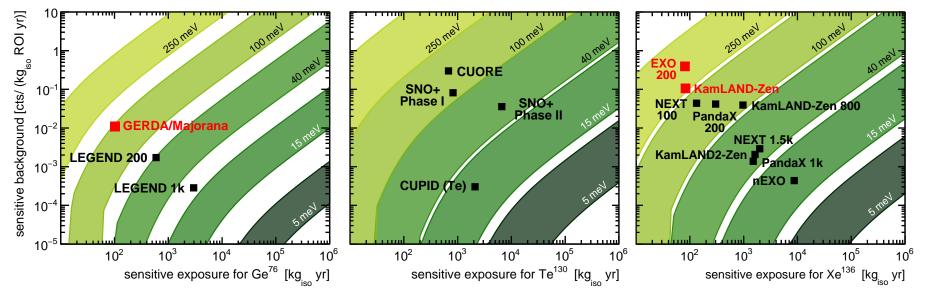



• 1000 kg

- BG goal (x30 lower): 0.1 c/(FWHM t y)
- 4-5 payloads in LAr cryostat in separate 3 m<sup>3</sup> volumes, payload 200-250 kg, with ~100+ detectors.
- Every payload "independent" with individual lock
- LAr detector volume separated by thin (electro-formed) Cu from main cryostat volume.
- Use depleted LAr in inner detector volumes
- Modest sized LAr cryostat in "water tank" (6 m Ø LAr, 2-2.5 m layer of water) or large LAr cryostat w/o water (9 m Ø) with separate neutron moderator

#### Outline

- Introduction: exposure and background
- High exposure: KamLAND-Zen
- Low background: MAJORANA / GERDA / LEGEND
- Discovery potential of future experiments


#### Light Neutrino Exchange



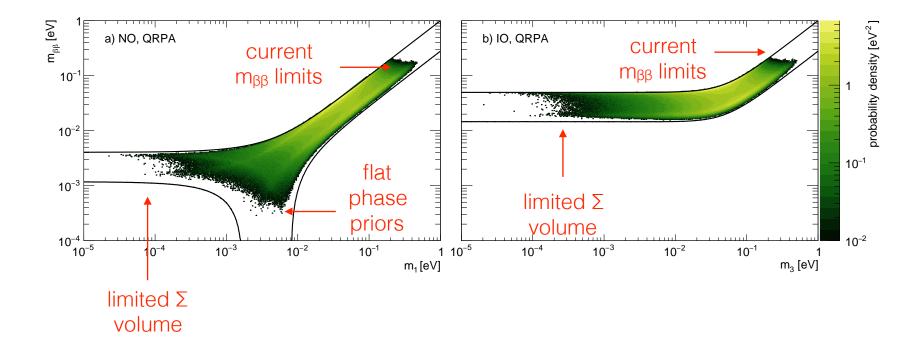
#### **Requirements:**

J. Detwiler

# Discovery Sensitivity



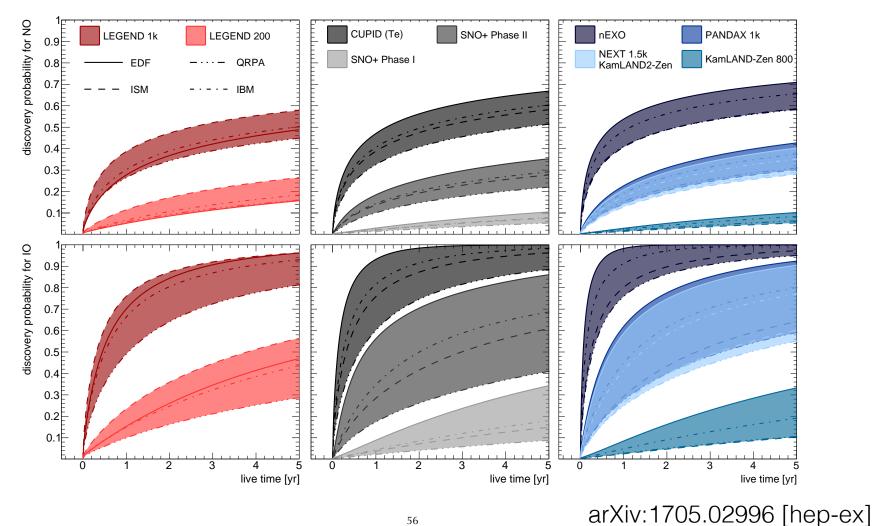
- Red dots: published limits. Black dots:  $3\sigma$  discovery sensitivities with 5 yrs live time
- Discovery sensitivity after 10 yr is  $\sim \sqrt{2}$  higher for all experiments
- Bands represent NME spread


# **Discovery Probability**

What are the chances that these next-generation experiments will make a discovery? How much should humanity invest in  $0\nu\beta\beta$ ?

- Bayesian methods are the only tools available by which such a "value" question can be approached:
  - Quantify the "volume" in the available parameter space (assign priors). Equal volumes = equal relative probability of discovery
  - Compute the amount of volume left to be explored (apply constraints from available measurements)
  - Compute the fraction of the remaining volume that will be explored by next-generation experiments. This is the "discovery probability" (DP).
- Equivalent / technical description:
  - Compute the posterior PDF for  $m_{\beta\beta}$  given all experiments to date, and use it as a prior for next-generation experiments
  - For each value of  $m_{\beta\beta}$ , compute the probability that a next-generation experiment will make a  $3\sigma$  discovery. Then sum up those probabilities weighted by the  $m_{\beta\beta}$  PDF.

#### Priors and Basis


- Neutrino mass scale is unknown: use log-flat prior for all mass parameters
- Angles and phases: use flat prior in  $[0, 2\pi)$
- Constrain with all available data: NuFit (osc.),  $\beta$ -decay,  $\beta\beta$ -decay
- Evaluate for multiple NME, with/without g<sub>A</sub> quenching, with/without cosmological limits
- Basis choice: Σ vs. *m*<sub>l</sub>
  - $m_l$ : log-flat prior gives huge preference for extreme-hierarchical scenarios ( $m_l \ll m_2$ ). Results are trivial: DP ~ 100% for IO, and ~0 for NO
  - $\Sigma$ : represents theoretical prejudice that neutrino masses are generated by a different mechanism than the other SM fermions
  - We choose  $\Sigma$  as our "reference" basis. One can re-weight our results according to his or her own prejudice for this vs. extreme hierarchical scenarios



arXiv:1705.02996 [hep-ex]

## **Discovery Probabilities**

#### Fold $m_{\beta\beta}$ PDF with discovery sensitivity



J. Detwiler

#### Alternative Analyses

- Adding 30%  $g_A$  quenching: volume opens up at high  $m_{\beta\beta}$ , mitigating  $g_A^4$  dependence. DP drops by only ~15% (25%) for IO (NO)
- Adding cosmological constraints: NO DP reduced by ~30%. No effect for IO.
- Both cosmological limits +  $g_A$  quenching: Planck rules out the region opened up at high m $\beta\beta$  from relaxed GERDA / KLZ limits. IO DP drops to ~50%, NO DP drops to 10-20%.
- If KATRIN sees a positive signal: DP = 100% regardless of ordering, mass model, NME, quenching, cosmology.

Almost all scenarios have significant discovery probability, regardless of the mass ordering!

- Promising future 0nbb experiments must have high sensitive exposure with low sensitive background.
- KamLAND-Zen has the current best limit, with excellent limit sensitivity on the way with high-exposure KamLAND-Zen 800
- MAJORANA and GERDA have the best resolution and lowest demonstrated backgrounds by an order of magnitude. Combining forces to build LEGEND, with 200 kg apparatus on a short time scale, and a ton-scale apparatus to follow.
- These experiments have surprisingly high discovery probability: discovery may be just around the corner!