What do we know about HI Cosmic Reionization?
New Constraints from the High-z Lyman-\(\alpha\) Forest

Jose Oñorbe

Institute for Astronomy, University of Edinburgh
(onorbe@ed.ac.uk)

Collaborators: J. Hennawi (UCSB), Z. Lukić (LBNL), F. Davies (UCSB), M. Walther (UCSB), D. Sorini (MPIA) and G. Kulkarni (IoA)

APEC Seminar IPMU
May 31th, 2018
Outline

1. What do we know about HI Reionization?

2. Reionization and the Thermal State of the Intergalactic Medium

3. Constraining HI Reionization from the $z \sim 5 - 6$ Ly-\(\alpha\) Forest

4. Take Away Messages
Hydrogen Reionization of the Universe: HI \rightarrow HII

TIME

- Big Bang
- Recombination $z = 1100$
- First galaxies and quasars
- HI Reionization $z = 6 - 10$
 - Driven by UV radiation from galaxies and/or quasars
 - Reionization injects heat into the IGM
- Today $z = 0$
Hydrogen Reionization of the Universe: $\text{HI} \rightarrow \text{HII}$

Credit: M. Alvarez, R. Kaehler, and T. Abel
Empirical Constraints on HI Reionization:
IGM transmission
The Lyman-α Forest

Credit: A. Pontzen (UCL)
Empirical Constraints on HI Reionization: IGM transmission

\[\tau \propto n_{\text{HI}} \propto n_H^2 \frac{T^{-0.7}}{\Gamma_{\text{HI}}} \]
Empirical Constraints on HI Reionization: IGM transmission

\[\tau \propto n_{HI} \propto n_{H}^2 \frac{T^{-0.7}}{\Gamma_{HI}} \]

Hydrogen Neutral Fraction

\[\langle x_{HI} \rangle (z) \]

Time (Gyr)

\[z \]

\[0 2 4 6 8 10 12 14 16 \]

\[10^0 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} \]

\[13.8 2.0 1.0 0.5 0.3 \]
Empirical Constraints on HI Reionization: IGM transmission

\[\tau \propto n_{HI} \propto \frac{n_H^2 T^{-0.7}}{\Gamma_{HI}} \]

Lyman-\(\alpha\) transmission overly sensitive saturates at \(x_{HI} \sim 10^{-4}\)

McGreer et al. 2015
Danforth et al. 2016
*Bolton et al. 2007
Fan et al. 2006
Bolton et al. 2005
Empirical Constraints on HI Reionization: IGM transmission

$$\tau \propto n_{HI} \propto \frac{n_H^2 \Gamma_{HI}}{\Gamma_{HI}}$$

Lyman-\(\alpha\) transmission overly sensitive saturates at \(x_{HI} \sim 10^{-4}\)
Empirical Constraints on HI Reionization: IGM transmission

\[\tau \propto n_{HI} \propto \frac{n_H^2 T^{-0.7}}{\Gamma_{HI}} \]

Lyman-\(\alpha \) transmission overly sensitive saturates at \(x_{HI} \sim 10^{-4} \)

Ly\(\beta \)
HST
\(z_{QSO} = 0.35 \)
Ly\(\alpha \)
VLT
\(z_{QSO} = 2.89 \)
Keck
\(z_{QSO} = 6.33 \)

\(\langle x_{HI} \rangle / \langle x \rangle \)

McGreer et al. 2015
Danforth et al. 2016
Bolton et al. 2007
Fan et al. 2006
Bolton et al. 2005

13.8 2.0 1.0 0.5 0.3
Time (Gyr)

0 2 4 6 8 10 12 14 16

\(z \)

\(10^{-6} \)
\(10^{-5} \)
\(10^{-4} \)
\(10^{-3} \)
\(10^{-2} \)
\(10^{-1} \)
\(10^0 \)

Jose Oñorbe
Empirical Constraints on HI Reionization: IGM transmission

\[\tau \propto n_{\text{HI}} \propto \frac{n_H^2 T^{-0.7}}{\Gamma_{\text{HI}}} \]

Lyman-\(\alpha \) transmission overly sensitive saturates at \(x_{\text{HI}} \sim 10^{-4} \)
Empirical Constraints on HI Reionization: CMB polarization

Temperature fluctuations in the CMB

CMB photons can interact with electrons through Thomson scattering

⇒ CMB anisotropies depend on $n_{e^-}(z)$
Empirical Constraints on HI Reionization: CMB polarization

But Thomson scattering also introduces polarization *slightly* changing the original state of CMB photons.
Empirical Constraints on HI Reionization: CMB polarization

But Thomson scattering also introduces polarization *slightly* changing the original state of CMB photons.

HI reionization produces unique signatures on large scales correlations.

Planck has also measured it!!

Quadrupole Anisotropy

Thomson Scattering

Linear Polarization

Jose Oñorbe
Empirical Constraints on HI Reionization: CMB polarization

Thomson Scattering Optical depth:

\[\tau_e = \int \sigma_T n_e^{-}(z) \, dz; \quad n_e^{-} \propto x_{\text{HII}} n_H \]
Empirical Constraints on HI Reionization: CMB polarization

Thomson Scattering Optical depth:
$$\tau_e = \int \sigma_T n_e(z) dz; \quad n_e \propto x_{HI} n_H$$

$$\tau_e = 0.055 \pm 0.009$$
Empirical Constraints on HI Reionization: CMB polarization

Thomson Scattering Optical depth:

$$\tau_e = \int \sigma_T n_e^- (z) dz; \quad n_e^- \propto x_{HI} n_H$$

$$\langle x_{HI} \rangle_{V(z)}$$

McGreer et al. 2015
Danforth et al. 2016
Bolton et al. 2007
Fan et al. 2006
Bolton et al. 2005

Time (Gyr)

13.8 2.0 1.0 0.5 0.3

10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6}

10^0 10^1 10^2 10^3 10^4 10^5 10^6

0 2 4 6 8 10 12 14 16

z

$\Delta C_{EE} (\mu K^2)$

0.4 0.2 0.0 -0.2 -0.4

0 5 10 15 20 25 30

I
Empirical Constraints on HI Reionization: CMB polarization

Thomson Scattering Optical depth:

\[\tau_e = \int \sigma_T n_e^-(z) dz; \quad n_e^- \propto x_{\text{HII}} n_H \]
Empirical Constraints on HI Reionization: CMB polarization

Thomson Scattering Optical depth:
\[\tau_e = \int \sigma_T n_e^-(z) dz; \quad n_e^- \propto x_{\text{HII}} n_H \]
Empirical Constraints on HI Reionization:
CMB polarization

Thomson Scattering Optical depth:
\[\tau_e = \int \sigma_T n_e^- (z) dz; \quad n_e^- \propto x_{\text{HII}} n_H \]

\[\langle x_{\text{HI}} \rangle (z) \]

\[x_{\text{HII}} = 1.0 - x_{\text{HI}} \]
Empirical Constraints on HI Reionization: CMB polarization

Thomson Scattering Optical depth:
\[\tau_e = \int \sigma_T n_e^-(z) dz; \quad n_e^- \propto x_{\text{HII}} n_H \]

\[x_{\text{HII}} = 1.0 - x_{\text{HI}} \]
Empirical Constraints on HI Reionization: Kinetic Sunyaev-Zel’dovich effect

- Doppler scattering off relative motions of ionized structures
- Signal in temperature fluctuations at very high modes
- Need to remove post reionization signal
- $\Delta z < 5.4$ 95% (George+2015, SPT)

Smith+2017
Empirical Constraints on HI Reionization: $z > 6$ Lyman-α Damping Wing

- High-z Lyman-α emitters: Gamma-ray burst, QSO.
- Scattering from the intergalactic medium redward of source-frame
- Need to know intrinsic Lyman-α profile. Degenerate with quasar lifetime.
- Constrain $\langle x_{\text{HI}} \rangle$

Willott+2011
Empirical Constraints on HI Reionization:
$z > 6$ Lyman-α Damping Wing

- High-z Lyman-α emitters: Gamma-ray burst, QSO.
- Scattering from the intergalactic medium redward of source-frame
- Need to know intrinsic Lyman-α profile. Degenerate with quasar lifetime.
- Constrain $\langle x_{HII} \rangle$

Davies+2018
Empirical Constraints on HI Reionization: Lyman-\(\alpha \) emitting galaxies

- Reduced abundance of Lyman-\(\alpha \) selected galaxies \(z > 6 \) perhaps due to increased IGM absorption
- Degenerate with intrinsic absorption of the galaxy (H2 regions, CGM)
- Constrain \(\langle x_{\text{HII}} \rangle \)

\[-20.25 < M_{\text{UV}} < -18.75 \]
\[\text{EW}_{\text{Ly}\alpha} > 25 \text{ Å} \]

Ono+2012
(Future?) Empirical Constraints on HI Reionization: Redshifted 21 cm radiation

- Hyperfine transition of atomic neutral hydrogen (spin flip)
- Great constraining power: redshift, duration, morphology, etc.
- Current constraints \sim 2 orders of magnitude above expected signal.

Beardsley et al. 2015
(Future?) Empirical Constraints on HI Reionization: Redshifted 21 cm radiation

- Hyperfine transition of atomic neutral hydrogen (spin flip)
- Great constraining power: redshift, duration, morphology, etc.
- Current constraints ~ 2 orders of magnitude above expected signal.
- First detection by EDGES coll.? $z \sim 17$

Beardsley+2015
What Do We Know About HI Reionization?

- IGM Transmission: HI reionization must be finished by $z = 6$
- CMB polarization: $z_{\text{reion}} \lesssim 10$
Reionization Sets the Thermal State of the IGM

- Balance of photoheating and adiabatic cooling gives a $T - \rho$ relationship: $T(\rho) = T_0(\rho/\bar{\rho})^{\gamma^{-1}}$ (Hui & Gnedin, 1997)

1. Study the reionization history
2. Constrain the thermal injection from ionizing sources
3. T_{IGM} important for galaxy formation ($M_{\text{halo,min}}$)
The Pressure Smoothing Scale of the IGM

cMpc

If we could somehow probe the dark-matter directly the Ly-α forest would look like this

(Kulkarni, JO+2015)
The Pressure Smoothing Scale of the IGM

cMpc

Pressure forces \rightarrow baryon smoother than dark matter

(Kulkarni, JO+2015)
Pressure forces → baryon smoother than dark matter

Jeans sound-crossing time $\lambda_{\text{Jeans}}/c_s \sim t_H$ Hubble time,

IGM pressure scale depends on full thermal history

(Kulkarni, JO+2015)
Microscopic random motions of $T \sim 10^4$ K gas thermal Doppler broadens Lyα forest lines

(Kulkarni, JO+2015)
Cosmic Calorimetry with the Ly-α Forest

Observed Ly-α forest: pressure smoothed + thermally broadened

(Kulkarni, JO+2015)
Simulating the Intergalactic Medium

- Hydro + gravity, low density, CMB gives initial conditions
- Nyx massively parallel grid hydro code (Almgren+ 2013; Lukic+ 2015). A $2048^3 - 40$ Mpc/h run costs $\sim 3 \times 10^5$ cpu-hrs
- Reionization redshift z_{reion} and heat injection ΔT treated as phenomenological input
The High-z IGM Retains Thermal Memory of Reionization

2 free parameters: z_{reion}, ΔT

- **Ionization history**: z_{reion}
- **Amount of reionization heat injection**: $\Delta T \leftrightarrow$ spectral slope of reion. sources
The High-z IGM Retains Thermal Memory of Reionization

2 free parameters: z_{reion}, ΔT

- Ionization history: z_{reion}
- Amount of reionization heat injection: $\Delta T \Leftrightarrow$ spectral slope of reion. sources

$z=5.40$
The High-z IGM Retains Thermal Memory of Reionization

2 free parameters: z_{reion}, ΔT

- Ionization history: z_{reion}
- Amount of reionization heat injection: $\Delta T \iff$ spectral slope of reion. sources

Jose Oñorbe
The High-z IGM Retains Thermal Memory of Reionization

2 free parameters: z_{reion}, ΔT

- Ionization history: z_{reion}
- Amount of reionization heat injection: $\Delta T \Leftrightarrow$ spectral slope of reion. sources
- Computational Challenge
The High-z IGM Retains Thermal Memory of Reionization

![Graph showing the thermal memory of reionization at high-z.](image_url)
The High-z IGM Retains Thermal Memory of Reionization
The High-z IGM Retains Thermal Memory of Reionization

![Graph showing thermal memory and reionization parameters](image)
The High-z IGM Retains Thermal Memory of Reionization

High resolution high S/N spectra: Viel at al. 2013 (HIRES and MIKE)
The High-z IGM Retains Thermal Memory of Reionization

High resolution high S/N spectra: Viel et al. 2013 (HIRES and MIKE)
HI Reionization Constraints from $z = 5 - 6$ Lyman-α
(Oñorbe+ in prep)

$z_{\text{reion}} = 8.25^{+1.14}_{-1.17}$
$log_{10} \Delta T < 4.3$

- Consistent with Planck τ_e + ”galaxy driven” reionization (ΔT)
- Measurements based on handful of QSOs, many more exist
 (Factor > 5 at $z > 6$, Pan-STARRS, DECaLS, SHELLQs, etc.)
Simulating Inhomogeneous Reionization in Hydrodynamical Simulations
(Oñorbe+ in prep)

Flash reionization: all regions reionize at the same time
Simulating Inhomogeneous Reionization in Hydrodynamical Simulations
(Oñorbe+ in prep)

Semi-analytic model to generate reionization histories
(e.g. Mesinger+2010, Battaglia+2013, Davies+2016)

White: Hydrogen Ionized Fraction; Black: Neutral Fraction

- Parameterize our ignorance as free parameters: \(M_{\text{halo, min}}, \eta_{\text{ion}}, \text{etc} \)
- Allows to explore parameter space
Simulating Inhomogeneous Reionization in Hydrodynamical Simulations

(Oñorbe+ in prep)

White: Hydrogen Ionized Fraction; Black: Neutral Fraction

Temperature
Simulating Inhomogeneous Reionization in Hydrodynamical Simulations

Flash reionization: all regions reionize at the same time

\[\langle x_{\text{HII}} \rangle (z) \]

\(z = 7.75 \)

Inhomogeneous reionization: Different regions reionize at different times

\[\tau \propto n_{\text{HI}} \propto n_{\text{H}}^2 T^{-0.7} \Gamma_{\text{HI}} \]
Simulating Inhomogeneous Reionization in Hydrodynamical Simulations

Flash reionization: all regions reionize at the same time

Inhomogeneous reionization: Different regions reionize at different times

⇒ Temperature fluctuations

\[\tau \propto n_{\text{HI}} \propto \frac{n_{\text{HI}}^2 T^{-0.7}}{\Gamma_{\text{HI}}} \]
Flash and inhomogeneous model share the same cut-off shape when

\[z_{\text{rei,flash}} = z_{\text{rei,inhomo}} \implies z_{\text{median,rei,inhomo}} = 8.15^{+0.79}_{-1.05} \]
Simulating Inhomogeneous Reionization in Hydrodynamical Simulations

- Flash and inhomogeneous model share the same cut-off shape when $z_{\text{rei, flash}} = z_{\text{rei, inhom}}^{\text{median}} \Rightarrow z_{\text{rei, inhom}}^{\text{median}} = 8.15^{+0.79}_{-1.05}$
- Temperature fluctuations increase power at $k \lesssim 0.01$
 \Rightarrow Sensitive to z_{rei}, Δz_{rei}, ΔT
Flash and inhomogeneous model share the same cut-off shape when
\[z_{\text{rei, flash}} = z_{\text{rei, inhomogeneous}} \Rightarrow z_{\text{median, inhomogeneous}} = 8.15^{+0.79}_{-1.05} \]

Temperature fluctuations increase power at \(k \lesssim 0.01 \)
\[\Rightarrow \text{Sensitive to } z_{\text{rei}}, \Delta z_{\text{rei}}, \Delta T \]
Take Away Messages

1. From IGM transmission measurements we know that HI reionization must be finished by $z = 6$ and CMB polarization constrain the full reionization history, favoring $z \lesssim 10$ scenarios.

2. Reionization imprints a thermal record on the IGM detectable in the $z \sim 5–6$ Ly-α forest.

3. The shape of 1D flux power spectrum at $z \sim 5–6$ depends on the timing of reionization and its associated heat injection.

4. Existing high-z QSO samples can provide a new precision probe of reionization.