Kavli IPMU APEC seminar, The University of Tokyo (Japan), 11 May 2018

Understanding the chemical enrichment pattern in the hot haloes of massive ellipticals, groups, and clusters of galaxies

François Mernier

フランソワ メェニェー

N. Werner, J. de Plaa, A. Simionescu, and the CHEERS collaboration

MTA-Eötvös University, Budapest

SRON Netherlands Institute for Space Research ⁼e−L comp (incl. Ne)

---- Si XIII (Heα) ---- Si XIV (Lv

------S XV (Heα) S XVI (L

. Ar XVII (Hex Ar XVIII (Lyα Ca XX (Lyα)

.....Cr XXIII (Hec Mn XXIV (Heo . . . Ni XXVII / Ni XXVIII / Fe XXV (. . . Ni XXVII / Ni XXVIII / Fe XXV (

Outline

Introduction

1. What do intra-cluster medium abundances tell us about stars and supernovae?

2. Where, when, and how was the intra-cluster medium enriched?

. Fe XXV (Hey)

Introduction

Where do chemical elements come from?

Primordial nucleosynthesis

H (~75%)

He (~25%)

Li (traces)

How about heavier elements

(=metals)?

1) Core-collapse supernovae (SNcc)

1) Core-collapse supernovae (SNcc)

after star formation

How much? Depends on:

➡ Mass of the star (→ Initial mass function)

→ Initial metallicity of the star (Z_{init})

2) Type la supernovae (SNIa)

2) Type la supernovae (SNIa)

Time delay between star formation and SNIa explosions (?)

How much? Depends on:

Physics of the explosion
 (deflagration vs. delayed-detonation)

3) Asymptotic Giant Branch stars (AGB)

4) Merging neutron stars

Produces:

Heavier elements (Ag, Pt, Au,...)

Recently confirmed thanks to LIGO!

Galaxy clusters and the intra-cluster medium

Galaxy clusters and the intra-cluster medium

Galaxy clusters and the intra-cluster medium

Optical (galaxies)

X-ray (hot gas)

The intra-cluster medium (ICM)...

- ...is **hot** (~10 to 100 millions °C!)
- ... is **tenuous** (~1 particle per dm³)
- ...accounts for **80%** of the total baryonic matter!
- ... is in collisional ionisation equilibrium

Cool-core and non-cool-core clusters

The intra-cluster medium contains metals!

 What do ICM abundances tell us about stars and supernovae?

How to constrain supernovae models?

Only a few tens of SN remnants are well known so far

The physics of SN (remnants) is usually complicated

➡Difficult to quantify their chemical composition from spectroscopy!

Mathematical The hot intra-cluster medium (ICM) is rich in metals!

These metals = integrated yields from billions of SNe over Gyrs

The ICM is in collisional ionisation equilibrium

⇒Equivalent width of the lines ⇒ abundances in the ICM

CHEERS!

CHEERS stands for: CHEmical Enrichment Rgs Sample

PI: Jelle de Plaa

- **Cool-core** galaxy clusters, groups & ellipticals
- O VIII line in RGS: > 5σ
- Nearby (z < 0.1)
- New deep observations of 11 objects (1.6 Ms)
- + archival (public) data

➡ ~4.5 Ms

of XMM-Newton total net exposure

Strategy (CHEERS sample)

Central abundance ratios

Fe XXVII / Ni XXVIII / Fe XXVI Fe XXV (Hery)

Hitomi (February 2016 - March 2016)

Hitomi (February 2016 - March 2016)

From SPEX v2 to SPEX v3

When using the new spectral fitting code (**SPEX v3**) on our XMM-Newton data...

- All abundance ratios are consistent with being solar!
- Agrees with **Hitomi** results!
- The abundance measurements of XMM-Newton are **reliable** too!

From SPEX v2 to SPEX v3

When using the new spectral fitting code (**SPEX v3**) on our XMM-Newton data...

- **All** abundance ratios are consistent with being **solar**!
- Agrees with **Hitomi** results!
- The abundance measurements of XMM-Newton are **reliable** too!

2. Where, when, and how was the intra-cluster medium enriched?

Fe (SNIa) enrichment in the ICM: core

Fe (SNIa) enrichment in the ICM: outskirts

Fe (SNIa) enrichment in the ICM: outskirts

30:000 🔄 Increasing evidence towards a flat Fe floor outside of the core

Early epoch SNIa enrichment

40:00:

(**before** the cluster assembled, more than ~10 Gyrs ago)!

➡ Via **galactic winds** and **feedback** from their central supermassive black holes

บามสม ยน ส. (2014)

...how about other elements (SNcc products)?

...how about other elements (SNcc products)?

Strategy (CHEERS sample)

EPIC

Every pointing →
 8 concentric annuli
 (fixed angular sizes)

Stacking all the measurements
 (in units of r₅₀₀, ~20 measurements
 per reference radial bin)

The (average) Fe profile

The abundance profile of other metals

Radial distribution of the SNIa fraction

Uniform f_{SNIa} fraction all across the ICM!

✓ <0.5 r500 (Mernier et al. 2017)

 \checkmark >0.5 r500 (Simionescu et al. 2015, Ezer et al. 2017)

Implications:

- Even in the core, SNIa and SNcc have enriched the ICM at the same epoch and via the same processes
- No significant contribution from delayed SNIa in the BCG
- If central abundance peaks come from the BCG, they must have been produced **early on** (during the BCG formation; z>1)
 - Metals synthesised **in situ**? Or already in infalling, low-entropy **subhaloes**?
 - Contribution from **ram-pressure stripping**? **Intra-cluster stars**?

Summary so far

Chemical enrichment of the ICM.	
---------------------------------	--

→ Where?		Core	Outskirts
	Cool-core	Central peak (SNIa and SNcc)	Flat distribution (~0.3 solar)
	Non-cool-core	~Flat distribution	Flat distribution (~0.3 solar)
→ When?	Core	Outskirts	
	During BCG formation (?) Before cluckson (?) (> 10		cluster formation 10 Gyr ago)
	Core		Outskirts
How?	 BCG? Ram-pressure stri Intra-cluster stars Galaxy mergers? 	pping? ? Supern feedba	c winds hassive black hole

Enrichment in clusters vs. groups (and ellipticals)

· · · · · · · · · · · · Fe XXVI (Lyα (XVII / Ni XXVIII / Fe XXV (I

Enrichment in clusters vs. groups (and ellipticals)

Enrichment in clusters vs. groups (and ellipticals)

Chemical evolution of the ICM

Does the Fe abundance (in the core and/or the outskirts) evolve with redshift?

Many studies, but **contrasted results**...

Hints towards redshift evolution:

Balestra et al. (2007); Maughan et al. (2008);
 Anderson et al. (2009)

No redshift evolution (up to z~1):

Mushotzky & Loewenstein (1997); Tozzi et al.
 (2003); Baldi et al. (2012)

Most recent works

(Ettori et al. 2015; Mantz et al. 2017):

No signs of evolution in the outskirts, small evolution at intermediate radii and/or in the core

Future missions

X-ray Astronomy Recovery Mission (XARM)

Re-launch of Hitomi
Demonstrated by Hitomi results!
(see also Kitayama et al. 2014)

Expected launch: 2021

Dramatic improvement on the accuracy of many abundances

Constrains on Na and Al
→ Initial metallicities of SNcc progenitors?

Constrains on Mn and Ni
→ Explosion and progenitors of SNIa?

Athena

Athena

X-IFU instrument onboard
 Barret et al. (2013); Ettori et al. (2013);
 Pointecouteau et al. (2013)

- Expected launch: 2028 2030?
- Great spectral resolution and sensitivity
 - Convenient for **redshift evolution** of metals in the ICM

Athena

X-IFU instrument onboard
 Barret et al. (2013); Ettori et al. (2013);
 Pointecouteau et al. (2013)

- Expected launch: 2028 2030?
- Great spectral resolution and sensitivity
- Convenient for **redshift evolution** of metals in the ICM

Ettori et al. (2013)

Improvements on

(i) Atomic codes

(ii) SNIa, SNcc, and AGB yields

are required!!

Conclusions

Conclusions

Take home messages

We can constrain supernovae (la & cc) properties by measuring the abundances in the hot intra-cluster medium

Outskirts: uniform distribution

→ Very early enrichment (z > 2-3: before cluster assembling)

(Cool) Core: centrally peaked distribution

→ Early enrichment (z > 1: during/shortly after BCG assembling)

From core to outskirts: SNIa vs. SNcc relative contribution does not change

→ Is the BCG really responsible for the central enrichment?

From ellipticals to clusters: Similar average Fe enrichment

CHEERS!

The CHEERS collaboration

- → Jelle de Plaa (P.I.) (SRON, Utrecht)
- François Mernier (Eötvös University)
- → Jelle Kaastra (SRON, Utrecht)
- Hiroki Akamastu (SRON, Utrecht)
- → Junjie Mao (SRON, Utrecht)
- ➡ Norbert Werner (Eötvös University)
- Aurora Simionescu (ISAS, JAXA)
- → Yu-Ying Zhang (University of Bonn) 👰
- Thomas Reiprich (University of Bonn)
- Gerrit Schellenberger (CfA Harvard)

Lorenzo Lovisari (CfA Harvard) Hans Boehringer (MPE, Garching) → Jeremy Sanders (MPE, Garching) Florian Hofmann (MPE, Garching) ⇒ Ciro Pinto (IoA, Cambridge) X →Andy Fabian (IoA, Cambridge) X → Alexis Finoguenov (MPE, Garching) Kimmo Kettula (University of Helsinki) Jussi Ahoranta (University of Helsinki) Onno Pols (University of Nijmegen) Jacco Vink (University of Amsterdam)