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Plan of this talk

@ Introduction

© Method: radiative-hydrodynamic simulation
© AIC of a non-rotating WD

@ AIC of rotating WDs, g-wave and v signals

© Summary & outlook
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Stellar Evolution Overview
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AIC or ECSN?

0.01 =
™ EC—SN
0.001 —
If Mcore reaches ~ 1.375M), CC-SN
ECSN will occur; otherwise 0.0001 L.

an ONe WD is left, perhaps
producing an AIC.

Doherty+ 2015
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Why study AIC?

Less well-studied case of stellar death, with potential importances:

10F
@ Nucleosynthesis:
e Production of Ag and Pd
(Hansen+ 2012)
e Possible r-process (Au, Eu)
site (Fryer+ 1999)
@ 'Bimodal’ NS mass distibution, ]
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NS mass distribution(Schwab-+ 2010)
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AIC as a multi-messenger candidate

AIC event

Feeble interaction —

@ Direct information ligo.calech.edu

@ Early warning

Superk
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G-wave as a probe of the rotating SN core

G-wave from collapse of rotating iron core:
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Dimmelmeier+ 2007

Measuring the angular momentum of the SN core (Abdikamalov+ 2014).
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G-wave as a probe of the explosion mechanism
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Neutrino heating failed to explode the

star in spherically symmetric simulations.

Multi-dimensional instabilities required.
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G-wave from the convection, SASI and

explosion.
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Neutrinos: direct probe of the SN core

SN1987A in LMC
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Confirmed baseline model... and limits on v properties
....but still many questions
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Method: radiative-hydrodynamic simulation

Ideal compressible hydrodynamics (Leung+ 2015):

@ A 5th-order shock capturing scheme.

G-wave extraction:

quadrupole formula hy = C%%

NIw

/ZZ

Neutrino transport:

e lIsotropic diffusion source approximation (IDSA) (Liebenddfer+ 2009,

Suwa-+ 2011, Pan+ 2015)

@ Ray-by-ray plus scheme for multi-dimension
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Neutrino transport

Various methods for solveing Boltzmann neutrino transport:

Sn > VE > M;> FLD, IDSA > leakage

—  ——
ab initio approximate
higher cost lower cost

Two limiting cases:

1. Diffusion (inside NS/v-sphere)
2. Free streaming (outside shock)
Spirit of FLD/IDSA is to inter-
polate in-between with some
flux-factor treatment.

Credit: Y. Suwa
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IDSA

ft: trapped particle
f*: streaming particle

Reduced Boltzmann eq.

J,x: emissivity and absorption
D(F) = - (j+ ) - %
D(f°) = —(j FF+y
Trapped Particles ( ) (J I X) +
E ”
e
. | Neutrino-matter interaction
s | Gt Emission & absorption:
Ul n+ﬁe:p:e;
+Ve=n+e
Matter Scattering: P
> reproduce diffusion limit in the e (o @/ ATV = NafA+y

v-optically thick region.
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Code performance

Spherically-symmetric simulation of 11 Mg, solar-metallicity progenitor from
Woosley et al. (2002).

Left: time evolution of shock radius;
Right: luminosity curve for electron (anti-)neutrino.
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AIC progenitor stru

ture (initial condition)
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@ Higher central density and no extended envelop.

@ Electron capture process reduces pressure and collapse ensues.
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Collapse and post-bounce dynamics

10\5
@ Reaches nuclear density .
3 . 10
Prue ~ 2.3 x 101g/cm” in ~ 30ms.
@ EOS stiffens at pyyc, core rebounds ('bounce’), 1"
launches a bounce shock. 1o
<
@ Turns to accretion shock quickly, breaks out the
star surface at ~ 90ms after bounce. o
: 50
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Convective motion in 2D simulation

Entropy&velocity at t, + 40 ms

r[km]
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Anisotropic velocity:

Vaniso =

100
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for non-rotating case
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@ Time is relative to core bounce time t.

@ Shock break out surface at ~ t; + 90ms.
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Neutrino signal for non-rotating case

L ferg/s]

0 ‘ ‘ ‘ ‘ 6 ‘ : : :
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@ Luminosity curve similar as those from CCSNe.
@ No strong variations in 2D due to the mild convective motion.
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G-wave waveforms of uniform rotating models
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Time-frequency informations
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600~800Hz, ~ t, — t, + 20ms, hydrodynamic ringdown of PNS,
@ 400~500Hz, long-term signal, PNS convection
@ 100~200Hz, ~ tp + 10ms — t, + 40ms, prompt post-shock convection
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Generic features in the g-wave signal

0
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Detectability

Assume source at 10 kpc;
compared with Adv-LIGO/Adv-Virgo noise spectrum.

2rad/s 2.5rad /s 9rad/s ‘

5rad/s

107

)7 hcharf41/2 [Hz‘lr’/z]

f[Hz]

Just for illustration.
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Effect of EOSs (preliminary)

25

J0348+0432

HShen, HS-DD2; LS220

All consistent with currenct NS mass-radius z
constraints, while the softer LS220 shows easier )
explosion in some CCSNe simulations.
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Effect of rotation on neutrino signals

Less luminous (50% drop at most) and less stiff

52
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Left: angular averaged anti-neutrino light curve ;
Right: mean neutrino energy
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Variation of L, along rotation axis (preliminary)

~5% and 8ms quasi-periodic variation in 7, Inuminosity along the rotation

axis.

- - high resolution run
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Angles are with respect to rotation axis.
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Differential rotation

Differentially rotational law presented in Yoon and Langer (2004)

Assuming cylindrical rotation, the core is
controlled by dynamical shear instability:

s
fs cri
Q(s) = Qc + / FhODSLerit g
0 S
3

outer part assumes an anlytical law:

Q(s)/Qk(s) = Qsp)/Q(5p) +C(s—5p)°
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The core can rotate much faster while the surface doesn’t exceed its
Kepler angular velocity.
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Deformation of the initial WD

For uniform rotating WD with Qiy; ~ Qiepler, 8 = Em“ = 1%.

| grav

Qc=3rad/s & Bini =1.0% | Q.= 18rad/s & Bini = 8.5%
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Initial density distributions.
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G-wave from differential rotating models (preliminary)

— . = 3rad/s.
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Summary & outlook

@ A suite of rotating AIC models shows quite generic features of g-wave,
radiated from ring-down, prompt convection and PNS convection.

o Faster rotating models radiate less in neutrino luminosity. At
rotational axis, the luminosity shows some temporal variability.

@ Can perturbation analysis reproduce these g-wave radiation modes?
Can we parametrize the waveforms for GW search?

@ More comprehensive studies on the effects of EOSs and neutrino
physics are needed.
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Thank you!!
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