HIGH RESOLUTION X-RAY SPECTROSCOPY: legacy from the Hitomi observatory

AURORA SIMIONESCU ISAS/JAXA

THE HITOMI SOFT X-RAY SPECTROMETER (SXS)

- array of 36 micro-calorimeter pixels (3x3' FOV)
- cryogenically cooled to 50mK
- spectral resolution of 5eV around Fe-K line

HITOMI FIRST LIGHT SPECTRUM OF THE PERSEUS CLUSTER

Hitomi FWHM 4.9 eV CCD FWHM ~150 eV

Hitomi Collaboration, Nature, 2016

2016Natur 535.117H Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Anabuki, Naohisa; Angelini, Lorella; Arnaud, Keith; Audard, Marc; Awaki, Hisamitsu; and 206 coauthors	1.000 07/2016 The quiescent intrac	6 A E luster medium in the	X core of the Perse	BC S us cluster	N U					
	2017arXiv171004649 Hitomi Collaboration; A Akamatsu, Hiroki; Akim Allen, Steven W.; Angel Audard, Marc; Awaki, H Axelsson, Magnus; Bam coauthors	8H haronian, Felix; noto, Fumie; ini, Lorella; lisamitsu; iba, Aya; and 185 2017arXiv17	1.000 Measuremen	10/2017 ts of resonant	A t scattering in t	X the Perseus cluste	C er core with Hit	U omi SXS	R C	11
dynamics and turbulence in the intergalactic medium			ation; Aharoniar i; Akimoto, Fur ; Angelini, Lore waki, Hisamitsu us; Bamba, Aya;	, Felix; nie; lla; ; and 188	Atmospheric gas dynamics in the Perseus cluster obser			rved with Hitomi		
2017arXiv171205407H	1.000	12/2017	A	X		RC	U			

Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; and 185 coauthors

2017arXiv171206612H

Hitomi Collaboration: Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; and 185 coauthors

2017arXiv171106289H

Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; and 184 coauthors

Atomic data and spectral modeling constraints from high-resolution X-ray observations of the Perseus cluster with Hitomi

atomic physics

1.000 12/2017 RC Х А Temperature Structure in the Perseus Cluster Core Observed with Hitomi

temperature structure and test of collisional ionisation equilibrium

2017Natur.551..478H

Hitomi Collaboration; Aharonian, Felix; Akamatsu, Hiroki; Akimoto, Fumie; Allen, Steven W.; Angelini, Lorella; Audard, Marc; Awaki, Hisamitsu; Axelsson, Magnus; Bamba, Aya; and 184 coauthors

A

1.000 U 11/2017 х Solar abundance ratios of the iron-peak elements in the Perseus cluster

U

U

supernova nucleosynthesis

1.000 11/2017

X RC

Hitomi Observation of Radio Galaxy NGC 1275: The First X-ray Microcalorimeter Spectroscopy of Fe-K{alpha} Line Emission from an Active Galactic Nucleus

circumnuclear environment around supermassive black hole

U

2017ApJ...837L...15A

Aharonian, F. A.; Akamatsu, H.; Akimoto, F.; Allen, S. W.; Angelini, L.; Arnaud, K. A .; Audard, M.; Awaki, H.; Axelsson, M.; Bamba, A.; and 208 coauthors

1.000 03/2017 EF Δ

S N Hitomi Constraints on the 3.5 keV Line in the Perseus Galaxy Cluster

search for dark matter candidates

Dynamics and turbulence in the intergalactic medium

 what is the dynamical impact of the supermassive black hole on the surrounding X-ray emitting medium?
how accurate is the hydrostatic equilibrium assumption?

ESTIMATES OF GAS TURBULENCE FROM LINE BROADENING MEASUREMENTS

Fit with power-law continuum plus lines represented by Gaussians at fixed rest energies from theory (H-like Fe) and lab measurements (He- and Li-like Fe).

 $\sigma_v = 164 + -10$ km/s

turbulent pressure support = 4% of thermal pressure

WHAT IS DRIVING THE TURBULENCE?

IS THIS EVEN REALLY TURBULENCE?

Test #1: Line Gaussianity

Test #2: Resonant scattering

RESONANT SCATTERING IN THE CORE OF THE PERSEUS CLUSTER

Atomic physics

Name	Trar	nsition	Energy (keV)			
	Lower	Upper	SPEX	ATOMDB		
Ni_{XXVII} He α	$1s^2 (^1S_0)$	$1s.2s~(^{3}S_{1})$	7.73153	7.74420		
Mn_{XXIV} He α		$1s.2p~(^{1}P_{1})$	6.18019	6.19011		
Ni_{XXVII} He α		$1s.2p~(^{3}P_{2})$	7.78637	7.79885		
Cr_{XXIII} He α		$1s.2p~(^{1}P_{1})$	5.68205	5.69068		
Mn_{XXIV} He α		$1s.2s~(^{3}S_{1})$	6.12105	6.12998		
		$1s.2p~(^{3}P_{2})$	6.16284	6.17171		
Cr_{XXIII} He α		$1s.2s~(^{3}S_{1})$	5.62691	5.63471		
		$1s.2p~(^{3}P_{2})$	5.66506	5.67284		
Mn_{XXIV} He α		$1s.2p~(^{3}P_{1})$	6.15071	6.15891		
Cr_{XXIII} He α			5.65484	5.66217		

PROGRESS IN ATOMIC LINE EMISSION MODELS

Meanwhile in SPEX:

Updated radiative recombination data (Mao et al. 2016) New collisional ionisation data (Urdampilleta et al. 2017) Sophisticated charge exchange model (Gu et al.)

Thermal structure of the gas

huntunnin

- electron temperature
- ion temperature

- excitation temperature
- ionization temperature

Supernova nucleosynthesis

SNIA NUCLEOSYNTHESIS CONSTRAINTS FROM HITOMI

SNCC NUCLEOSYNTHESIS CONSTRAINTS FROM HITOMI

chi2= 10.7 / 10 d.o.f

1.6 **N100** SukN20 1.4 X/Fe (Solar) 8.0 9.0 9.0 0.4 0.2 0.0 Si 0 Mg S Ca Cr Ne Ar Mn

Ni

1.8

Simionescu et al., in prep

ORIGIN OF FLUORESCENT FE LINE

- too narrow to come from broad line region or accretion disk
- not spatially extended enough to come from interaction between ICM and cold gas in the nebula of NGC1275
- likely a molecular torus or rotating molecular disk on 1-100 pc scale

THE HUNT FOR DARK MATTER

Aharonian et al. 2017

For the flux measured with CCD spectra in the core of the Perseus Cluster,

- a broad line (σ ~DM velocity dispersion) is excluded at 99% confidence
- a narrow line (σ ~ICM velocity dispersion) is excluded at 99.7% confidence

The signal from the stacked cluster sample was much lower than Perseus and is too weak to be excluded.

We have a lot to learn from X-ray spectroscopy!

Stay tuned for XARM, 2020!

6.5

6.6

E (observed), keV

6.9