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Abstract

• Discuss impacts of a light pseudoscalar Nambu-
Goldstone boson (axion) on stellar evolution,                  
and speculate the existence of hints for additional 
energy losses. 

• Explore the possibility to explain excessive stellar 
energy losses in terms of the QCD axion.

• Provide the best fit parameters to guide their 
experimental discovery potential.
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Axions and stellar energy-losses
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• Motivated by the Peccei-Quinn (PQ) mechanism 
as a solution to the strong CP problem.

• Nambu-Goldstone boson associated with the 
spontaneous breaking of global U(1) symmetry.

• Axion acquires a small mass (QCD effect).

• Stable and weakly interacting particle.                                              
→ Good candidate of cold dark matter.

Axion

It can be identified as the phase of a complex scalar field: 

: symmetry breaking scale

: QCD anomaly coefficient

Peccei and Quinn (1977)
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Axion couplings

Photon Electron Proton Neutron

Generic feature: 

Model dependence: 
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Axions and stars

• Stellar evolution

• Axion emission:                                                                                  
Additional energy loss → accelerates (or delays) stellar evolution.

Time

H He CO …

H He CO …
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• Observable:  “R-parameter”

• Primakoff process

• Recent study

Horizontal Branch (HB) stars in globular clusters

Sandquist, Bolte, Stetson, and Hesser (1996)
Ayala, Dominguez, Giannotti, Mirizzi, and Straniero (2014)

Bound (2σ):

But a mild preference: 

Relevant in HB (not dense)
but not in RGB core (very dense).

　→ Decrease in R.
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• Increase He core until 3α ignition (               ).

• Axion bremsstrahlung off electrons

• Recent study of globular cluster M5

Tip of the Red Giant Branch (RGB)
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Bound (2σ):

But also shows a small hint for             .

→ Cools down the core, delays ignition.
→ More massive and brighter at ignition.

H-burning shell

He core

Viaux et al. (2013)
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White Dwarf Luminosity Function (WDLF)

• White Dwarfs (WDs): 

• Final phase of low mass stars, no further fusion of C and O. 

• Their evolution is viewed as a cooling process.

• WDLF: 

• Recent study
Bertolami, Melendez, Althaus, and Isern (2014)

# of  WDs per unit luminosity

Sensitive to the efficiency                   
of axion-electron bremsstrahlung.

Bound (2σ):

But a mild preference: 

C, O

(bright) (faint)
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White Dwarf variables

• Period decrease of pulsating WDs 
traces cooling rate.

• Observations and theory models 
show some discrepancy.

• Prefer additional energy losses due to 
axion-electron bremsstrahlung. 

Giannotti, Irastorza, Redondo, and Ringwald (2016)

Corsico et al. (2012)

R548

Isern, Hernanz, 
and Garcia-Berro (1992)
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Hints for new physics?
• Observations of different stellar systems show some deviations from      

the expected behavior.

• Although each deviation has a small statistical significance, all the results 
seem to indicate a faster cooling than the standard prediction.

• Results should be taken carefully, but at this point one cannot discard       
the new physics option:  Axion could provide a simple explanation.

M. Giannotti, talk at 7th General IAXO Collaboration Meeting (2017)
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Caveat 1: Supernova (SN) 1987A

• Additional cooling due to axion nucleon-nucleon bremsstrahlung shortens 
the observed neutrino pulse duration from SN.                                                                           

• Difficult to evaluate the axion production rate in the dense nuclear medium 
from first principles:

• Crudely modeled by the one-pion                                                          
exchange (OPE) approximation.

• The emission can be suppressed by                                                          
many-body and multiple-scattering                                                                     
effects.

• Numerical simulations with a “modified” OPE emission rate imply

• Conclusion is not robust. It should be taken as an indicative result             
rather than a sharp bound.

Raffelt and Seckel (1995); Sigl (1996)

Keil et al. (1996); Fischer et al. (2016)

→ constrains axion-nucleon couplings              .
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Leinson (2014)

Caveat 2: Neutron Star (NS)

• Cooling rate of NS in Cassiopeia A is                                             
inferred from X-ray observations of                                                           
its surface temperature.

• Evidence of       emission in                                                               
Cooper pair 3P2 formation.

• Slight extra cooling required,                                                        
axion hints?

• Or can be explained in the minimal                                                   
cooling scenario, implying a stronger bound?

Leinson (2014)

Hamaguchi, Nagata, Yanagi, and Zheng, 1806.07151

(seems to be a discrepancy in proton induced processes)
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Axion models
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Axion interpretation
A mild preference for non-vanishing couplings with both 
electrons and photons. 

1σ

2σ

3σ WD+RGB+HB

ALPS II

IAXO
0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.2

0.4

0.6

0.8

gae [10-13]

g
a
γ
[1
0-

10
G
eV

-
1
]

Giannotti, Irastorza, Redondo, Ringwald, and KS (2017)

Best fit:

corresponds to

Can typical axion models 
accommodate this ratio?
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DFSZ models

• A SM singlet complex scalar     and two Higgs doublets       and       .

• The electron coupling depends on                                            .

• Both models can explain observed data,                                             
preferring a small (large)           for the DFSZ I (II) axion.

DFSZ I:

DFSZ II:

Zhitnitsky (1980); 
Dine, Fischler, and Srednicki (1981)
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• A SM singlet complex scalar     and additional exotic quark(s)    .

• The photon coupling is determined by fixing the representation of      
under the SM gauge group (color and EM anomaly coefficients     and     ).

• The electron coupling emerges only at the loop level.

KSVZ models

Too small to explain observations:

Kim (1979); 
Shifman, Vainshtein, and Zakharov (1980)

Srednicki (1985)
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KSVZ axion/majoron (A/J)

• Extend KSVZ models by three right-handed neutrinos       .

• The PQ mechanism is unified with the seesaw mechanism.

• The axion     is at the same time the majoron     (pNG boson from   
spontaneous breaking of the lepton symmetry).

• The one-loop axion-electron coupling gets extra contributions from neutrinos.

The fit can improve considerably.

Langacker, Peccei, and Yanagida (1986); Shin (1987)

Garcia-Cely and Heeck (2017)

where

SM Higgs PQ scalar
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Experimental potential and 
preferred parameter range
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The International Axion Observatory (IAXO)

• The proposed next generation     
axion helioscope.

• A sensitivity much improved with 
respect to past and current 
experiments such as CAST at CERN.

• A prototype version will be 
presumably located at DESY.

The IAXO Letter of Intent, Armengaud et al. (2013)

http://iaxo.web.cern.ch
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• Search for long range forces mediated by axions.

• Need to assume the existence of a CP-violating interaction.

• Covers the low mass end of the axion parameter space:                          
A complementary role with respect to IAXO.

ARIADNE Arvanitaki and Geraci (2014)

Moody and Wilczek (1984)

Constraint from neutron EDM:
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Fit and experimental potential: DFSZ models

• Finite values of      are favored.

• Diagonal contour lines since WDLF drives                          .

• 1σ region can be entirely probed by IAXO.
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Giannotti, Irastorza, Redondo, Ringwald, and KS (2017)
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Fit and experimental potential: KSVZ A/J models

• Three possibilities on the representations      of exotic quarks under  
the SM gauge groups                                  are considered:

• IAXO can probe entire 1σ region except for the case                          
(cancellation in                            with                          ).
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• Small     is disfavored and the fit becomes slightly worse.

• For KSVZ A/J models, a large value of        is required,     
which may conflict with perturbative unitarity (                 ).

Giannotti, Irastorza, Redondo, Ringwald, and KS (2017)

DFSZ I DFSZ II KSVZ A/J [RQ = (3,1,-1/3)]

Adding the SN 1987A constraint and NS hint
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Axion hints compatible with 
axion dark matter?
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• Can DFSZ and KSVZ A/J models giving a good fit                                           
to stellar cooling hints also explain dark matter?

• Key feature:                                                                                    These 
Models can lead to NDW > 1 degenerate minima                                             
in the low energy effective potential.

• Formation of domain walls if the PQ symmetry                                                 
has been broken after inflation.

Cosmological implications of axion models 

: integer determined by QCD anomaly

: number of exotic quarks Q
 (assuming Q’s are SU(2)L singlet)

Sikivie (1982)
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Evolution of domain walls
• Domain walls are stable and eventually                                     

overclose the universe.

• This problem can be avoided if there                                             
exists a breaking of degeneracy                                                
between the different vacua.

• The breaking term leads to the late-time collapse of domain walls.

e.g. Planck-suppresed operator 

: PQ symmetry breaking field 

Kawasaki, KS, and Sekiguchi (2015)

Zel’dovich, Kobzarev and Okun (1975)
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• Axions produced by the collapse of NDW > 1 domain walls contribute to        
the dark matter density.

• The observed dark matter abundance can be explained                                  
at lower     or larger       than usual.

• The explicit symmetry breaking term       shifts the minimum of                          
the axion effective potential                      .                                                                                         
→ Constraints from the neutron electric dipole moment observations:

Hiramatsu, Kawasaki, KS and Sekiguchi (2013); 
Kawasaki, KS and Sekiguchi (2015); Ringwald and KS (2016)

Axion dark matter from long-lived domain walls
NDW = 3

Barker et al. (2006); Guo et al. (2015)

where
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Parameters for benchmark models

• Dark matter abundance can be explained in the mass range preferred by 
HB+RGB+WD hints.

• Tuning of parameters is required if NS and SN constraints are included.

with

Giannotti, Irastorza, Redondo, Ringwald, and KS (2017)
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• DFSZ and KSVZ A/J models allow a good global fit to stellar 
cooling observations, preferring an axion mass

• The preferred mass range can be probed in future experiments.

• Additional constraints from supernova and neutron star physics, 
but potentially large systematic uncertainties.

• The axion in the preferred mass range can also be the main 
constituent of dark matter.

Conclusion
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Backup slides



χ2 function for the global fits

For the SN constraint and NS hint we add



Best fit parameters

Fits include HB, RGB, WDLF, and WD variables.

Model E/N |trκ-2κee| tanβ fa [108 GeV] ma [meV] χ2/d.o.f.

DFSZ I 8/3 - 0.28 0.77 74 0.99

DFSZ II 2/3 - 2.7 1.2 46 0.99

0 - - 0.77 74 1.58

KSVZ 2/3 - - 0.49 120 1.58

5/3 - - 0.064 880 1.31

8/3 - - 0.22 260 1.47

2/3 6.2 - 1.2 46 0.99

KSVZ A/J 8/3 3.7 - 0.73 77 0.99

5/3 2.5 - 0.25 230 0.99

Giannotti, Irastorza, Redondo, Ringwald, and KS (2017)


