Lithium Abundances

In

Extremely Metal-Poor stars

Tadafumi MATSUNO (Sokendai / NAOJ)

in collaboration with W. Aoki et al. Matsuno et al. (2017a, PASJ; 2018b, AJ)

Formation of metal-poor stars

Information from metal-poor stars

- Chemical composition of ISM reflects nucleosyntheses by Big Bang and by first stars
- Star hardly changes its surface abundance during the evolution

Second generation

- Can be low mass (e.g., <0.8 M_{sun})
- Metal poor star at z=0
- BBN (This talk) First stars

(e.g., Ishigaki et al. 2014; 2018)

From Metal-Poor Stars to Big Bang

Is the standard BBN model wrong?

•Uncertain reaction rates

precise enough

Is the standard BBN model wrong?

Uncertain reaction rates
 precise enough

• Unknown channel (Chakraborty et al., 2011) mostly ruled out by experiments (e.g., Kirsebom & Davids, 2011; O'Malley et al., 2011)

Is the standard BBN model wrong?

- •Uncertain reaction rates precise enough
- Unknown channel (Chakraborty et al., 2011) mostly ruled out by experiments (e.g., Kirsebom & Davids, 2011; O'Malley et al., 2011)

New physics

 e.g., Tsallis statistics (e.g., Kusakabe+18)
 Only Li shows discrepancy

Does the Li abundance observation really reflect BBN?

Fragility of Lithium

Li destruction at 2.5×10^6 K (⁷Li+p \rightarrow ⁴He+⁴He)

Li abundance decreases when material from stellar interior pollutes the surface

e.g., red giants

Suggestions to the Li problem

Proposed epoch of Li depletion

- Before the formation of metal-poor stars (Piau+06) Mixing of the primordial ISM with Li-free ejecta from first stars
- Pre main-sequence phase (Fu+15)

Complete Li destruction during pre-MS + ISM accretion

 Main sequence phase (Richard+05) atomic diffusion + turbulent mixing during MS-phase

How to decrease Li abundance while keeping the small star-to-star scatter in Li abundance

Breakdown of the Plateau

Plateau doesn't extend to lowest metallicity

[Fe/H]~-3: Large scatter [Fe/H]<-4: Low Li in all stars

Indicative of Li depletion in some of metal-poor stars Related to the discrepancy between CMB and Spite plateau?

Require larger sample to clearly understand the nature of the breakdown

Goal

Observationally clarify the nature of the breakdown of Spite plateau

Observations of EMP TO stars

Extremely Metal-Poor ([Fe/H]<-3.0) Turn-Off (Teff > 5500 K)

Outline

Abundance determination

Lithium abundances at [Fe/H] < -3.5 EMP stars from SDSS/SEGUE

Lithium in relation to Carbon

Lithium abundances in CEMP-no stars

Abundance determination

Procedure of Abundance Analysis

Step 1. Measure the equivalent widths Fitting absorption lines with Gaussian

Step 2. Estimate atmospheric params (T_{eff} , $\log g$) To determine evolutionary status To calculate abundance from equivalent widths (Step 3)

Step 3. Abundance calculation Calculate abundance from equivalent widths

Procedure of Abundance Analysis

Step 1. Measure the equivalent widths Fitting absorption lines with Gaussian

Spectral synthesis

Due to asymmetry, Li absorption line can not be fit with Gaussian

-> Directly fit spectra with synthesized ones varying the abundance

Procedure of Abundance Analysis

Step 1. Measure the Fitting absorption

Step 2. Estimate atr To determine e To calculate ab

- Other methods:
 - Colors (for Teff)
- Pipelines of low-resolution spectroscopic survey
- Fe lines analysis
- Distance (log g)

etc.

Comparison of stellar parameters

Procedure of Abundance Analysis

Step 3. Abundance calculation Calculate abundance from equivalent widths

Lithium abundances at [Fe/H]<-3.5

(Extremely metal-poor turn-off stars from SDSS/SEGUE)

Matsuno, T. et al. (2017b, AJ, 154, 52)

Previous measurements

Before 2008

Previous measurements

Before 2013

Previous measurements

Before 2016

Targets & Observations

Eight stars with [Fe/H] < -3.0

In particular, we focus on [Fe/H] < -3.5

Aoki et al. 2013

Subaru/HDS observations (R~36,000, S/N~20-30) for 137 metal-poor stars found in SDSS/SEGUE survey

Further follow-up observation

Higher quality data (R~60,000, S/N≥50) -> This work

Results: Metallicity

7 out of 8 stars are [Fe/H]<-3.5

Object	[Fe/H]
SDSS J1424+5615	-3.10
SDSS J1640+3709	-3.54
SDSS J1036+1212	-3.62
SDSS J2349+3832	-3.73
SDSS J0120-1001	-3.84
SDSS J2005-1045	-3.86
SDSS J1522+3055	-3.94
SDSS J2309+2308	-3.96

Differential Analysis

Source of uncertainty in abundance analysis

Approximations in model atmosphere (local thermodynamical equilibrium, 1D plane parallel)

Uncertainty in atomic data

Differential analysis

 $A \simeq -\log(gf) - \log \lambda + \chi\theta + \log\left(\frac{EW}{\lambda}\right) + const.,$ where $\theta = 5040/T_{eff}$.

Cancels out deviation from the approximations

Particularly effective between stars with similar stellar params.

Lithium abundance at [Fe/H] <-3.5

All stars with [Fe/H] < -3.5 have Li abundance lower than the plateau

No significant scatter in Li abundance ($\sigma_{A(Li)} \sim 0.10$ dex)

Li and Atmospheric Parameters

Li is independent from Teff or log g

-> Li abundance is not relevant to stellar evolution nor mass

Lithium Abundance at [Fe/H] <-3.5

- All stars have low Li abundance at [Fe/H] < -3.5
- No significant scatter in Li abundance
- Li abundance does not correlate with any properties

Li abundance seems to only correlate with metallicity

Lithium in relation to Carbon

(Lithium in CEMP-no stars)

Based on Matsuno et al. (2017a, PASJ, 69(2), 24)

Carbon Enhanced Metal-Poor Stars (CEMP)

Carbon-Enhanced Metal-Poor stars ([C/Fe]>0.7) Many metal-poor stars show carbon enhancements

CEMP-no CEMP-s

without *s*-process excess [Ba/Fe]<0.0 C-excess is likely due to first stars

>80% at [Fe/H]<-4

with s-process excess [Ba/Fe]>1.0 As a result of mass transfer from evolved companion

Carbon Enhanced Metal-Poor Stars (CEMP)

CEMP-no and Li

Most of stars are CEMP-no All stars show low Li abundance

Speculation on a connection between the two results

at [Fe/H]<-4

-> Breakdown ([Fe/H]≤-2.5) might be due to increasing fraction of CEMP-no

Li measurements in CEMP-no stars

Frebel+08, Bonifacio+15 etc. -> low Li

However, most of them are[Fe/H]<-4

Which of low metallicity or CEMP-no nature is the fundamental cause of low Li abundances?

Targets & Observations

-3.5<[Fe/H]<-2.0

- Many C-rich stars and C-normal stars
- Plateau breaks down at this metallicity

Target

2 CEMP-no stars with [Fe/H]~-3, Teff~6000 K

Observations

Subaru HDS R~60000, S/N~100

C, Ba abundance

Both of the 2 objects are C-rich, Ba-poor -> CEMP-no

Lithium in CEMP-no Stars

Li abundance of CEMP-no stars are similar to that of C-normal stars

CEMP-no and breakdown

Do CEMP-no stars necessarily show low Li abundance? No.

Li abundance of CEMP-no stars are similar to that of C-normal stars at [Fe/H] \sim -3

->Breakdown ([Fe/H]~-3) is not related to the large fraction of CEMP-no

-> C-excess and low-Li at [Fe/H] <-4 are caused independently

Results and Models

Results of the present study

- [Fe/H]<-3.5: Average Li abundance is lower than plateau
- [Fe/H]<-3.5: Scatter is insignificant ($\sigma_{A(Li)} \sim 0.10 \text{ dex}$)
- Fe/H]<-2.5: breakdown is unrelated to CEMP-no fraction

Li abundance only correlate with stellar metallicity Constraints on models

- Before the formation of metal-poor stars (first stars; Piau+06)
- Pre main-sequence phase (Fu+15)
- Main-sequence phase (Richard+05)
- All need fine-tuning of a parameter

-> Need to understand the physical origin of the parameter as well as application/tuning to lowest metallicity

Current situation

Bonifacio+18

More sample -our ongoing survey-

 Precise abundance is hardly available at [Fe/H] <-3.0
 -> Find out bright extremely metal-poor stars!
 LAMOST-Subaru study for 400 metal-poor stars cf. LAMOST sample: 12-15 mag, SDSS/SEGUE: 14-16 mag Observation has finished! (Li, H.N., Aoki, W., Matsuno,T. et al.) e.g., More CEMP-no stars with normal Li (Zhang+ in prep.)

LAMOST telescope

meeting at Beijing

Li-rich stars found by LAMOST/Subaru

Li, H.N., Aoki,W., Matsuno,T. et al. (2018, ApJL)

Li abundance of Li-rich stars evolves similarly to normal stars -> Li-enrichment during main-sequence

What's next?

Li abundance of red giants as an independent probe

Let's make use of another plateau of red giants We have to put all the stars at the same distance

Gaia

Gaia measures distance and magnitude of stars (the second data release happened on 25 April 2018)

Gaia is also important to study stellar motions in the Galaxy (this is the main reason for me to come here!)

Li abundance of red giants

Summary

Observational understanding of the breakdown

- Li abundance at [Fe/H] <-3.5 is uniformly low
- Breakdown is not related to a large fraction of CEMP-no Li abundance correlates only with metallicity

Constraints on models

Require model understanding and application for low metallicity stars

Futures

Our ongoing project and Gaia will provide new insights

Li Depletion Models

All models are suggested to explain the discrepancy between the Big Bang and the Spite plateau

Before the formation of metal-poor stars (Piau+06) MP stars are formed from the mixture of Li-free ejecta from first stars and ISM with BBN composition

Pre-MS stage of metal-poor stars (Fu+15) Complete Li-destruction during pre-MS phase and later recovery by ISM accretion

During MS phase of metal-poor stars (Richard+05) Atomic diffusion + additional mixing (see also Korn+06,07, Gruyters+13)