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Stellar Evolution Overview
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AIC or ECSN?

If Mcore reaches ' 1.375M�,
ECSN will occur; otherwise
an ONe WD is left, perhaps
producing an AIC.

Doherty+ 2015
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Why study AIC?

Less well-studied case of stellar death, with potential importances:

Nucleosynthesis:

Production of Ag and Pd
(Hansen+ 2012)
Possible r-process (Au, Eu)
site (Fryer+ 1999)

’Bimodal’ NS mass distibution,
low-mass pulsars

NS mass distribution(Schwab+ 2010)
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AIC as a multi-messenger candidate

Feeble interaction →

Direct information

Early warning
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G-wave as a probe of the rotating SN core

G-wave from collapse of rotating iron core:

Dimmelmeier+ 2007

Measuring the angular momentum of the SN core (Abdikamalov+ 2014).
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G-wave as a probe of the explosion mechanism

Neutrino heating failed to explode the

star in spherically symmetric simulations.

Multi-dimensional instabilities required.

G-wave from the convection, SASI and

explosion.

Murphy+ 2009
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Neutrinos: direct probe of the SN core
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Method: radiative-hydrodynamic simulation

Ideal compressible hydrodynamics (Leung+ 2015):

A 5th-order shock capturing scheme.

G-wave extraction:

quadrupole formula h+ = G
c4

1
D

3
2 Ïzz

Neutrino transport:

Isotropic diffusion source approximation (IDSA) (Liebendöfer+ 2009,
Suwa+ 2011, Pan+ 2015)

Ray-by-ray plus scheme for multi-dimension
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Neutrino transport

Various methods for solveing Boltzmann neutrino transport:

Credit: Y. Suwa

Two limiting cases:
1. Diffusion (inside NS/ν-sphere)
2. Free streaming (outside shock)

Spirit of FLD/IDSA is to inter-

polate in-between with some

flux-factor treatment.
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IDSA

f t : trapped particle
f s : streaming particle

j , χ: emissivity and absorption

Σ reproduce diffusion limit in the

ν-optically thick region.

Reduced Boltzmann eq.

D(f t) = j − (j + χ)f t − Σ

D(f s) = −(j + χ)f s + Σ

Neutrino-matter interaction
Emission & absorption:

n + νe 
 p + e−

p + ν̄e 
 n + e+
Scattering:

N/α/A + ν → N/α/A + ν
Bruenn (1985)
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Code performance

Spherically-symmetric simulation of 11M� solar-metallicity progenitor from
Woosley et al. (2002).
Left: time evolution of shock radius;
Right: luminosity curve for electron (anti-)neutrino.
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AIC progenitor structure (initial condition)
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Higher central density and no extended envelop.

Electron capture process reduces pressure and collapse ensues.
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Collapse and post-bounce dynamics

Reaches nuclear density
ρnuc ∼ 2.3× 1014g/cm

3 in ∼ 30ms.

EOS stiffens at ρnuc, core rebounds (’bounce’),
launches a bounce shock.

Turns to accretion shock quickly, breaks out the
star surface at ∼ 90ms after bounce.

Ejecta ∼ 0.02M�, Eexp ∼ 1050erg
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No stalling of accrection shock, but the shock breakout surface at 100 ms
after bounce.

Shuai Zha (CUHK) AIC, GW&ν July 19, 2018 15 / 30



Convective motion in 2D simulation

Entropy&velocity at tb + 40 ms

Anisotropic velocity:

vaniso =

√√√√ 〈ρ[(vr − 〈vr 〉)2 + v2
θ
]〉

〈ρ〉

Shuai Zha (CUHK) AIC, GW&ν July 19, 2018 16 / 30



G-wave for non-rotating case
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Prompt convection

Time is relative to core bounce time tb.

Shock break out surface at ∼ tb + 90ms.
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Neutrino signal for non-rotating case
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Luminosity curve similar as those from CCSNe.

No strong variations in 2D due to the mild convective motion.
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G-wave waveforms of uniform rotating models
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Time-frequency informations

→

600∼800Hz, ∼ tb → tb + 20ms, hydrodynamic ringdown of PNS,

400∼500Hz, long-term signal, PNS convection

100∼200Hz, ∼ tb + 10ms→ tb + 40ms, prompt post-shock convection
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Generic features in the g-wave signal

Shuai Zha (CUHK) AIC, GW&ν July 19, 2018 21 / 30



Detectability

Assume source at 10 kpc;
compared with Adv-LIGO/Adv-Virgo noise spectrum.
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Just for illustration.
Shuai Zha (CUHK) AIC, GW&ν July 19, 2018 22 / 30



Effect of EOSs (preliminary)

HShen, HS-DD2; LS220

All consistent with currenct NS mass-radius

constraints, while the softer LS220 shows easier

explosion in some CCSNe simulations.
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Effect of rotation on neutrino signals

Less luminous (50% drop at most) and less stiff
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Left: angular averaged anti-neutrino light curve ;
Right: mean neutrino energy
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Variation of Lν along rotation axis (preliminary)

∼5% and 8ms quasi-periodic variation in ν̄e lnuminosity along the rotation
axis.
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Angles are with respect to rotation axis.
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Differential rotation

Differentially rotational law presented in Yoon and Langer (2004)

Assuming cylindrical rotation, the core is
controlled by dynamical shear instability:

Ω(s) = Ωc +

∫ s

0

fshσDSI,crit

s ′
ds ′

outer part assumes an anlytical law:

Ω(s)/ΩK (s) = Ω(sp)/ΩK (sp)+C (s−sp)a

The core can rotate much faster while the surface doesn’t exceed its
Kepler angular velocity.
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Deformation of the initial WD

For uniform rotating WD with Ωini ∼ ΩKepler, β = Erot
|Egrav| ' 1%.

Ωc = 3rad/s & βini = 1.0% | Ωc = 18rad/s & βini = 8.5%

Initial density distributions.
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G-wave from differential rotating models (preliminary)
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Summary & outlook

A suite of rotating AIC models shows quite generic features of g-wave,
radiated from ring-down, prompt convection and PNS convection.

Faster rotating models radiate less in neutrino luminosity. At
rotational axis, the luminosity shows some temporal variability.

Can perturbation analysis reproduce these g-wave radiation modes?
Can we parametrize the waveforms for GW search?

More comprehensive studies on the effects of EOSs and neutrino
physics are needed.
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Thank you!!
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