
Halo-independence with quantified maximum
entropy at DAMA/LIBRA
A. Fowlie, JCAP 2017, 002 (2017), arXiv:1708.00181

Andrew Fowlie
October 4, 2017

Monash University

http://stacks.iop.org/1475-7516/2017/i=10/a=002
http://arxiv.org/abs/1708.00181


Table of contents

1. DAMA/LIBRA

2. Quantified MaxEnt

3. Quantified MaxEnt at DAMA/LIBRA

4. Results

1/33



DAMA/LIBRA



Dark matter

We all know the evidence for dark matter (DM) in gravitational
interactions, e.g.

(I) Rotation curves (II) CMB
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WIMP miracle

Freeze-out of thermal equilibrium with bath of Standard
Model (SM) particles sets relic density.
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WIMP miracle

Freeze-out of thermal equilibrium with bath of Standard
Model (SM) particles sets relic density.

Correct prediction for weak interaction!
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WIMP miracle

Freeze-out of thermal equilibrium with bath of Standard
Model (SM) particles sets relic density.

Also predicts elastic scattering with SM!
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Direct detection

We can search for DM in direct detection experiments. DM
elastic scatters with nucleons in a detector on Earth.

Sun

Earth

December

June

WIMP

wind 

The flux of DM undergoes annual modulation because of the
Earth’s motion around the Sun and Sun’s motion through
Milky Way.
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DAMA/LIBRA

Direct detection with NaI(Tl) crystals.

Running from 1995 - 2002 as DAMA/NaI and 2003 - 2013 as
DAMA/LIBRA phase 1.

In Gran Sasso mountain.
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DAMA/LIBRA

For over a decade, the DAMA/LIBRA experiment observed
annual modulation of events [2–4].
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DAMA/LIBRA ≈ 250 kg   (0.87 ton×yr)

The signal is 9.3 σ in 14 annual cycles. Phase and period agree
with Earth’s orbit around the Sun and solar system’s orbit
around the Milky Way.
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DAMA/LIBRA

For over a decade, the DAMA/LIBRA experiment observed
annual modulation of events [2–4].
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The signal appears only at E ≲ 6 keV. The high-energy bins
agree with background.

6/33



Anomaly!

The anomaly prefers a light WIMP mass mχ ≃ 10GeV

And a big spin-independent scattering cross section
σ ≃ 10−4 pb
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Skeptiscism

No one believes that it is dark matter. Why not?

• Conditions outside (and possibly inside) the laboratory —
temperature, humidity and light — vary seasonally!
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Skeptiscism

No one believes that it is dark matter. Why not?

• Competing direct detection (e.g., XENON and LUX)
experiments observe no signal! [5]
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Belief

DAMA/LIBRA responded with poetry — If you can bear to hear
the truth you’ve spoken twisted by knaves to make a trap for
fools (Kipling) — and science

• Conditions inside the laboratory are controlled and
monitored

• No diurnal modulation of signal so far
• No annual modulation of mutliple-hit events or in higher
energy bins

• Comparison with competing experiments requires
assumptions about e.g., velocity profile, f (v)

No known systematic effect or background explains
DAMA/LIBRA. Anomalous events are signal-like.
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SABRE!

Why not repeat DAMA/LIBRA in the southern hemisphere?

Everyone would like such an experiment to be built, just by
someone else (Bertone [6])

Bertone presents it as lose-lose: confirm anomaly and
DAMA/LIBRA receive Nobel prize and you nothing or reject
anomaly and everyone says we knew already.

Fortunately SABRE ignored Bertone’s no-win theorem.
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Dark matter velocity profile

The flux of DM and amplitude of scattering in detector depend
on DM velocity.

We don’t know the identity of DM, but we know something
about its density and velocity from e.g., rotation curves.
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Velocity curves. Rubin et al [7].
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Dark matter velocity profile

From FG = mv2/r, we find ρ ∝ 1/r2.

By the collisionless Boltzmann equation, this density
corresponds to Maxwell-Boltzmann

f (v) ∝

v2e−
(

v
v0

)2
v < vesc

0 v ≥ vesc

We truncate it at the escape velocity of our galaxy (though
don’t use ρ ∝ 1/r2 as vesc and mass would be infinite).

This neglects non steady-state effects: clumps, streams and a
possible dark disk.
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Modelling uncertainty in profile

What if we want to reflect our uncertainty in the DM profile?

• Parametric approach: permit variation in v0 and vesc
parameters in Maxwellian profile or shape parameters in
another distribution.

What if we want uncertainty about distribution not just shape
parameters?

• Non-parametric approach: permit all possible profiles.

How should we handle an infinite set of profiles?
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Frequentist approach

1. Throw away all prior knowledge about DM in galaxy.
2. Profile infinite set of profiles by e.g., minimising
chi-squared or maximising likelihood. Provable that the
ansatz

f (v) = ∑
i

κiδ(v − vi)

is sufficient for minimising chi-squared and finding
confidence intervals for signal rates [8, 9].

3. “Best-fit” profile not unique. One found from above
procedure is an unphysical sum of delta-functions.
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Bayesian approach

What if we could combine, in a coherent manner, experimental
data and our background knowledge about the profile?

Maybe it isn’t exactly Maxwellian, but perhaps it’s something
similar?

What can we do?
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Quantified MaxEnt



Ask the Bayesian/information theory wizards!

Artwork Viktor Beekman and concepts Eric-Jan Wagenmakers [10].
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Ask the Bayesian/information theory wizards!

Shannon’s [11] information theory — Jaynes’ [12] principle of
maximum entropy — Skilling’s [12] quantified maximum
entropy.

Shannon mathematician. Jaynes/Skilling physicists. No
statisticians.
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Shannon entropy

Construct a measure of information learnt by receiving a
message mi that you expected with belief pi. Requirements

• Anti-monotonic — more learnt from unexpected message
• I ≥ 0 — information positive
• I[p = 1] = 0 — no new information if already certain
about message

• I[pq] = I[p] + I[q] — information additive for
independent messages

imply that I = − ln p.

Shannon entropy for discrete distributions is the expected
information in a message [13]:

H = E[I] = −∑
i

pi ln pi
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This began information theory [14]
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Who learns the information?!

In the early days, this was a point of confusion:

• The sender: but he knows what he sent!
• The “pipe”/communication channel: this is strange, but
was Shannon’s thought and lead to ideas about channel
capacity.

• The receiver: with this interpretation, the Shannon
entropy measures ignorance of receiver/how much he
expects to learn from message.
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Relative Shannon entropy

Shannon’s naive generalisation to continuous distributions

H = −
∫

p(x) ln p(x)dx

violates Shannon’s axioms and has other undesirable
properties, e.g., it is not invariant under reparameterisations.
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Relative Shannon entropy

Correct expression found by Jaynes by limiting density of
discrete points [15]. A simple derivation: first rewrite Shannon
entropy as

H = ln N − ∑
i

pi ln
pi
1
N

= ln N − ∑
i

pi ln
pi

ui

where N is the number of possible outcomes and ui =
1
N is a

uniform distribution upon them. We now take N → ∞,

H = lim
N→∞

ln N −
∫

p(x) ln
p(x)
u(x)

dx

It is customary to omit the divergent term and make an
arbitrary change of variables y = f (x) such that

H = −
∫

p(y) ln
p(y)
m(y)

dy
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Meaning of m(x)

In the discrete case, the distribution with maximum Shannon
information is uniform. This represents maximum ignorance.

In the continuous case, there is no such unique distribution
because of covariance under changes of variable. It is the age
old question, which distribution represents ignorance? This is
not solved; you must pick one, m(x).
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Principle of Maximum Entropy (MaxEnt)

Famous problem in Bayesian statistics: which prior represents
ignorance? Jaynes’ used Shannon entropy to make his famous
MaxEnt principle [16]:

The prior that represents ignorance, subject to
constraints, is the maximum entropy one.

For example, if you know only ⟨x⟩, the MaxEnt distribution is
the exponential.

If you know ⟨x⟩ and ⟨x2⟩, the MaxEnt distribution is the
Gaussian.
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Statistical mechanics

This lead to Jaynes’ view that statistical mechanics was itself
merely an application of his maximum entropy principle [16].

Best description of system is maximum entropy, subject to
constraints upon known macroscopic variables. This
reproduces predictions of statistical mechanics.

Gibbs (maybe) favoured this epistemic view of statistical
mechanics.
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Skilling’s quantified MaxEnt

Jaynes’ MaxEnt principle worked for constraints on moments,
but not not noisy data, and failed to provide a measure of
reliablility.

We in fact want p( f ) — a distribution upon possible choices of
f .

Skilling [17] demonstrated that if a general rule of assigning
p( f ) exists, it must depend on the Shannon entropy by

p( f ) ∝ eβH[ f ,m]

where β represents the strength of our prior conviction that
f = m. He found this by assuming it must agree with a
Poisson process.
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Quantified MaxEnt with noisy data

By Bayes theorem, we can combine our data and prior into a
posterior:

p( f |data) ∝ p(data| f ) · p( f )

In our case,
p( f |data) ∝ e−

1
2χ2+βH[ f ,m]

where χ2 contains Gaussian measurements from DAMA/LIBRA.
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Role of β and relation to machine learning

The regularisation parameter β mediates a competition
between fitting the data and our background knowledge
about the profile.

Related to idea of overfitting in machine learning
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Role of β and relation to machine learning

Prediction from cubic + Gaussian noise!
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Role of β and relation to machine learning

“Underfit” by linear model!
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Role of β and relation to machine learning

“Overfit” by n = 50 order polynomial model!
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Role of β and relation to machine learning

“Balanced fit” by MaxEnt!
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Role of β and relation to machine learning

In machine learning, the “regularization function” is ad hoc,
but always a trade-off between goodness-of-fit and
regularization (bias and variance).

Just as in quantified maximum entropy, there is a trade-off
between goodness-of-it and prior knowledge in the entropy.

Above results were for β = 10 and m(x) = const — which is
why in balanced fit, non-constant tails are poorly modelled
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Quantified MaxEnt at DAMA/LIBRA



Quantified MaxEnt at DAMA/LIBRA

We now have the ingredients that we need:

• Modulated signal in 12 energy bins from DAMA/LIBRA.
Described by response function Hi

m [18] and profile for
each bin measured by DAMA/LIBRA:

µi ± σi ∝
∫

Hi
m(v) f (v)dv

The response functions are angle-averaged and thus we
assume an isotropic profile in the galactic rest frame.
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• Background knowledge about the velocity profile. The
prior depends upon a parameter β describing our
conviction that the profile is Maxwellian.

• A formalism — quantified MaxEnt — for combining them
to infer the plausibility of DM and most plausible velocity
profile.
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Halo-independent and halo-dependent analysis

The parameter β in the posterior

p( f |data) ∝ e−
1
2χ2+βH[ f ,m]

permits us to interpolate between halo-independent and
dependent analysis.

• β → ∞ ↔ halo-dependent: means that profile→
Maxwellian regardless of our data as H[ f , m] minimum at
f = m.

• β → 0↔ halo-independent: discards all prior
information about profile.

The behaviour with β known as maximum entropy trajectory.

27/33



Results



Maximum entropy trajectory for profile

By varying β, we move between a bimodal spiky velocity
profile and a Maxwellian profile. The profiles are the modes of
p( f |data).
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Maximum entropy trajectory for profile

By varying β, we move between a bimodal spiky velocity
profile and a Maxwellian profile. The profiles are the modes of
p( f |data).
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Particular profiles

β = 0 — halo-independent
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Particular profiles

β = 1
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Particular profiles

β = 10
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Particular profiles

β = 100 — approximately halo-dependent
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What’s going on?

There’s a competition between our prior knowledge, in the
entropy, and data, in the chi-squared.
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Plausibility of DM

Bayes factor for DM versus background only with DAMA/LIBRA
data increases as β increases!
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This is because Maxwellian profile is alright and increasing β

concentrates prior about it/prior less diffuse.

BF shows change in plausibility of DM versus no DM in light of
data.
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Predictions for unmodulated moments

DM signal should look like

S = S0 + Sm cos(ωt + ϕ)

The unmodulated S0 component poorly constrained though
must be less than backgrounds.
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Predictions for unmodulated moments

The response functions are different but dependence on
profile the same,

S0 ∝
∫

H0(v) f (v)dv
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Predictions for unmodulated moments

We agree with frequentist analysis that S0 ∼ 10% background
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Conclusions

• Quantified MaxEnt is a technique for combining data with
prior knowledge

• Strength of conviction that profile Maxwellian
parameterised by β

• Interpolated between halo-independent and
halo-dependent analysis

• Found that no Bayes factor in fact increase with β! No
tension between DAMA/LIBRA and background knowledge

• What happens when we include conflicting data from
XENON etc?

• What happens when we drop assumption of isotropy?
• How to model plausibility of systematic effect at
DAMA/LIBRA?
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Questions?
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